MEGAPROJECT RISK ANALYSIS AND SIMULATION: A DYNAMIC SYSTEMS APPROACH

MEGAPROJECT RISK ANALYSIS AND SIMULATION: A DYNAMIC SYSTEMS APPROACH

BY

PRINCE BOATENG *Koforidua Technical University, Koforidua, Ghana*

ZHEN CHEN University of Strathclyde, Glasgow, UK

STEPHEN O. OGUNLANA *Heriot-Watt University, Edinburgh, UK*

United Kingdom - North America - Japan - India - Malaysia - China

Emerald Publishing Limited Howard House, Wagon Lane, Bingley BD16 1WA, UK

First edition 2017

Copyright © 2017 Emerald Publishing Limited

The right of Prince Boateng, Zhen Chen, and Stephen O. Ogunlana to be identified as the Authors of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

Reprints and permissions service

Contact: permissions@emeraldinsight.com

No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without either the prior written permission of the publisher or a licence permitting restricted copying issued in the UK by The Copyright Licensing Agency and in the USA by The Copyright Clearance Center. Any opinions expressed in the chapters are those of the authors. Whilst Emerald makes every effort to ensure the quality and accuracy of its content, Emerald makes no representation implied or otherwise, as to the chapters' suitability and application and disclaims any warranties, express or implied, to their use.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Classification (LCC) – HE1-9990 BIC - KJMP BISAC - BUS101000 Dewey Decimal Classification (DDC) – 388

ISBN: 978-1-78635-831-8 (Print) ISBN: 978-1-78635-830-1 (Online) ISBN: 978-1-78714-301-2 (Epub)

ISOQAR certified Management System, awarded to Emerald for adherence to Environmental standard ISO 14001:2004.

Certificate Number 1985 ISO 14001 To our families

Abbreviations

ANP	Analytical Network Process
AHP	Analytic Hierarchical Process
BBS	Bilfinger Berger Civil (UK) and Siemens plc
CEC	City of Edinburgh Council
CDR	Cost of Dispute Resolution
CDUD	Cost of Delay in Utility Diversion
CI	Consistency Index
CLA	Cost of Legal Action
CLD	Causal Loop Diagram
COD	Cost of Delays
COR	Cost of Rework
CR	Consistency Ratio
DEG	De-Escalation to Grievances
Disp.	Disputes
DOAF	Delay of All Forms
DOC	Delay in Obtaining Consent
EC	Economic Certainties
EcRM	Economic Risks Model
ETN	Edinburgh Tram Network (Project)
EG	Escalation to Grievances
EnC	Environmental Certainties
EnR	Environmental Risks
EnRE	Environmental Regulation Enforcement
EnRM	Environmental Risks Model
EnU	Environmental Uncertainties
EP	Energy Price
EPC	Engineering, Procurement and Construction
EPCO	Escalation to Project Cost Overrun
EPTO	Escalation to Project Time Overrun

ER	Economic Risks
ERM	Environmental Resource Management
ErG	Error Generation
EU	Economic Uncertainties
FE	Foreign Exchange
GCP	Ground Conditions Problem at a Given Site
GFP	Government Funding Policy
IPV	Ideal Priority Value
LA	Legal Actions
LD	Liquidated Damages
LIR	Local Inflation Rate
LRC	Legislative & Regulation Changes
IRPI	Ideal Synthesized Risk Priority Indexes
IRPV	Ideal Risk Priority Index
MCDM	Multi-Criterion Decision Making
MLDMBI	Multi-Level Decision-Making Bodies Involvement
MP	Material Price
MPDS	Modification to Project Design & Specification
MPH	Material Price Hike
MUDFA	Multi-Utilities Framework Agreement
NPV	Normal Priority Value
O&M	Operations and Maintenance
PA	Social Acceptability
PC	Political Certainties
PDP	Political Debates on the Project
PH	Political Harmony
PI	Political Indecision
PIP	Political Interferences in the Project
PMPS	Pressure to Modify Project Scope
PoRM	Political Risks Model
PQD	Project Quality Deficiency
PR	Political Risks
Proj.C	Project Complexity
PS	Political Support

Proj.S	Project Scope
PT	Project Termination
PU	Political Uncertainties
RMSI	Respondent's Mean Scores of Importance
RPCO	Risks of Project Cost Overrun
RPI	Risk Prioritization Index
RPIG	Global Risks Priority Index
RPIL	Local Risk Priority Index
RPTO	Risks of Project Time Overrun
SC	Social Certainties
SD	System dynamics
SFM	Stock and Flow Model
SG	Social Grievances
SI	Social Issues
SoRM	Social Risks Model
SPV	Special Purpose Vehicle
SR	Social Risks
SU	Social Uncertainties
TC	Technical Certainties
TDUU	Time to Divert Underground Utilities
TeRM	Technical Risks Model
TIE	Transport Initiatives Edinburgh Ltd.
TPAS	Threat to Personal & Asset Security
TPV	Total Priority Value
TR	Technical Risks
TRO	Traffic Regulation Order
TRPI	Total Risk Priority Index
TU	Technical Uncertainties
WCP	Worksite Coordination Problems
WQS	Weighted Quantitative Score
WI	Wage Inflation

List of Figures

Figure 2.1	Stakeholder relationship map for the ETN project	25
Chapter 3		
Figure 3.1	The SDANP framework for megaproject risk	
	assessment	47
Figure 3.2	ANP network model for risk prioritization	50
Figure 3.3	Calculation process for the CR method	52
Figure 3.4	The three components of system dynamics models	56
Figure 3.5	A simple stock and flow model	57
Figure 3.6	Social risk entry points during mega construction	
	projects	61
Chapter 4		
Figure 4.1	ANP model structure for STEEP risks prioritization.	89
Figure 4.2	ANP sub-models for STEEP risks prioritization	90
Chapter 5		
Figure 5.1	Causal loop diagram for STEEP risks on the ETN project	132
Figure 5.2	Causes tree diagram for technical uncertainties entity.	132
Figure 5.3	Uses tree diagram for technical uncertainties entity.	134
-	Causality of technical uncertainties.	134
Figure 5.4	•	
Figure 5.5	Causal loop diagram for social risks system	142
Figure 5.6	Causes tree diagrams for social risks model	144
Figure 5.7	Uses tree diagrams for the social risks model	146
Figure 5.8	Causal loop diagram for technical risks system	147
Figure 5.9	Causes tree diagrams for the technical risks model	149
Figure 5.10	Uses tree diagrams for the technical risks model	150
Figure 5.11	Causal loop diagram for economic risks system	152
Figure 5.12	Causes tree diagrams for the economic risks model	153
Figure 5.13	Uses tree diagrams for the economic risks model	154

Figure 5.14	Causal loop diagram for environmental risks system.	155
Figure 5.15	Causes tree diagrams for the environmental risks model.	158
Figure 5.16	Uses tree diagrams for the environmental risks model.	159
Figure 5.17	Causal loop diagram for political risks system	160
Figure 5.18	Causes tree diagrams for the political risks model	163
Figure 5.19	Uses tree diagrams for the political risks model	164
Figure 5.20	A typical stock and flow model (SFM)	165
Figure 5.21	Integrated stock and flow diagram for the social risks system.	167
Figure 5.22	Integrated stock and flow diagram for the technical risks system.	167
Figure 5.23	Integrated stock and flow diagram for the economic risk system.	168
Figure 5.24	Integrated stock and flow diagram for the environmental risks system.	169
Figure 5.25	Integrated stock and flow diagram for the political risks model.	170
Figure 5.26	A typical SD equation representation.	184
Figure 5.27	Evaluation tests for the STEEP risks models.	185
Figure 5.28	Dynamic risk-free simulation patterns for social risks system model.	196
Figure 5.29	Dynamic scenario graphs for the social risks system model.	199
Figure 5.30	Simulation behaviour patterns for stocks in the technical risk system model	203
Figure 5.31	Baserun and actual scenario simulation patterns for economic risks.	206
Figure 5.32	Dynamic patterns for stock entities in the environmental risks model.	209
Figure 5.33	Dynamic simulation patterns for stock entities in the political risks model.	212
Chapter 6		
Figure 6.1	Proposed framework for dynamic risks assessment in megaproject.	225

Appendices

Figure A1	Model validation process.	251
Figure A2	Behaviour reproduction test for the level of STEEP risks impacts on the system (all variables at baseline levels)	259
Figure A3	Behaviour mode sensitivity graphs for social risks and social grievances	274
Figure A4	Behaviour mode sensitivity graphs for technical risks	275
Figure A5	Behaviour mode sensitivity graphs for economic risks	275
Figure A6	Behaviour mode sensitivity graphs for environmental risks.	276
Figure A7	Behaviour mode sensitivity graphs for political risks	276
Figure A8	Dynamic confidence bounds sensitivity graph for social grievances.	277
Figure A9	Dynamic confidence bounds sensitivity graph for technical risks.	277
Figure A10	Dynamic confidence bounds sensitivity graph for economic risks.	278
Figure A11	Dynamic confidence bounds sensitivity graph for environmental risks.	278
Figure A12	Dynamic confidence bounds sensitivity graph for political risks.	279
Figure A13	Disaggregation of the dynamic simulation models for transportation megaprojects.	283

List of Tables

Table 2.1	Basic information of the ETN project	18
Table 2.2	The internal stakeholders of the ETN project	19
Table 2.3	The external stakeholders of the ETN project	21
Table 2.4	Stakeholder's attitude and influence on ETN Project	23
Table 2.5	Project organization of the ETN project	23
Table 2.6	Project environment of the ETN Project	24
Table 2.7	Original ETN project board governance structure	26
Table 2.8	Bridges built to accommodate Edinburgh Tram	27
Table 2.9	Disputes and changes in the ETN project	29
Table 2.10	Project delivery against key milestones	30
Table 2.11	Organizations and groups consulted during the EIA for ETN Line One	34
Table 2.12	Specific risks impacting on the project environment	38
Table 2.13	Specific technical risks impacting on the social and natural environments.	40
Chapter 3		
Table 3.1	Relative importance and data transformation in pairwise comparison.	51
Table 3.2	The average random index.	54
Table 3.3	Typical stakeholders involved in transport projects	60
Table 3.4	A summary of review on social risks cluster in	
	megaprojects	62
Table 3.5	A summary of review on technical risks in megaprojects.	65
Table 3.6	A summary of review on economic risks in megaprojects.	69
Table 3.7	A summary of review on environmental risks in megaprojects.	71
Table 3.8	Sources of environmental risks in mega construction projects.	71

Table 3.9	A summary of review on political risks in megaprojects.	75
Chapter 4		
Table 4.1	Summary of interviewees' profile and demography	79
Table 4.2	Summary of survey conducted	82
Table 4.3	Summary of descriptive results and analysis for the questionnaire survey.	83
Table 4.4	Respondent's mean scores of importance	86
Table 4.5	Matrix for project objectives with respect to decision goal.	94
Table 4.6	Comparison matrices for PR with respect to cost, time and quality.	96
Table 4.7	Pairwise comparison matrix for social	
	risk variables.	98
Table 4.8	Pairwise comparison matrix for technical risk variables	100
Table 4.9	Pairwise comparison matrix for economic risk variables	103
Table 4.10	Pairwise comparison matrix for environmental risk variables	106
Table 4.11	Pairwise comparison matrix for political risk variables.	107
Table 4.12	Unweighted super matrix for potential risks	111
Table 4.13	Weighted supermatrix for potential risks	112
Table 4.14	Final mode ANP decision-making priorities for potential risks cluster.	113
Table 4.15	Final mode ANP decision-making priorities for social risk sub-cluster.	114
Table 4.16	Final mode ANP decision-making priorities for technical risk sub-cluster.	115
Table 4.17	Final mode ANP decision-making priorities for economic risks sub-cluster.	116
Table 4.18	Final mode ANP decision-making priorities for Environmental Risk sub-cluster.	117
Table 4.19	Final mode ANP decision-making priorities for political risk variables.	118
Table 4.20	Deriving priorities for risks ratings.	120

Table 4.21	Verbal ratings for potential risks.	120
Table 4.22	Verbal ratings for social risk variables	121
Table 4.23	Verbal ratings for technical risk variables	121
Table 4.24	Verbal ratings for economic risk variables	122
Table 4.25	Verbal ratings for environmental risk variables	123
Table 4.26	Verbal ratings for political risk variables	123
Table 4.27	Values of CI, RI, CR and inconsistency for all the pairwise comparison matrices.	124
Table 4.28	Summary of final ANP decision-making priority results for all risks	125
Chapter 5		
Table 5.1	Technical uncertainties influence.	135
Table 5.2	System boundary for social risks system	136
Table 5.3	System boundary for technical risks system	137
Table 5.4	System boundary for economic risks system	138
Table 5.5	System boundary for environmental risks system	139
Table 5.6	System boundary for political risks system	140
Table 5.7	Stock variables for STEEP models	166
Table 5.8	Mathematical equation for the social risks system variables.	171
Table 5.9	Mathematical equation for the technical risks system variables.	173
Table 5.10	Mathematical equation for the economic risks system variables.	176
Table 5.11	Mathematical equation for the environmental risks system variables.	179
Table 5.12	Mathematical equation for the political risks system variables.	181
Table 5.13	ANP inputs to the STEEP risk system modelling.	195
Table 5.14	Summary of the simulation results for the social risks system model.	202
Table 5.15	Summary of dynamic simulation results for technical risks system model.	205
Table 5.16	Dynamic simulation results for the economic risks system model.	208

Table 5.17	Summary of the dynamic simulation results for environmental risks system.	211
Table 5.18	Dynamic simulation results for the political risks system model.	215
Table 5.19	One-way analysis of variance: The extent to which steep risks impact on project objectives.	217
Table 5.20	Data validity on the ETN project	220
Chapter 6		
Table 6.1	SDANP procedure for risks reduction in megaprojects.	228
Table 6.2	Practical guide for using SDANP methodology in megaprojects.	230
Appendices		
Table A1	Tests for building confidence in the integrated SDANP models	253
Table A2	Parameters in the STEEP models	256
Table A3	Parameter distributions of stock and exogenous system entities for STEEP risks models.	261
Table A4	Numerical sensitivity test for the social risks parameters.	263
Table A5	Numerical sensitivity test for the technical risks parameters.	265
Table A6	Numerical sensitivity test for the economic risks parameters.	267
Table A7	Numerical sensitivity test for the environmental risks parameters.	269
Table A8	Numerical sensitivity test for the political risks parameters.	271
Table A9	The significance of the dynamics simulation models for transportation megaprojects in addressing policy problems.	285
Table C1	Respondent's mean scores of importance for project objectives (P_o)	291
Table C2	Respondent's mean scores of importance for potential risks (PR1): Social risks.	297
Table C3	Respondent's mean scores of importance for potential risks (PR2): Technical risks.	303

Table C4	Respondent's mean scores of importance for potential risks (PR3): Economic risks	309
Table C5	Respondent's mean scores of importance for potential risks (PR4): Environmental risks.	315
Table C6	Respondent's mean scores of importance for potential risks (PR5): Political risks	321

List of Exhibits

Exhibit 2.1	Utility diversions for Edinburgh Trams Network construction	27
Exhibit 2.2	Road interruption due to tram construction in the Edinburgh city centre	32
Exhibit 2.3	Rework and adverse environmental impacts such as waste.	35
Exhibit 2.4	The impact of bad weather conditions on productivity and construction delay	36
Exhibit 2.5	Delayed construction process caused by bad weather conditions	36
Exhibit 2.6	Poor well-being conditions on construction site: A worker was having his lunch in a cold rainy day	37

List of Equations

Equation 3.1	Weighted quantitative score method	49
Equation 3.2	Pairwise comparison matrix computation	52
Equation 3.3	Vector normalization	53
Equation 3.4	Initial eigenvalue computation	53
Equation 3.5	Maximum eigenvalue computation	53
Equation 3.6	Computation of value of consistency index	54
Equation 3.7	Consistency ratio computation	54
Equation 3.8	Final risk prioritization index	55
Equation 3.9	Mathematical definition of the integral for stock	
	computation	58
Equation 3.10	Basic stock computation	58
Chapter 4		
Equation 4.1	Respondent's mean scores of importance	85
Equation 4.2	Priority matrix computation for the project	
	objectives	93

Acknowledgements

This book summarizes a dedicated research funded and conducted under the megaproject management research theme at Heriot-Watt University and in the Scott Sutherland School of Architecture and Built Environment at Robert Gordon University in the United Kingdom. The research was also conducted through collaborative research amongst researchers from 24 European countries inside the COST Action TU1003 MEGAPROJECT (2011–2015), which was funded by the European Cooperation in Science and Technology (COST) and focuses on the effective design and delivery of megaprojects in the European Union. The COST Action on MEGAPROJECT was chaired by Professor Naomi Brookes at the University of Leeds in the United Kingdom.

The authors would like to thank all participants for making time and efforts to support the research through interview and questionnaire survey for data collection from the Edinburgh Tram Network (ETN) project. The authors would also like to thank colleagues at the COST Action TU1003 for their advice and comments on the research into the ETN project. Without their supports, this research cannot be completed.

The research theme on megaproject management at Heriot-Watt University was set up in 2012 and has been strongly supported by the following world renowned experts:

- Geoff Baskir, Chair, Aircraft/Airport Compatibility Committee, Transportation Research Board, National Academy of Sciences, USA
- Naomi Brookes, Professor of Complex Project Management, University of Leeds, and CEO, Projektlernen, UK
- Volker Buscher, Director, Global Digital Business, Arup, UK
- John Connaughton, Professor of Sustainable Construction, Head of Construction Management and Engineering, University of Reading, UK
- Henry Ergas, Professor of Infrastructure Economics, University of Wollongong, Australia
- Stuart Ladds, Head of Property Strategy & Logistics, College of Policing Limited, UK
- Heng Li, Chair Professor in Construction Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Edward W. Merrow, Founder and President, Independent Project Analysis, Inc., USA

- Stanley G. Mitchell, CEO, Key Facilities Management International, Scotland. Chair, ISO TC 267 Facilities Management Committee
- David Mosey, Professor of Law and Director, Centre of Construction Law and Dispute Resolution, King's College London, UK
- John Pike, Chairman, Bellrock Property Services, UK
- Rodney Turner, Professor of Project Management, SKEMA Business School, France.

The authors would like to thank the entire publishing team at Emerald. Special thanks to colleagues at Emerald Publishing Limited, including Amy Barson, Senior Content Editor; Carole Caines, Books Production Controller; Nicki Dennis, Publisher; Charlotte Hales, Editorial Assistant; Liron Gilenberg, Cover Designer; Philippa Grand, Executive Publisher; Jen McCall, Publisher; and Kousalya Krishnamoorthy, Project Manager at MPS Limited.

About the Authors

Prince Boateng, PhD, MASCE, AFHEA, is Lecturer in Building Technology & Quantity Surveying in Koforidua Technical University, Ghana. He is a former Lecturer in Construction and Project Management at Robert Gordon University, Aberdeen, the United Kingdom. He is proficient in working with and analysing complex risk data. He uses analytical and system dynamics modelling tools to prioritize and simulate project risks overtime during risks assessment in megaprojects at the construction phase. He has used this expertise in developing innovative risk assessment tool known as SDANP methodology to model and predict project cost and time overruns in many megaprojects in Europe and Africa. Prince's areas of expertise include risks analysis and modelling with system dynamics and the analytical network process for multi-criteria decision making for the effective megaproject delivery within the European Union and beyond.

Zhen Chen is Lecturer in Construction Management in the Department of Architecture at the University of Strathclyde. He is a former Lecturer in Facilities Management and the founder and leader of Megaproject Management research theme at Heriot-Watt University. He serves at technical committees (Facility Management; Project, Programme and Portfolio Management; and Service Life Planning) at British Standards Institution (BSI), and technical committees (Airport Planning and Operations; and Infrastructure Resilience) at the American Society of Civil Engineers (ASCE). He is a member of the management committee of COST Action TU1003 (The Effective Design and Delivery of Megaprojects in the European Union). He also serves at editorial boards for several international journals at ICE (Engineering Sustainability; Infrastructure Asset Management; Management, Procurement and Law; and Waste and Resource Management) and Elsevier (International Journal of Project Management). He is the Specialty Chief Editor on Construction Management for Frontiers in Built Environment published by EPFL in Switzerland. He is the Associate Editor for Innovative Infrastructure Solutions at Springer and Frontiers in Built Environment at EPFL. He has engaged in more than 30 research projects, worth over £5 million and has authored over 160 publications in construction engineering and management.

Stephen O. Ogunlana, BSc, PhD, is currently the Chair of Construction Project Management at the School of the Built Environment, Heriot-Watt University. Professor Ogunlana has an international reputation for research in the application of system dynamics simulation to construction projects and organizations. He is the author of over 250 scholarly publications in top-tier journals and refereed conferences. He is also the editor of the book Profitable Partnering for Construction Procurement published by Taylor and Francis and Training for Construction Industry Development published by the CIB/AIT and co-editor of Joint Ventures in Construction (Thomas Telford) and Public-Private Partnership in Infrastructure Development — Case Studies from Asia and Europe (Bauhaus Universitat Weimar). His research work has been funded by the Canadian International Development Agency, European Union, Thai National Housing Authority, UNOCAL, Japanese Government, British Council etc. His works on leadership were awarded Emerald Literati Award for two consecutive years (2009 and 2010) for the most outstanding paper in the journal Engineering Construction and Architectural Management. Professor Ogunlana is the joint coordinator of CIB W107 Commission on Construction in Developing Economies and a member of the Editorial Board for over 10 internationally refereed academic journals including *Engineering* Construction and Architectural Management, the International Journal of Financial Management of Property and Construction, International Journal of Energy Sector Management, International Journal of Construction Management, Journal of Engineering Development and Technology, Surveying and the Built Environment, Civil Engineering Dimensions and Akruti Journal of Infrastructure. He has acted as external examiner for several top universities in the world.

Preface

This book provides technical details on a dynamic systems approach to megaproject risk analysis and simulation, and it is based on the authors' long-term research into megaproject management, multi-criteria decision making, and system dynamics. For the first time, the authors have attempted to find a technical solution to tackle overruns on cost and time in megaprojects, and this is based on a comprehensive set of risks associated with social, technical, economic, environmental and political (STEEP) issues in megaproject environment and a dynamic systems approach called SDANP. The approach is an integrated use of tools including analytic network process (ANP) and system dynamics (SD) for risks prioritization and simulation.

The new SDANP model is described in this book with a case study on the Edinburgh Tram Network (ETN) project, which was a live case project during the time of the authors' research into a dynamic systems approach to megaproject risk analysis and simulation. Through this experimental research, the SDANP model has provided interesting results on cost and time overruns with accuracy rates above 80%, respectively, for the ETN project over the time period between 2007 and 2013. The authors expect that this dynamic systems approach to megaproject risk analysis and simulation can be widely tested for the benefits of stakeholders in dealing with cost and time overruns in megaproject development.

> Prince Boateng Zhen Chen Stephen O. Ogunlana

Foreword

As our journey into the uncertainties of the twenty-first century continues, of one thing we can be sure: megaprojects are viewed as increasingly important in creating solutions to societal problems. Megaprojects will provide the new power plants that will give us with green energy, they will deliver transport systems that work for all without increasing carbon emissions, they will provide us with the integrated hospitals and healthcare that we need and they will even delight us with cultural and sporting events! We remain optimistic that the huge complexities of megaprojects in people, capital and technology can be tamed and we can look forward to feeling the benefits of their successful implementations.

However, at their heart, megaprojects pose a conundrum. Time after time (and despite their apparent benefits) we do not seem to be able to deliver them on time, to budget and actually producing the output functionality that we need. We only have vague ideas why some succeed and, where they fail, we discover worryingly psychological failings in their planning and design. Given their importance in facing twenty-first century challenges, we desperately need to undertake more research to help us deliver megaprojects more effectively and to insure that the results of that research are available to the widest possible population of stakeholders.

It is precisely this gap that Boateng, Chen and Ogunlana have aimed at with the work that they report upon in this book. They take one of the most clearly identified complexities in delivering megaproject, namely risk, and explore new ways of conceptualizing it and dealing with it. They employ a wide range of novel systems dynamics and frameworks to develop an understanding of risk in megaprojects. They provide interesting applications of techniques used elsewhere in simulation to megaprojects. They illustrate their work with an insightful case of the Edinburgh Tram Project, a megaproject which embodies both the huge benefits that megaprojects can bring and the significant issues that inhibit their delivery. Boateng, Chen and Ogunlana are to be congratulated for the zeal with which they have pursued their research objectives and their fervour to share the results of their endeavours with others.

This book provides a valuable addition to the work currently being undertaken by academics and practitioners alike in understanding megaproject design and delivery. It is through such committed work that we really will be able to tame megaprojects and insure that they can reliably deliver the outcomes that society so desperately needs.

Professor Naomi Brookes, PhD DIC Visiting Professor in Complex Project Management, University of Leeds Chair – MEGAPROJECT COST Action C.E.O. – Projektlernen