Artificial Intelligence, Engineering Systems and Sustainable Development

This page intentionally left blank

Artificial Intelligence, Engineering Systems and Sustainable Development: Driving the UN SDGs

EDITED BY

TULSI PAWAN FOWDUR University of Mauritius, Mauritius

SATYADEV ROSUNEE University of Mauritius, Mauritius

ROBERT T. F. AH KING University of Mauritius, Mauritius

PRATIMA JEETAH University of Mauritius, Mauritius

AND

MAHENDRA GOOROOCHURN University of Mauritius, Mauritius

United Kingdom - North America - Japan - India - Malaysia - China

Emerald Publishing Limited Emerald Publishing, Floor 5, Northspring, 21-23 Wellington Street, Leeds LS1 4DL

First edition 2024

Editorial matter and selection © 2024 Tulsi Pawan Fowdur, Satyadev Rosunee, Robert T. F. Ah King, Pratima Jeetah and Mahendra Gooroochurn. Individual chapters © 2024 The authors. Published under exclusive licence by Emerald Publishing Limited.

Reprints and permissions service

Contact: www.copyright.com

No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without either the prior written permission of the publisher or a licence permitting restricted copying issued in the UK by The Copyright Licensing Agency and in the USA by The Copyright Clearance Center. Any opinions expressed in the chapters are those of the authors. Whilst Emerald makes every effort to ensure the quality and accuracy of its content, Emerald makes no representation implied or otherwise, as to the chapters' suitability and application and disclaims any warranties, express or implied, to their use.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-1-83753-541-5 (Print) ISBN: 978-1-83753-540-8 (Online) ISBN: 978-1-83753-542-2 (Epub)

Contents

List of Figures and Tables	ix
About the Editors	xiii
List of Contributors	xvii
Preface	xix
Acknowledgements	xxi
Chapter 1 Advances of Artificial Intelligence in Engineering Tulsi Pawan Fowdur, Satyadev Rosunee, Robert T. F. Ah King, Pratima Jeetah and Mahendra Gooroochurn	
Part 1: Impact of AI-Enabled Chemical and Environmental Engineering Systems on UN SDGs	

Chapter 2 Adoption of Machine Learning for Sustainable Solid	
Waste Management	17
Pratima Jeetah, Geeta Somaroo, Dinesh Surroop, Arvinda Kumar Ragen and Noushra Shamreen Amode	

Chapter 3Smart Fertilizer Application in Agricultural Land forSustainable Crop Production and Consumption29Delever T. F. Ale King, PhileDelever to the Destination

Robert T. F. Ah King, Bhimsen Rajkumarsingh, Pratima Jeetah, Geeta Somaroo and Deejaysing Jogee

Chapter 4 Predicting Household Plastic Level Consumption Using Machine Learning and Artificial Intelligence (AI)

Pratima Jeetah, Yasser M Chuttur, Neetish Hurry, K Tahalooa and Danraz Seebun

Chapter 5 Ant Colony, Bee Colony and Elephant Herd Optimisations for Estimating Aqueous-Phase Adsorption Model Parameters

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Part 2: Impact of AI-Enabled Civil Engineering Systems on UN SDGs

Chapter 6 Artificial Intelligence–Based Clean Water and Sanitation Monitoring

Deejaysing Jogee, Manta Devi Nowbuth, Virendra Proag and Jean-Luc Probst

Chapter 7 Achieving SDG Targets in the Land Transport Sector Using Intelligent Transportation Systems Zahaan Doomah, Asigh Sachaa and Tulsi Banuar Foundur

Zaheer Doomah, Asish Seeboo and Tulsi Pawan Fowdur

Part 3: Impact of AI-Enabled Electrical Electronic and Telecommunications Engineering Systems on UN SDGs

Chapter 8 Achieving Affordable a	nd Clean Energy Through AI and
5G Powered Internet of Energy (Io	E) 92
Tulsi Pawan Fowdur and Ashven S	anghan

Chapter 9Leveraging the Power of Blockchain in Industry 4.0 andIntelligent Real-Time Systems for Achieving the SDGs109Tulsi Pawan Fowdur, Visham Hurbungs and Lavesh Babooram

Chapter 10A Reliability-Based Two Stage Phasor MeasurementUnit (PMU) Placement Optimisation Model Using Mathematical-
and Nature-Based Evolutionary Algorithms123Robert T. F. Ah King and Samiah Mohangee123

55

43

69

81

Chapter 11 Quantitative Assessment of Models and Indices for Interior Thermal Comfort Taking Into Account the Effects of Solar Radiation and Wind	145
Bhimsen Rajkumarsingh, Robert T. F. Ah King and Khalid Adam Joomun	
Chapter 12 The Role of the Internet of Things for a More Sustainable Future	157
Anshu Prakash Murdan and Vishwamitra Oree	
Part 4: Impact of AI-Enabled Mechanical and Mechatronics Engineering Systems on UN SDGs	
Chapter 13 Mechatronics Implementation of Passive Building Elements to Improve Thermal Comfort and Promote Energy Efficiency in Buildings Mahendra Gooroochurn	171
Chapter 14 Demystifying Climate Change and Climate Action Through the Circular Homes Concept – An Educational Tool for Community Engagement Mahendra Gooroochurn	183
Chapter 15 Robotics and Automated Systems for Enabling an Industry 4.0 Transformation in Mauritius <i>Mahendra Gooroochurn and Riaan Stopforth</i>	195
Chapter 16 Potential Beneficial Impact of AI-Driven Atmospheric Corrosion Prediction on the UN Sustainable Development Goals (SDGs) Yashwantraj Seechurn	207
Chapter 17 In Situ Durability Assessment of Natural Composite Structures by Considering Artificial Neural Network (ANN) Modelling Ramful Raviduth	219

Part 5: Impact of AI-Enabled Sustainability and Enterprise Development on UN SDGs

Chapter 18 The Manufacturing Sector in Mauritius: Building	
Supply Chain Resilience and Business Value With Artificial	
Intelligence	233
Satyadev Rosunee and Roshan Unmar	
Chapter 19 AI for Social Good: Opportunities for Inclusive and Sustainable Development	245
Satyadev Rosunee and Roshan Unmar	
Chapter 20 The Applications of Artificial Intelligence in the Textile	257
Industry	257
Naraindra Kistamah	

Index

271

List of Figures and Tables

Chapter 2		
Fig. 2.1.	Potential Applications of Smart Waste Management Techniques and Technologies.	25
Chapter 3		
Fig. 3.1.	Block Flow Diagram of the Proposed Smart Irrigation, Fertilization and Drainage System.	35
Chapter 4		
Fig. 4.1.	Steps for Predicting Household Plastic Usage Using Machine Learning.	46
Chapter 6		
Fig. 6.1.	Artificial Intelligence (AI) Can be Used for Data Classification.	70
Chapter 7		
Fig. 7.1.	Transport-Related Sustainable Development Goal (SDG) Targets.	83
Chapter 8		
Fig. 8.1.	Internet of Energy (IoE) Building Blocks.	99
Chapter 9		
Fig. 9.1.	Blockchain-Enabled Transactions.	113
Fig. 9.2.	Framework for Blockchain in Industry 4.0 and Real-Time Systems.	116

Chapter 10

Fig. 10.1.	Part of the Institute of Electrical and Electronics Engineers (IEEE) 14-Bus System.	129
Fig. 10.2.	Flow Chart for the Pre-allocation of Phasor Measurement Units (PMUs).	130
Fig. 10.3.	Flow chart of the Proposed Approach to the Optimal PMU Placement (OPP) Problem.	136
Fig. 10.4.	(a) Plot of the Best and Mean Fitness Versus Generation (b) First Stage Plot (c) 3-D Plot of the Second Stage for Visualising the Number of Phasor Measurement Units (PMUs) and the System Observability Redundancy Index (SORI) Value.	137
Chapter 13		
Fig. 13.1.	Glass-Based Solar Chimney (Gooroochurn, 2022).	179
Chapter 14		
Fig. 14.1.	Circular Economy (CE) Framework.	187
Fig. 14.2.	Butterfly Diagram.	191
Chapter 16		
Fig. 16.1.	Three-Layer Perceptron for Atmospheric Corrosion Prediction With 5 Input Parameters (Cl ⁻ – Chloride, SO ₂ – Sulphur Dioxide, RR – Rainfall, RH – Relative Humidity and T – Temperature) and 1 Output Parameter (CR – Corrosion Rate).	213
Chapter 17		
Fig. 17.1.	The Proposed Network Architecture of the ANN Model for the Assessment and Durability Prediction of Bamboo-Based Structures.	227
Chapter 18		
Fig. 18.1.	Advantages of Artificial Intelligence (AI) in Supply Chain Management (SCM).	239
Fig. 18.2.	Contrasting Traditional and Digital Supply Chains.	240

Chapter 20		
Fig. 20.1.	Schematic Representation of a Computer Vision System Combined With Artificial Neural Network (ANN) for the Detection and Classification of Fabric Faults (Eldessouki, 2018)	k 261
Fig. 20.2	Flow Chart Showing the Basis of Most	201
F1g. 20.2.	Traditional Computer Colour Match-Prediction Systems.	263
Chapter 1		
Table 1.1.	Main Categories of Machine Learning (ML) Algorithms (Fowdur et al., 2021).	4
Chapter 3		
Table 3.1.	Technological, Regulatory, Financial, Ethical Barriers and Risks.	37
Chapter 7		
Table 7.1.	Intelligent Transport System (ITS) Applications and Artificial Intelligence (AI) Techniques in the Transport Sector and Sustainable Development Goals (SDG) Impact.	84
Chapter 10		
Table 10.1.	Phasor Measurement Unit (PMU) Placements Found by Integer Linear Programming (ILP) and Genetic Algorithm (GA).	131
Table 10.2.	Other Phasor Measurement Unit (PMU) Placements	138
Table 10.3.	Phasor Measurement Unit (PMU) Placements Found by Non-Linear Programming (NLP).	139
Chapter 11		
Table 11.1.	Summary of Models 1 and 2.	151
Table 11.2.	Comparison of Models 1, 2 and 3.	152
Chapter 13		
Table 13.1.	Operating Modes of Solar Chimney.	179

This page intentionally left blank

About the Editors

Dr Tulsi Pawan Fowdur received his BEng (Hons) degree in Electronic and Communication Engineering with first-class honours from the University of Mauritius in 2004. He was also the recipient of a Gold medal for having produced the best degree project at the Faculty of Engineering in 2004. In 2005, he obtained a full-time PhD scholarship from the Tertiary Education Commission of Mauritius and was awarded his PhD degree in Electrical and Electronic Engineering in 2010 by the University of Mauritius. He is also a Registered Chartered Engineer of the Engineering Council

of the UK, Fellow of the Institute of Telecommunications Professionals of the UK and Senior Member of the IEEE. He joined the University of Mauritius as an academic in June 2009 and is presently an Associate Professor at the Department of Electrical and Electronic Engineering of the University of Mauritius. His research interests include mobile and wireless communications, multimedia communications, networking and security, telecommunications applications development, Internet of Things (IoT) and artificial intelligence (AI). He has published several papers in these areas and is actively involved in research supervision, reviewing of papers and also organising international conferences.

Dr Satyadev Rosunee is an Associate Professor of Applied Sustainability in the field of Textiles and Entrepreneurship at the University of Mauritius. Satyadev earned his PhD from the University of Manchester Institute of Science & Technology (UMIST, UK), Masters from Leeds University and a Bachelor of Technology degree in Textile Technology from Maharaja Sayajirao University, Baroda, India. Satyadev was Dean of the Faculty of Engineering from 2015 to 2018 and founding member of two departments namely: Department of Textile Technology (1990–2012) and Department of Applied Sustainability &

Enterprise Development (2012–now). Satyadev has supervised nine PhDs, awarded by the University of Mauritius. He has published about 50 papers in peer-reviewed journals and conference proceedings. He is passionate about sustainability and entrepreneurship as drivers of innovation and social good.

Prof Robert T. F. Ah King holds BTech (Hons), MPhil and PhD degrees in Electrical and Electronic Engineering. He is a Professor by way of Personal Chair in Power Systems in the Department of Electrical and Electronic Engineering at the University of Mauritius. He is a Registered Professional Engineer in Mauritius and a Chartered Engineer, UK. His research interests include power systems, computational intelligence and optimisation. He is a member of the Institution of Engineers Mauritius, Institution of Engineering and Technology (IET), UK and Institute of Electrical and Electronics

Engineers (IEEE), USA. Prof Ah King is the Chair of the IEEE Mauritius Section. He is a Technical Committee Member on Soft Computing of IEEE Systems, Man, and Cybernetics Society. He was the General Chair for ELECOM 2016, ELECOM 2018, ELECOM 2020 and ELECOM 2022 conferences. He has been on the Technical Programme Committees of several conferences and has served as reviewer for several leading journals.

Dr Pratima Devi Jeetah is an Associate Professor in the Chemical and Environmental Engineering Department of the University of Mauritius. She has a PhD degree in Bioprocess Engineering and a Master degree in Sustainable Energy Engineering from the Sweden University of KTH. She has a first-class Bachelor's degree in Chemical and Environmental Engineering and she is a gold medallist. Her research interest is in waste management/waste valorisation which particularly focuses on lignocellulosic waste conversion to bio-ethanol and on producing sustainable green functional products. She has worked on

several EU/ACP/ERASMUS+ funded projects namely Small Developing Island Renewable Energy Knowledge and Technology Transfer Network (DIREKT); Lifelong Learning on Energy Access, Security and Efficiency Project (L3EAP), GEVALOR: ReSources Project, FESTII project (Formation et Enseignment Superieur pour la Transition energetique dans les territoires Insulaires at en Indianoceanie) and the EDU-ABCM project (Capacity Building on Student-Centered Energy Education in Cameroon, Ethiopia, Mauritius and Mozambique). She has also worked on numerous internally funded project namely from the UNDP, Mauritius Research and Innovation Council, Higher Education Commission and University of Mauritius funded research projects. She was the Head of the Department of Chemical and Environmental Engineering from February 2018 to February 2020. She has organised several international conferences on Energy, Environment and Climate change and workshops on eco-friendly bio material. She was also selected as one of the young emerging scientists to present her research works at the 2nd Commonwealth Chemistry Conference event in May 2023. She has published numerous scientific papers in impact factor journals. She has also published several book chapters and research papers in conference proceedings. Her publications can be viewed under the following Google Scholar link https://scholar.google.com/ $scholar?hl=en\&as_sdt=0\%2C5\&q=pratima+jeetah\&oq=pratima.$

Dr Mahendra Gooroochurn works as a Senior Lecturer in the Mechanical and Production Engineering Department of the University of Mauritius. He is a Chartered Engineer registered with the Engineering Council of UK, an accredited green building design and construction professional registered with the USGBC, an Edge Expert registered with the International Finance Corporation (IFC) and a WELL accredited professional registered with the International Well Building Institute (IWBI). He holds the following professional engineering memberships: MIET, MIEEE and

MASHRAE. He has industry experience as research manager and head of sustainability in the building services engineering sector and has research interests in sustainability in the built environment, circular design, circular economy and climate action, in which he acts as reviewer for several journal publishers and has published book chapters, journals and conference papers. He has been the Ellen McArthur Foundation Circular Economy Pioneer for Mauritius from the British Council Sub-Saharan Arts programme and the COP26/COP27 representative of Mauritius for the Association of Commonwealth Universities (ACU) Futures Climate Research Cohort. He has organised several IEEE conferences in multidisciplinary engineering disciplines and workshops and exhibitions on sustainable development and circular economy.

List of Contributors

Robert T. F. Ah King Noushra Shamreen Amode Lavesh Babooram Khim Hoong Chu Yasser M Chuttur Zaheer Doomah Tulsi Pawan Fowdur Mahendra Gooroochurn Visham Hurbungs Neetish Hurry Pratima Jeetah Deejaysing Jogee Khalid Adam Joomun Naraindra Kistamah Samiah Mohangee Ackmez Mudhoo Anshu Prakash Murdan Manta Devi Nowbuth Vishwamitra Oree Virendra Proag Jean-Luc Probst

Arvinda Kumar Ragen Bhimsen Rajkumarsingh Ramful Raviduth Satyadev Rosunee University of Mauritius, Mauritius

University of Mauritius, Mauritius University of Mauritius, Mauritius Honeychem Research, New Zealand University of Mauritius, Mauritius International Economics Ltd, Mauritius University of Mauritius, Mauritius University of Toulouse III Paul Sabatier, France University of Mauritius, Mauritius University of Mauritius, Mauritius University of Mauritius, Mauritius University of Mauritius, Mauritius

Ashven Sanghan	University of Mauritius, Mauritius
Asish Seeboo	University of Mauritius, Mauritius
Danraz Seebun	University of Mauritius, Mauritius
Yashwantraj Seechurn	University of Mauritius, Mauritius
Gaurav Sharma	Shenzhen University, China; Shoolini University & Glocal University, India
Mika Sillanpää	University of Johannesburg, South Africa; Aarhus University, Denmark; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, China; Chandigarh University, India
Geeta Somaroo	University of Mauritius, Mauritius
Riaan Stopforth	University of KwaZulu-Natal, South Africa
Dinesh Surroop	University of Mauritius, Mauritius
K Tahalooa	Mini Factory Ltd, Mauritius
Roshan Unmar	University of Mauritius, Mauritius

Preface

In 2015, all member states of the United Nations adopted the 2030 Agenda for sustainable development. In view of ensuring peace and prosperity in the present and future, for all people and the planet, the 2030 agenda provides a very comprehensive shared blueprint. The agenda sets forward the creation of a global partnership between all developed and developing countries, having as core objective an urgent call for action to attain the 17 Sustainable Development Goals (SDGs). From climate action to good health and well-being, 17 high level themes and 169 targets have been identified and expected to be delivered by 2030, in the United Nations' Sustainable Development Goals (SDGs). It is important that measures to end poverty and other deprivations are taken along with strategies that lead to reduction in inequalities, enhanced health and education, and the promotion of economic growth, without neglecting actions for preserving our oceans, forests and tackling climate change in general.

Development in any country is impossible if, reliable and affordable energy, safe water and sanitation, as well as telecommunication facilities, are not easily accessible. These elements are indispensable for productive growth, healthy development and allow productive industrial growth through efficient and robust transportation systems. Engineering disciplines have a crucial responsibility of forming engineers who at the most basic level should be able to implement transportation, energy and telecommunications systems, as well undertake projects on safe water and sanitation. Hence, engineers have a major role to play to support the delivery of the SDGs. Integrated and intelligent engineering solutions which can deliver robust infrastructure, sustainable energy and access to the latest communication technology are indispensable to accomplish several of these SDGs. It is also vital to bridge the digital divide, where access to the internet is still a major obstacle in several parts of the world. In order to provide the means for cohesive solutions that can achieve sustainable development, engineers will have to employ state of the art disruptive technologies such as 5G,IoT, AI, cloud computing, blockchain and 3D printing among others.

AI and machine learning techniques are now widely used in all branches of engineering to build and optimise systems, solve intractable problems and also provide AI technology with new data inputs for interpretation. The combination of AI and engineering can indeed act as a real catalyst to achieve the UN SDGs.

The main purpose of this book, therefore, is to analyse different concepts and case studies in engineering disciplines such as Chemical, Civil, Electrical, Telecommunications and Mechanical Engineering with a view to demonstrate how

xx Preface

engineering systems and processes can leverage the power of AI to drive the UN SDGs. Such a study is of paramount importance and will be a valuable source of information for researchers, engineers and policymakers to be able to better design and adopt AI-enabled techniques in different engineering areas with a view to catalyze the achievement of the UN SDGs.

Acknowledgements

We would first like to thank all the authors for their invaluable contributions to this edited book. We are thankful to the reviewers of the book proposal for their constructive comments and suggestions to improve the book. We are also extremely grateful to the editors and the book production team of Emerald Publishing, in particular Miss Kirsty Woods, for their excellent advice and guidance throughout this book project. Finally, we would like to thank Professor Boopen Seetanah who helped us in establishing our first contact with the Emerald team. This page intentionally left blank