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Abstract

Purpose – In an era marked by heightened geopolitical uncertainties, such as international conflicts and
economic instability, the dynamics of energy markets assume paramount importance. Our study delves into this
complex backdrop, focusing on the intricate interplay the between traditional and emerging energy sectors.
Design/methodology/approach – This study analyzes the interconnections among green financial assets,
renewable energymarkets, the geopolitical risk index and cryptocurrency carbon emissions fromDecember 19,
2017 to February 15, 2023. We investigate these relationships using a novel time-frequency connectedness
approach and machine learning methodology.
Findings –Our findings reveal that green energy stocks, except the PBW, exhibit the highest net transmission
of volatility, followed by COAL. In contrast, CARBON emerges as the primary net recipient of volatility,
followed by fuel energy assets. The frequency decomposition results also indicate that the long-term
components serve as the primary source of directional volatility spillover, suggesting that volatility
transmission among green stocks and energy assets tends to occur over a more extended period. The SHapley
additive exPlanations (SHAP) results show that the green and fuel energy markets are negatively connected
with geopolitical risks (GPRs). The results obtained through the SHAP analysis confirm the novel time-varying
parameter vector autoregressive (TVP-VAR) frequency connectedness findings. The CARBON and PBW
markets consistently experience spillover shocks from other markets in short and long-term horizons. The role
of crude oil as a receiver or transmitter of shocks varies over time.
Originality/value – Green financial assets and clean energy play significant roles in the financial markets
and reduce geopolitical risk. Our study employs a time-frequency connectedness approach to assess the
interconnections among four markets’ families: fuel, renewable energy, green stocks and carbon markets. We
utilize the novel TVP-VAR approach, which allows for flexibility and enables us to measure net pairwise
connectedness in both short and long-term horizons.
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1. Introduction
In recent years, the integration of markets has experienced significant growth and
transformation, primarily driven by technological advancements, financial integration,
globalization and increased openness (Liu, Razzaq, Shahzad, & Irfan, 2022). This integration
has brought numerous benefits, enabling the efficient exchange of goods, services and capital
across borders. Energy resources are vital in fostering industrial development and driving
national economic growth (Zhu, Ding, & Chen, 2022). However, excessive energy
consumption and its resulting environmental pollution have become pressing concerns.
Furthermore, the emergence of climate change, particularly global warming, has posed a
shared challenge for humanity (Kim, 2015). Carbon emissions are the primary contributor to
global warming, necessitating global awareness and concerted efforts to promote green and
low-carbon development.

Recognizing this situation, countries worldwide have highlighted the importance of
energy conservation, emission reduction and the pursuit of carbon peaking and carbon
neutrality goals (Nan, Huo, You, & Guo, 2022; Stoll, Klaaßen, & Gallersd€orfer, 2019; Truby,
Brown, Dahdal, & Ibrahim, 2022). These measures aim to control pollution emissions
effectively, enhance the utilization of clean energy sources and facilitate sustainable
development. As a result, green finance has gained prominence as a means to promote
sustainability and combat climate change.

However, amidst these global efforts, the recent COVID-19 pandemic and the ongoing
conflict between Russia and Ukraine have presented new challenges. Some economies, faced
with immediate economic concerns and uncertainties, have prioritized investments less
concerned with climate change and sustainable development (Lorente, Mohammed,
Cifuentes-Faura, & Shahzad, 2023). Therefore, the proportion of renewable energy
consumption concerning total energy consumption is a crucial factor significantly
influencing carbon dioxide emissions. Consequently, to effectively combat the dangerous
effects of global warming, it is imperative to swiftly and sufficiently invest in renewable
energy sources while increasing investments in green financial assets (Zhao, Gozgor, Lau,
Mahalik, Patel, & Khalfaoui, 2023). The recent COVID-19 pandemic and the Ukraine–Russia
conflict have increased financial market volatility, resulting in spillover effects across
markets (Le, 2023). The conflict between Russia and Ukraine has brought attention to the
impact of geopolitical risk on fuel markets. Certain assets served as a safe against this type of
risk, resulting in them experiencing positive effects from the tensions (Long, Demir,
Będowska-S�ojka, Zaremba, & Shahzad, 2022). Geopolitical risk refers to the potential danger
of political events such as war, terrorism and tensions between countries, including the
possibility of these events becoming more severe or escalating (Caldara & Iacoviello, 2022).
Nevertheless, there is a growing public apprehension about the painful ramifications of
climate change, including its impact on various aspects such as production, human
livelihood, economic expansion and national security.

Green financial assets, renewable energy markets, the geopolitical risk index and
cryptocurrency carbon emissions are critical factors in the complex interplay of energy and
financial markets amid geopolitical and environmental challenges. Green assets drive
investment in sustainable practices, while renewable markets implement these assets,
reducing fossil fuel reliance and addressing climate change. The geopolitical risk index
reflects how international tensions affect markets, impacting energy prices and investment
flows. Meanwhile, cryptocurrency emissions present a dual issue: increasing energy demand
and incentivizing sustainable energy for blockchain technologies. These elements interact
intricately, with geopolitical events potentially disrupting the alignment of economic growth
and environmental sustainability. Understanding these dynamics is vital for stakeholders to
navigate the economic and ecological landscape effectively.
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The recent COVID-19 pandemic and the ongoing conflict between Russia and Ukraine
have prompted some economies to prioritize investments that are less concernedwith climate
change and sustainable development (Lorente et al., 2023). However, some companies are still
considering green investments not only as ameans to achieve social and environmental goals
but also to improve their financial returns. Recent studies have shown that investing in
sustainable and environmentally friendly projects can enhance financial performance. These
concerns have sparked worries regarding the potential diversion of resources from green
finance initiatives. Recent studies have shown that investing in sustainable and
environmentally friendly projects can result in positive financial performance. As the
world faced unprecedented challenges, the disruptions caused by the pandemic and
geopolitical tensions have created a ripple effect across various sectors, including energy and
sustainability (Long et al., 2022; Zhao et al., 2023; Jin, Zhao, Bu, & Zhang, 2023; Aloui, Hamida,
& Yarovaya, 2021; Sharif, Aloui, & Yarovaya, 2020). Managing and measuring these
outbreaks and monitoring ongoing crises have become imperative to ensure the stability and
resilience of the markets. Establishing effective systems to detect and warn of emerging
concerns is crucial for timely decision-making and mitigating potential risks. Therefore, this
paper addresses these pressing issues by comprehensively analyzing the time-frequency
connectedness between the COVID-19 pandemic, geopolitical uncertainties and energy and
green markets.

Furthermore, we seek to investigate the relative importance of each element in shaping
market dynamics, employing advanced and mixed machine-learning approaches. Our study
fills a crucial gap by analyzing the complex relationships among carbon, fuel, clean energy
markets, cryptocurrency emissions and geopolitical risk areas underexplored with
sophisticated methodologies. Post-COVID-19 shifts in energy use, fossil fuel price
fluctuations and renewable energy interest underscore the need for integrated analysis.
The traditional models fail to capture these dynamic interrelations, especially under rapid
geopolitical and environmental changes. Our innovative approach offers more profound
insights into how these factors interplay, aiding in understanding complex market dynamics
and informing energy economics and policymaking in a digitally transforming,
environmentally conscious world.

This study offers an extended and comprehensive analysis of the interplay between the
COVID-19 pandemic, geopolitical uncertainties and energy and green markets. By exploring
the time-frequency connectedness and assessing the relative importance of each element, we
aim to contribute significantly to the existing literature on carbon, fuel and clean energy
markets. Our study fills a notable gap in the literature by investigating the magnitude and
direction of return spillovers and the resulting connectedness across these markets. Using
the novel time-varying parameter vector autoregression (TVP-VAR) frequency
connectedness approach, we can conduct a more informative analysis of spillovers under
different market states, including bear, normal and bull market conditions. This
methodology improves the prediction accuracy of the time-series models (Huang, Chen,
Xu, & Xia, 2023).

The structure of the paper is as follows: Section 2 presents a comprehensive review of the
relevant literature. Section 3 outlines the methodology employed in the study, while Section 4
describes the data used. In Section 5, the empirical results are discussed in detail. Finally,
Section 6 provides the conclusion.

2. Literature and related works
Much research has been dedicated to exploring the relationship between energy and
geopolitical risk in the existing body of literature. For instance, Zhang, Wang, and Li (2023)
empirically investigated the asymmetric spillover effects between geopolitical risk and oil
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price volatility across six major regions, including the Middle East and North America.
Their study shed light on the potential spillover effects between geopolitical risk and oil
price volatility. Similarly, Zheng, Zhao, and Hu (2023) found that geopolitical risk
substantially negatively impacts the price volatility of various commodities. They
specifically observed that geopolitical risk increases the price volatility of coal, iron ore and
crude oil futures while decreasing the price volatility of gold. However, their analysis failed
to include copper futures, a vital commodity in the energy sector. Future studies should
consider including copper futures to provide a more comprehensive understanding of the
impact of geopolitical risk on energy markets. Another stream of empirical studies has
extended this research by introducing environmental issues and climate change to analyze
geopolitical risks and energymarkets. Zhao et al. (2023) examined the effects of geopolitical
risks on renewable energy demand and found that geopolitical risks reduce the need for
renewable energy and threaten climate change mitigation policies. However, their study
did not adequately address the potential interaction between geopolitical risks and other
factors influencing renewable energy consumption, such as government policies and
technological advancements. Future studies should consider incorporating these factors
for a more comprehensive analysis.

Similarly, Jin et al. (2023) provided empirical evidence of the dynamic spillover
relationships among geopolitical risk, climate risk and energy markets from an
international perspective. However, their study primarily focused on energy futures prices,
such as crude oil, heating oil and natural gas, without considering the broader renewable
energy sector.

The third strand of literature has examined the interrelations and risk transmission
between emerging technology, fuel energymarkets and carbon emission issues. For instance,
Su, Qin, Tao, and Umar (2020) studied the causal relationship between Bitcoin and oil prices,
providing valuable insights into the interconnectedness of these markets. Dogan, Madaleno,
Taskin, and Tzeremes (2022) and Dogan, Majeed, and Luni (2022) investigated the causal
relationship between Bitcoin, clean energy and carbon emissions allowances. Their results
showed evidence of a revolving causal association between Bitcoin and clean energy and
emission allowances. Tiwari, Abakah, Le, and Leyva-de la Hiz (2021) examined the
relationship and dynamics between artificial intelligence (AI) and carbon prices during the
era of the Fourth Industrial Revolution. Their findings revealed a time-varying Markov tail
dependence structure and dynamics between AI and carbon prices. Chen and Xu (2022)
examined the influence of cryptocurrencies on the fluctuation of China’s carbon prices,
particularly during the COVID-19 period. Their research findings demonstrated a significant
explanatory power of cryptocurrencies with the carbon market, as determined by the
nonparametric causality-in-quantiles method. Furthermore, the study reveals that
cryptocurrencies can be a viable hedging option for the carbon market across various
investment horizons, as indicated by the quantile coherency approach. Dogan,Madaleno et al.
(2022) examined the relationship between green finance and five types of renewable energy
(biofuels, fuel cells, geothermal, solar andwind) using the TVP-VARmethod on daily indexes.
They found that connectedness between these sectors varies over time and is affected by
economic events, with wind being the primary transmitter of shocks to green finance. Their
research suggests that green finance generally receives more shocks from renewable
energies, especially during the COVID-19 pandemic, highlighting its potential as a safe haven
for investment diversification. In the same context, Dogan, Luni, Majeed, andTzeremes (2023)
focused on the critical role of the energy transition and carbon markets in combating global
warming and promoting sustainability. The TVP-VAR method examined the interactions
between global carbon and renewable energy sources like wind, solar, geothermal, biofuel
and fuel cells. Results reveal solar and biofuel as primary shock transmitters to global carbon,
with notable variations during economic and health crises like COVID-19. Madaleno, Taskin,
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Dogan, and Tzeremes (2023) explored the link between rare earth minerals, clean energy and
carbon emissions using daily stock data and advanced models. Their results show that the
interaction between rare earths and renewables varies with market conditions and time,
with rare earths often being net receivers in the short term. Kyriazis, Papadamou,
Tzeremes, and Corbet (2023) examined the potential of cryptocurrencies as a hedging tool
for major market indices, focusing on different market conditions. Analyzing the MSCI
World index and its sectors, it finds limited causal links at lower quantiles in some
industries, noting substantial nonlinear impacts on volatility, especially during significant
price fluctuations. The findings suggest cryptocurrencies are emerging as comparable
hedging assets to traditional ones, offering protection against extreme market variations
for portfolios, including MSCI constituents. Nations often compete with each other to gain
advantages during the transition process. Scholars have argued that the rapid growth of
the renewable energy sector may introduce a new dimension of geopolitical risks (Jin et al.,
2023; Zhao et al., 2023). Renewable energy development requires access to resources, such
as land, potentially leading to geopolitical tensions among countries. These tensions often
arise concerning economic aid and potential access to European Union rights. Therefore,
studying the interrelation between geopolitical tensions, climate change and the energy
markets is crucial as it yields substantial outcomes for the literature, managers and
policymakers.

To thoroughly examine the interactions between geopolitical risk, carbon emissions and
the energy sector, it is necessary to integrate these elements into a more comprehensive
framework. Such a framework should consider various aspects, including the geopolitical
implications of renewable energy development, the impact of carbon emissions on global
politics and the interplay between energy markets and climate change. By adopting this
holistic approach, researchers can provide valuable insights for academia and
policymakers.

3. Data and methodology

a. TVP-VAR frequency

TheTVP-VAR-based connectedness approach has been shown to effectively address some of
the limitations of the rolling-window VAR methodology, such as the potential loss of
observations and the sensitivity of parameters to outliers. For these reasons, this paper
employs a newly developed process known as the TVP-VAR frequency connectedness
approach proposed by Chatziantoniou, Gabauer, and Gupta (2021). The outline of the TVP-
VAR(p) can be described as follows:

xt ¼ Φ1t xt−1 þΦ2t xt−2 þ . . .þΦpt xt−p þ et et ∼Nð0;ΣtÞ (1)

The TVP-VAR(p) model is composed of yt and εt, which are N3 1 vectors, Σt, which is the N
3N time-varying variance-covariance matrix andΦit, i5 1, . . ., p, which represent the N3N
time-varying VAR coefficient (Chatziantoniou et al., 2021).

Using the matrix lag-polynomial Φ(L) 5 [IN −Φ1tL− ::: −Φpt Lp] and the Wold
representation theorem, the stationary TVP-VAR process can be expressed as a TVP-
VMA(∞) model, in which xt5Ψ(L)εt andΦ(L)5 [Ψ(L)]�1. SinceΨ(L) contains infinite lags, it
is estimated by computing Ψh at h 5 1, . . ., H horizons.

The generalized forecast error variance decomposition (GFEVD) can be computed
using the TVP-VMA coefficients Ψh. The GFEVD represents the impact of a shock in
variable j on variable i regarding its forecast error variance. Mathematically, it can be
expressed as:
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Cijt ðHÞ ¼
ðPtÞij−1

PH
h¼0

�
ðΨhεtÞijt

�
PH
h¼0

�
Ψhεt �Ψh

�
ii

2

(2)

fCijt ðHÞ ¼ Cijt ðHÞP
Cijt ðHÞ (3)

fCijt (H) denotes the amount bywhich the jth variable contributes to the variance of the forecast
error of the ith variable at the Hth horizon. Using equations (2) and (3), we can calculate various
connectedness measures, which include:

Net pairwise directional connectedness:

NPDCijt ðHÞ ¼fCijt ðHÞ � fCjit ðHÞ (4)

The NPDCijt (H) indicates that variable j has a greater (or lesser) influence on variable i than
the reverse.

Total directional connectedness TO others:

TOit ðHÞ ¼
XN

i¼1;i≠j
fCjit ðHÞ (5)

The TOit (H) measure quantifies the extent to which a perturbation in the variable i is
transmitted to all other variables j in the system.

Total directional connectedness FROM others:

FROMit ðHÞ ¼
XN

i¼1;i≠j
fCijt ðHÞ (6)

It measures the impact of perturbations in all other variables j on variable i.
Net total directional connectedness:

NETit ðHÞ ¼ TOit ðHÞ � FROMit ðHÞ (7)

The value of NETit(H) is obtained by subtracting the total directional connectedness from
other variables toward variable i (FROMit(H)) from the total directional connectedness from
variable i towards other variables (TOit(H)). This value represents the net impact that
variable i has on the volatility transmission network, indicatingwhether it is a net transmitter
or receiver of shocks. When NETit(H) is greater (or less) than zero, it suggests that the
variable i has a more substantial influence on all other variables j and vice versa, meaning
that it is a net transmitter (or receiver) of shocks.

Total averaged connectedness index:
It quantifies the average influence exerted by a disturbance in one variable on all others,

thereby assessing the extent of interconnection within the network and gauging market risk
(Chatziantoniou et al., 2021).

TACIt ðHÞ ¼N−1
XN
i¼1

TOðHÞ ¼ N−1
XN
i¼1

FROMðHÞ (8)

b/connectedness in the frequency domain.
By integrating the TVP-VAR connectedness framework with the spectral representation

of variance decompositions presented in the BK-18 model, we can analyze the
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interdependence of transformed prices among the variables of interest within the frequency
domain.

The frequency response function is as follows:

Ψ
�
e−iw

� ¼ X∞
h¼0

e−iwh Ψh;where i ¼
ffiffiffiffiffiffi
−1

p
(9)

Let ω denote the frequency at which we examine the spectral density of variable yt. The
spectral density of yt at frequency ω can be characterized as the Fourier transform of the
TVP-VMA(∞) model.

Sy ðωÞ ¼
X∞
h¼−∞

E
�
yty

0
t−h

�
e−iwh ¼ Ψ

�
e−iwh

�
εt Ψ0�eþiwh

�
(10)

The computation of the frequency generalized forecast error variance decomposition
(GFEVD) involves combining the spectral density and the GFEVD.

CijtðωÞ ¼
ðεtÞ−1jj

					P
∞

h¼0

ðΨðe−iwhεt
�
ijt

					
2:

P∞
h¼−∞

ðΨðe−iwhÞεtðΨðeiwhÞÞii
(11)

fCijt ðHÞ ¼ Cijt ðωÞP
Cijt ðωÞ (12)

We then, aggregate all frequencies falling within a specified range of interest.eθijtðdÞ5 R b

a
eθijtðωÞ dω, where d 5 (a, b): a, b ∈ (�π, π), a < b, Afterward, we can proceed

with the computation of various frequency connectednessmeasures, which offer insights into
the transmission of effects within a specific frequency range, denoted as “d”.

NPDCijt ðdÞ ¼fCijt ðdÞ � fCjit ðdÞ (13)

TOit ðdÞ ¼
XN

i¼1;i≠j
fCjit ðdÞ (14)

FROMit ðdÞ ¼
XN

i¼1;i≠j
fCijt ðdÞ (15)

NETit ðdÞ ¼ TOit ðdÞ � FROMit ðdÞ (16)

Therefore, CN (H) 5
P
d

CNðdÞ
The function CN($)5 [NPDC, TO, FROM, NET and TACI] represents the connectedness

of the abovemeasures. It signifies thatwhenwe aggregate all the frequencies of the frequency
connectedness measure, it yields the connectedness measure in the time domain.

b. eXtreme Gradient Boosting: XGBoost

XGBoost is a robust tree-boosting algorithm introduced by Chen and Guestrin (2016). This
algorithm is widely used due to its modularity and effectiveness in classification tasks (Nobre
& Neves, 2019). It has gained widespread popularity and is renowned for its modularity and
efficacy in various classification tasks (Nobre&Neves, 2019). The algorithm terminateswhen
a specific stopping criterion is satisfied, such as reaching the maximum number of iterations
or when the improvement in the objective function falls below a predefined threshold
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(Nobre & Neves, 2019). One of the significant advantages of XGBoost is its high
customizability, as it offers a wide range of hyperparameters that can be fine-tuned to
enhance the algorithm’s performance (Dai, Huang, Zeng, & Zhou, 2022).

c. SHAP (SHapley additive exPlanations)

The SHAP approach is a valuable tool for interpreting machine learning models, and it is
rooted in the concept of Shapley values derived from the cooperative game theory. The
primary objective of Shapley values is to quantify each player’s contribution in a cooperative
game. Lundberg, Erion, and Lee (2018) proposed a method to measure feature importance
using Shapley values. In simpler terms, a Shapley value denotes the average contribution of a
feature instance across all possible coalitions (Lin & Gao, 2022). This study uses the previous
section’s data to train an XGBoost model that predicts oil prices based on these features.

d. Data

This research paper examines a daily dataset consisting of several economic indicators.
These indicators encompass fuel market prices such as crude oil (WTI), natural gas (NG) and
coal, carbon prices, renewable energy and green markets (NASDAQ OMX Wind
(GRNWIND), GRNGEOX (NASDAQ OMX Geothermal TR), GRNBIO (NASDAQ OMX Bio/
Clean Fuels), WilderHill Clean Energy ETF (PBW)), geopolitical risk index (GPR) and the
energy consumption index of the largest cryptocurrencies (Bitcoin (BTC) and Ethereum
(ETH) selected based onmarket capitalization). The construction of the geopolitical risk index
developed by Caldara and Iacoviello (2022) is derived from automated text-search queries
conducted on the digital archives of ten prominent newspapers [1]. The dataset covers the
period from December 1, 2017 to February 15, 2023. This timeframe was meticulously
selected to encompass the most critical phases of market volatility and geopolitical
developments associated with the Russo–Ukrainian war, ensuring the inclusion of a
comprehensive pre-war period for baseline comparison, the onset of the conflict and
subsequent market reactions. To account for any potential non-stationarity and ensure our
analysis’s robustness, we have conducted unit root tests using the Phillips and Perron
method and have taken the necessary steps to differentiate the data accordingly. To address
the issue of non-stationarity in the variables, we conduct a unit root test using KPSS and the
Zivot–Andrews unit root test. The test results confirm the nonstationarity of the variables.
Therefore, we take the first log difference of the series, which represents the percentage
change in these variables over time. The pattern observed in these series is depicted in
Figure 1, and the logs differenced of the data are presented in Figure 2.

Figure 1.
The dataset
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Table 1 presents the descriptive statistics for fuel, carbon, green markets, geopolitical and
carbon emission indices. The research period encompasses a total of 1,886 observations.
Following standard practices in empirical research, the study presents descriptive
statistics and distribution properties of the transformed values. The analysis in Table 1
reveals that, on average, the returns of all the studied markets are positive, except for the
GRNBIO markets. Notably, the standard deviations of these series are generally low.
Furthermore, fuel and carbon markets exhibit the most considerable variances, making
them the riskiest choices among the considered markets for investors during the selected
sample period. It is worth mentioning that this paper finds all of the series’ distributions to
be highly leptokurtic, as indicated by the kurtosis values. Compared to a normal
distribution, these variables exhibit a shape with fatter tails, suggesting that they do not
follow a normal distribution, as Jarque and Bera (1980) argued. Based on the ERS unit root
test of Elliott, Rothenberg, and Stock (1996), these variables are statistically stationary at a
1% significance level. As we delve into the analysis, it is crucial to highlight some key
insights offered by these descriptive statistics. Positive and negative returns among the
assets indicate a potential give-and-take relationship. This suggests the likelihood of
significant volatility spillovers and interconnectedness among the assets, which we will
further explore in the next section. Furthermore, it is essential to note that the data series
exhibits non-normal distributions, with negative and positive skewness and high kurtosis
values, indicating that the data has heavy tails, is skewed to the right or left and displays
excess kurtosis. These characteristics imply the presence of nonlinearity, structural breaks
and regime changes in the data. Consequently, relying solely on the linear models that
assume constant parameter estimation would yield findings lacking originality and
reliability for informing appropriate policy formulation and investment decisions.
Furthermore, we used the KPSS and the Zivot–Andrews unit root test for a more
comprehensive understanding of the properties of the time series. The results of these tests
confirm that the series are stationary and adequately account for structural breaks, giving
evidence of the robustness and accuracy of the TVP-VAR model’s inferences.

Consequently, considering the abovementioned features, we propose utilizing the TVP-
VAR frequency connectedness approach. Thismethod finds all thementioned characteristics
and provides a more comprehensive analytical framework by accommodating time-varying
parameters and nonlinearity in the data (Chatziantoniou et al., 2021). Therefore, we have
strong evidence to support a TVP-VAR approach with time-varying frequency interlinkages
among these studied markets.

Figure 2.
The transformed

dataset
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4. Empirical results and discussion
In the empirical part, we first examine the outcomes regarding total net connectedness and
net pairwise connectedness. This analysis allows us better to understand each market’s
significance in our proposed system. It is important to highlight that every market has the
potential to function as either a net shock transmitter or a net shock receiver. The econometric
technique widely utilized to analyze interconnectedness is the one proposed by Diebold and
Yilmaz (2012). This methodology tracks contagions within a predetermined network, aiming
to mitigate the adverse effects of specific economic shocks. However, one drawback of the
original approach is its reliance on an arbitrarily chosen rolling window size for time-varying
connectedness. Several alternative methods have been suggested to overcome this limitation.
For instance, Chatziantoniou et al. (2021) have proposed a novel approach built upon the
valuable insights from the previous work of Barun�ık and K�rehl�ık (2018) and Antonakakis,
Chatziantoniou, and Gabauer (2020), by using the mean-squared prediction error of the
rolling-windowVAR to determine the optimal window size. By leveraging the essence of their
research, we aim to efficiently incorporate their findings and methodologies to study the
interlinkages among energymarkets (fuel, renewable, green and carbonmarkets) and indices
(geopolitical and cryptocurrency energy consumption measurements).

In the next step, we justify the importance of geopolitical tensions in increasing crude oil
market volatility using the SHAP approach.

4.1 Total average dynamic connectedness
Tables 2 and 3 display the outcomes of the total average connectedness between energy green
markets, with andwithout geopolitical risk and cryptocurrency energy consumption proxies.
Meanwhile, Tables 4–7 present the results of the short-run (1–5 trading days) and long-run (5
or more trading days) components, respectively.

Tables 2 through 7 highlight the intrinsic volatility of a specific market, indicated by the
diagonal elements, which represent the impact of its own shocks. Additionally, the tables
elucidate the Intermarket dynamics in two ways: firstly, by showing how each market
contributes to the volatility of others, detailed in the off-diagonal elements in the “FROM”
section and secondly, by illustrating the influence of various external variables on the
volatility of the market in question, as depicted in the off-diagonal elements in the “TO”
section. This comprehensive layout describes both internal and external factors affecting
market volatility.

In these tables, the row values show how much each market contributes to the forecast
error variance of a specific market, while column values indicate a market’s impact on others.
We calculate the total average connectedness, excluding geopolitical and climate factors,
revealing market interrelations. The diagonal values in Table 2 show the most robust
connections, representing each market’s relationship with itself. The off-diagonal values
display interesting patterns of intermarket influence. On average, 16.44% of the forecast
error variance in global financial markets is due to inter-market shocks, while the rest is due
to unique market factors. Green energy stocks, barring PBW, are the primary volatility
transmitters, with COAL following. Conversely, CARBON is the leading volatility receiver,
with fuel energy assets next.

The considerable level of volatility transmission observed during the geopolitical tensions
caused by the recent Russia–Ukraine conflict aligns with the findings of Ha andNham (2022),
Huang et al. (2023) and Le (2023). These studies gave evidence of a considerable transmission
of volatility between fuel and renewable energy markets.

Incorporating geopolitical and cryptocurrency consumption data, as shown in Table 3, we
observe that nearly 23% of the forecast error variance in global markets is due to shocks,
climate and geopolitical risks. The remaining 77% is attributed to unique market factors.
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Data indicates that Bitcoin and Ethereum’s energy consumption moderately affects shock
transmission and volatility in other markets. The considerable effect of geopolitical risks on
volatility transmission aligns with the results of several studies, such as Boungou and Yati�e
(2022) and Le (2023).

Furthermore, the frequency decomposition analysis shows that short-term volatility
transmission in Table 4 accounts for most Intermarket volatility connectedness (10.01 %),
while long-term transmission in Table 6 accounts for a smaller portion (6.43 %). Besides the
renewable energy markets (GRNWIND and GRNGEOX), crude oil has the most significant
impact on transmitting effects and volatility of shocks to other markets in the system.
Conversely, the renewable energy markets (GRNBIO and PBW), Natural Gas and CARBON
are net recipients of these shocks in the short-term horizon (Table 3). The Natural Gas,
GRNGEOX and GRNBIO are considered volatility transmitters. However, the other markets
under study are regarded as shock receivers in the long term (Table 6). Based on the
frequency bands, volatility transmission associated with geopolitical indicators in Tables 5
and 7 is primarily propelled in short-term horizons. Similarly, a long-term volatility
transmission related to cryptocurrency consumption is predominantly involved. These
findings align with previous studies conducted by Chen, Xu, and Peng (2022) and Huang et al.
(2023), which also documented a long-term pattern of volatility transmission. These results
suggest that the global pandemic and geopolitical tensions may have caused a fundamental
change in investor expectations, leading to an increase in long-term uncertainty and
systemic risk.

4.2 Total dynamic connectedness
For a better understanding of the influence of the Russia–Ukraine conflict on these
interconnections across the network of markets, we lead a more dynamic analytical
framework that considers the changing nature of the TACI over time (depicted with black
color) and reflects how the roles of the studied markets within the network evolve illustrated
in Figure 3. The dominance of low-frequency response to shocks primarily drives the total
volatility spillover, which aligns with the findings of Huang et al. (2023). In addition, we
noticed a sharp increase in TACI in late December 2019, coinciding with the COVID-19
epidemic spreading rapidly worldwide, causing turmoil in the global financial market.
Although COVID-19 continues to pose a threat, there has been a downward trend in total
volatility transmission since its peak in March 2020. Finally, there has been a noticeable
upward trend in the dynamic volatility transmission since February 2022, which may be
related to market uncertainty caused by the Russia–Ukraine conflict.

4.3 Net total directional volatility connectedness
In the forthcoming analysis, our primary focus will be on the outcomes of net connectedness,
offering insights into whether a given market can be classified as a net shock transmitter or a
net shock receiver. Figure 4 illustrates the dynamic evolution of the directional volatility
spillover and reveals several insights. In late 2017 and the beginning of 2018, Crude oil,
Natural Gas and the Green stocks (GRNWIND and GRNGEOX) markets experienced a
volatility transmission to other markets. However, CARBON, COAL, PNB and GRNBIO
markets are regarded as net recipients of shocks during this period as they are mainly
affected by the short-run volatility. Furthermore, the net directional volatility connectedness
varies explicitly over time. After the outbreak, the green stocks (GRNBIO and GRNGEOX)
gradually shifted back to transmitters of the long-run volatility, lasting more recently.
However, the other markets under study evolved between net recipients and net transmitters
of volatility, especially after the Russia–Ukraine conflict. The frequency decomposition
results also indicate that the long-term components serve as the primary source of directional
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volatility spillover, suggesting that volatility transmission among green stocks and energy
assets tends to occur over a more extended period.

Our primary focus lies on the effect of geopolitical risk by analyzing the impact of the
Russia–Ukraine conflict. We draw attention to the connections between GPR and markets
under study, as illustrated in Figure 5. During this period, the geopolitical indicator appears
to significantly impact the volatility of renewable energy stocks in the short horizon
(GRNWIND and GRNBIO) and long-term run (PBW and GRNGEOX). This effect is less
considerable for the other markets in the short run (WTI and COAL) and long-term horizons
(CARBON and NG), as indicated in Figure 5. These findings are consistent with previous
research Dogan, Madaleno et al. (2022) and Dogan, Majeed et al. (2022), who found evidence of
a causal association between both clean energy and emission allowances with Bitcoin.

4.4 SHAP (SHapley additive exPlanations) results
Thus far, we have observed a pronounced level of volatility interconnectedness among green,
renewable and fuel energy markets. Natural Gas is the primary recipient of shocks, and
renewable energy stocks and oil are the primary transmitters. Now, our focus shifts to
examining the role of geopolitical risks and cryptocurrency energy consumption, increasing
each market’s volatility.

Figure 3.
Total dynamic

connectedness without
proxies

Machine
learning

approach and
energy markets



The findings in Figures 6–13 confirm the spillover results and show that geopolitical risks
and cryptocurrency energy consumption are significant indicators for all markets and
negatively influence other markets.

4.5 Discussion
In light of our findings, discussing the broader economic implications and the underlying
theoretical constructs that inform our analysis is imperative. The observed patterns of total
net connectedness and pairwise connectedness among various markets provide profound
insights into shock transmission and reception dynamics. Notably, the significant role of
green energy stocks and fossil fuel assets in this interconnected network underscores the
influence of energy markets on global financial stability. These patterns are not merely
empirical observations but are deeply rooted in the economic theories of market behavior and
risk contagion. The prevalence of volatility transmission during heightened geopolitical
tensions, such as the Russia–Ukraine conflict, aligns with views of uncertainty and investor
sentiment affectingmarket dynamics. Furthermore, themethodological approach adopted by
Diebold and Yilmaz (2012) and its enhancements by subsequent researchers offer a robust
framework for understanding these complex relationships. By incorporating these
theoretical perspectives, our discussion contextualizes the empirical findings within the
broader economic discourse. It provides a scaffold for future research to build upon,
particularly in exploring the nuanced roles of geopolitical and climate risks in shapingmarket
behavior.

Figure 4.
Net total directional
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Figure 6.
SHAP values for WTI

Figure 7.
SHAP values for NG

Figure 8.
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Figure 9.
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5. Conclusion and implications
Our research paper employs a time-frequency connectedness approach to assess the
interconnections among four markets’ families: fuel, renewable energy, green stocks and
carbon markets. We utilize the TVP-VAR approach, following the methodology of
Chatziantoniou et al. (2021), which allows for flexibility and enables us to measure net
pairwise connectedness in both short and long-term horizons. Our results indicate that the
interconnectedness among the studied markets is relatively significant. These findings
suggest that our network is exposed to elevated market risk, with the COVID-19 pandemic
and geopolitical risks playing a motivating role in the time-varying system-wide
interlinkages. Furthermore, we find empirical evidence highlighting the dominance of
renewable energymarkets except for the PBWas volatility transmitters in the other markets.
In contrast, CARBON emerges as the primary net recipient of volatility, followed by fuel
energy assets. The frequency decomposition results also indicate that the long-term
components serve as the primary source of directional volatility spillover, suggesting that
volatility transmission among green stocks and energy assets tends to occur over a more
extended period. The SHAP results show that the green and fuel energy markets are
negatively connected with geopolitical risks (GPR). The results obtained through the SHAP
analysis confirm the novel TVP-VAR frequency connectedness findings, indicating that
clean energy markets can serve as a safe haven against GPR during the Russian invasion.
The estimates of pairwise connectedness consistently indicate that fuel and energy markets

Figure 12.
SHAP values for
GRNBIO

Figure 13.
SHAP values for PBW
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respond to related shocks from other markets while also influencing those markets. Overall,
geopolitical risks and cryptocurrency energy consumption are robust indicators to predict
these markets’ volatility.

This research uses a time-frequency connectedness framework alongside TVP-VAR and
SHAP models to highlight the complex relationship between geopolitical risk, green financial
assets and renewable energy markets. Our findings confirm the vital role of green investments
and renewable markets inmitigating volatility due to geopolitical uncertainties, offering essential
insights for stakeholders and policymakers focused on sustainable growth and stability. While
our methodology is robust, it may not fully capture the complexity of geopolitical risks and
market dynamics and concentrates on specific markets. Future research should expand market
coverage, employ alternative models for a more comprehensive view and investigate the long-
term impacts of policy and technology changes to understand these relationships further and
bolster sustainable economic strategies against geopolitical uncertainties.

Our study significantly advances theoretical knowledge by detailing the
interconnectedness between clean and dirty energy markets and the impact of crises like
COVID-19 and the Russia–Ukraine conflict on their dynamic relations. By calculating net
pairwise connectedness, we offer insights into how these markets interact, especially under
uncertain events, providing valuable information for investors and authorities on potential
contagion effects. Practically, our findings are vital for investors and policymakers, shedding
light on spillover effects and market linkages. Understanding these connections helps in
crafting strategies to mitigate market vulnerabilities and manage portfolio investments
effectively. We highlight the heightened interlinkages during crises, showing how shocks in
one market can ripple through the network, crucial for investment and policy decisions. Our
research aids policymakers in understanding the broader impacts of market dynamics on
public welfare, emphasizing the importance of recognizing and addressing the spillover
effects of risk and uncertainty between the markets.

Note

1. This index is retrieved in daily frequencies from this link: https://www.matteoiacoviello.com/
gpr.htm
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