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Abstract

Purpose –This paper aims to propose a solution for detecting and grading diabetic retinopathy (DR) in retinal
images using a convolutional neural network (CNN)-based approach. It could classify input retinal images into
a normal class or an abnormal class, which would be further split into four stages of abnormalities
automatically.
Design/methodology/approach – The proposed solution is developed based on a newly proposed CNN
architecture, namely, DeepRoot. It consists of one main branch, which is connected by two side branches. The
main branch is responsible for the primary feature extractor of both high-level and low-level features of retinal
images. Then, the side branches further extractmore complex and detailed features from the features outputted
from the main branch. They are designed to capture details of small traces of DR in retinal images, using
modified zoom-in/zoom-out and attention layers.
Findings –The proposed method is trained, validated and tested on the Kaggle dataset. The regularization
of the trained model is evaluated using unseen data samples, which were self-collected from a real scenario
from a hospital. It achieves a promising performance with a sensitivity of 98.18% under the two classes
scenario.
Originality/value –The newCNN-based architecture (i.e. DeepRoot) is introducedwith the concept of amulti-
branch network. It could assist in solving a problem of an unbalanced dataset, especially when there are
common characteristics across different classes (i.e. four stages of DR). Different classes could be outputted at
different depths of the network.
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1. Introduction
Diabetic retinopathy (DR) is one of the most commonly seen complications of diabetes.
It could lead to blindness, especially when it is left untreated. DR is diagnosed into four stages
(i.e. Stage 1 to Stage 4). Therefore, this could be considered a problem domain of classification
on retinal images with five classes of four stages and one normal class (Stage 0). In addition,
this paper also considers a classification domain with two classes for differentiating normal
cases from DR cases of any stage.

This paper focuses on the challenges of detecting and grading DR in retinal images [1].
The proposed method addresses the difficulty of grading five stages of DR, where its traces
could be tiny, especially in the early stage of the disease. The modified zoom-in/zoom-out
augmentation with attention layers is then deployed to solve the problem. In addition, in a
general case of classification, final decisions of all classes are made at a final output layer.
However, particularly for this research question, some classes may be more straightforward
than others. Thus deeper learning could lead to the overfitting problem. The proposed
solution then allows different classes to be exited for decision-making at different levels of a
CNN architecture. This technical contribution could improve the grading of DR in retinal
images.

1.1 Literature review
In this section, our literature review is structured into two parts regarding two main ways of
solving the problem of DR detection and staging.

1.1.1 The first type of approach: segmenting/detecting traces of DR for DR detection and
staging. The first way is to detect/segment traces of DR. Microaneurysms are detected for
identifying Stage 1, and exudate is segmented for identifying Stage 2 [2]. In addition, Stage 3
and Stage 4 could be identified using abnormalities of retinal blood vessels. For example, the
method proposed by Ref. [3] segmented patches of microaneurysm in retinal images using
the autoencoder-regularized neural network, while the feature-transfer network with local
background suppression was proposed by Ref. [4] for microaneurysm detection. The
microaneurysm is the earliest signal of DR, whose size is tiny (i.e. less than 2% of the entire
image’s size). Compared with CNN-based solutions, the segmentation-based solutions could
achieve higher performances for identifying Stage 1 of DR.

In addition, there have been several publications of exudate segmentation/detection for
identifying Stage 2 of DR. For example, using a conventional solution, a hybrid solution of
instance learning (iterative graph cut) and supervised learning (neural network) was
proposed for the segmentation [5]. Recently, the dual-branch network-based solution was
proposed by Ref. [6], where one branch was designed to focus on a large-sized exudate, while
another branch was designed to focus on a small-sized exudate. The paper [7] introduced the
CNN-based solution emphasizing super-pixel multi-feature extraction. This technique also
focused on solving a small-size challenge of segmentation. The exudate segmentation seems
to be also crucial for the DR detection in Stage 2, due to a small-sized trace. For Stage 3 and
Stage 4 [2], there was a paper [8] that attempted to detect hemorrhage for detecting an
abnormality in diabetic patients. The solution applied the modified VGG19 to extract image
features before using the extreme learning machine for pixel-based hemorrhage detection.
However, based on our literature reviews for Stage 3 and Stage 4, it is more popular to work
on stage classification directly instead of segmentation.

1.1.2 The second type of approach: image-level output solutions for DR detection and
staging. The second way is to directly apply machine learning techniques such as CNN for
classifying stages and abnormalities in retinal images. There are two main types of existing
solutions: (1) classifying into two classes of normal andDR and (2) classifying into five classes
of normal and four classes of four stages.
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In the first type of the second way, for example, the paper proposed in Ref. [9] did not rely
on deep learning-based techniques. A fusion of textural and ridgelet features was learned
using Sequential Minimal Optimization (SMO) to classify DR. Similarly, in Ref. [10], a fusion
of handcrafted features was also used but learned using Darknet53. Differently, the paper in
Ref. [11] proposed a solution of feature extraction based on six convolutional layers. Then,
SVM, AdaBoost, Naive Bayes, Random Forest and J48 were attempted to classify retinal
images into normal or DR classes. In the work proposed by Ref. [12], the multi-task-based
CNN was developed with three decoders: classification head, regression head and ordinal
regression head. The regression head could be further used for the cut-off intomultiple stages
of DR. The method by Ref. [13] also relied on the CNN-based solution. In addition, unsharp
masking was applied to enhance retinal images. Two channels were fed as an input of the
CNN, including the green and entropy channels. Moreover, by Ref. [14], the well-known and
pre-trained network of Inception-ResNet-v2 with an additional block of CNN layers was
transferred for detecting DR in retinal images.

In the second type of the second way, retinal images are classified into different stages of
DR. By [Ref. [15], the CNN-based solution was developed to identify intricate features for
classifying stages of DR, such as microaneurysms, exudate and hemorrhages. The method
proposed byRef. [16] also developed the solution based on CNN. To enhance the performance
of the stage grading, it applied the distances between stages of DR into loss function. The
methods introduced by Refs [17–21] were also developed based on the newly designed CNN
architectures for the DR staging. While the method proposed Ref. [22] applied well-known
CNN architectures, including Resnet50, Inceptionv3, Xception, Dense121 and Dense169, for
DR staging. Also, well-known Inception-v3, ResNet50, InceptionresNet50 and Xception were
attempted by Ref. [23] for DR grading.

In existingworks, different stages of DRwere outputted fromdifferent output nodes in the
final layer of the network. However, in this paper, the proposed CNNarchitecture is developed
base on the assumption that different stages of DR are identified by different characteristics
which should be extracted from retinal images at the different feature levels. This differs from
a multi-level feature concept proposed in Ref. [24], where two levels were applied. The first
level was a fusion of conventional image descriptors, including SIFT and GIST. While the
second level referred to features extracted using CNNon the fused features from the first-level
features. In contrast, the multi-level features proposed in our paper refer to features extracted
at multiple depths of the CNN architecture.

1.2 Background knowledge: multi-branch network
1.2.1Motivation.Themain network of our proposed solution is developed based on themulti-
branch network. It is a combination of sequential branches consisting of a convolutional
layer, pooling layer and a fully connected layer. Even though the sequential CNNnetwork can
perform well on some problem domains, some tasks still get poor results, e.g. DR stage
classification, people re-identification and medical image segmentation.

For example, in Ref. [15], the authors proposed a solution based on sequential CNN, a stack
of convolution layers and three fully connected layers. Their proposed network is deep but
not wide and has a large number of training parameters. Unfortunately, the reported result
was poor in some DR’s stages. This is one of the reasons why the multi-branch network is
developed here in our work to overcome such complex tasks. These tasks require complex
layer structures which can extract small and sparse features, i.e. micro-aneurysm,
hemorrhage and small blood vessels in DR cases.

1.2.2 Existing networks. In addition, the method proposed by Ref. [25] was based on a
multi-branch network for hyperspectral image classification. Typically, a hyperspectral
remote sensing image (HSI) has a large data volume and high spectral resolution, with limited
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labeled data and a small training dataset. This makes the classification very challenging.
Therefore, they proposed the multi-branch fusion CNN-based network to overcome such
problems. Instead of making one sequential network that goes deeper and wider which can
lead to the high complexity of the network with a large number of parameters, they added
additional branches. This technique provides excellent classification results on the training
with the small-sized dataset. This is one of the multi-branch network benefits to extract very
small features efficiently and to be convergently trained by a small dataset. So, the multi-
branch network indicates that it is suitable for the DR stage classification problem.

One of the multi-branch network strengths is a high performance on small-sized feature
extraction. For instance, the method by Ref. [26] proposed the LadderNet, which is a chain of
multiple U-Net [27]. The purpose of the LadderNet is the same as U-net, semantic
segmentation, but for better capability. In their experiments, the DRIVE dataset [28], a retinal
dataset for blood vessel segmentation, was used in the evaluation. The segmentation results
show that the LadderNet outperformed the previous networks, where U-net was one of them
due to the multi-branch structure. This was because the LadderNet had the shared-weights
residual block technique, which was the weight sharing among the branches. This technique
significantly reduced the number of LadderNet’s parameters.

Another example from Ref. [29], their experiments focused on multiple sclerosis lesion
segmentation. Their proposed CNN included a multi-branch downsampling path which
enables the network to encode information from different sources. Each branch of the
network was the Resnet network [30]. Information on each branch was combined at each step
of the encoding process with a filter size of 64, 256 or 512. So, the network could get more
information than a single straight network, leading to more accurate segmentation.
Therefore, their solution was among the best solutions for the ISBI challenge. These are
examples of the multi-branch network key performance on small feature extraction.

The CNN architecture of a single straight branch structure has a stack of convolutional
layers with different filter sizes and on top of the fully connected layers [31]. For simple
problems, this CNN handles just fine. However, the result was not good on the complex tasks,
e.g. in the DR stage classification [15], especially on Stage 1 and Stage 3 classification. This
experiment indicated that a standard sequential CNN could not handle the DR stage
classification problem.

Each branch receives a separate input in the CNN architecture of a multi-branch structure
(e.g. Siamese network). Then, features generated from multiple branches are concatenated
together at the end of the network. So, the final output will come from the concatenated
features of the two branches. Since the multi-branch structure takes multiple inputs from
multiple branches, this affects the training duration time. The network converges into the
input dataset faster when compared with the one straight branch network, which has the
same length of convolution layers.

So, this advantage of multi-branch can be used to add more branches into the network as
long as a graphic card has enough memory. There is still one more point that should be
mentioned in the multi-branch structure. Its CNN architecture has no connection between
branches and no weight sharing. As noted by Ref. [29], the CNN architecture excepts at the
end, which is the feature concatenation step. Even though the weight-sharing technique can
make the network converges faster and deeper. But sometimes, it can cause confusion
between branch’sweights to the network if the structure of each branch is very different. This
issue can be fixed easily by changing the structure of each branch to be the same. However,
the network will lose its complexity and cannot achieve high performance. Therefore, the
proposed CNN in this paper, DeepRoot, aims to overcome the multi-branch problem by
changing the structure of normal multi-branch CNN and keeping its complexity.

1.2.3 Multi-branch applied to the proposed solution. Our proposed CNN architecture,
DeepRoot, comprises one main branch and two side branches. The main branch is designed
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for extracting the base features from retinal images. Then, connected from themain branch, it
is split into two side branches designed using different details and purposes. The detailed
technical explanations are described in Section 2 of the proposed method. The outputs of
different stages are defined at different branches of the network. The proposed CNN
architecture is trained and validated with the Kaggle dataset [32]. Then, the trained model is
tested with the testing Kaggle dataset and unseen samples of self-collected retinal images
from the real scenario of a hospital.

Themain novelty of this paper is to propose a concept of combining outputs frommultiple
learned side branches for classifying each DR class independently. In addition, a zooming
structure is also proposed for the main CNN structure for capturing small details of
distinguishing DR classes. The validating process is also performed on cross-datasets where
a test set was collected from real-world cases of a hospital.

The rest of this paper is organized as follows. Details of the proposedmethod are described
in Section 2. Experiments and results are discussed in Section 3. Then, conclusions are drawn
in Section 4.

2. Proposed method
This section explains the details of the proposed method. The proposed CNN architecture is
mainly introduced to train a model for classifying retinal images into five classes of 1 normal
class and 4 abnormal stages. The training retinal images with labels are fed into the
architecture for learning the model. Therefore, this section mainly explains the details of the
proposed CNN architecture, as described in the subsections below. In addition, some related
supplementary materials of additional figures are located at https://github.com/worapanda/
ACI_DiabeticRetinopathy-.git

2.1 DeepRoot network
In this paper, the proposed network, DeepRoot, is developed based on a combination of the
main branch and two side branches. As shown in Figure 1, it could be seen why it is called
DeepRoot. The original DeepRoot network comes from advanced convolution neural
networks nowadays that havemultiple branches. In addition, these branches will typically be
concatenated together at some point in the network or the end. Even though it can increase
the network performance, it could also waste an opportunity that this extra information can
be used for another classification. Also, sometimes the extra classification can make the

Figure 1.
The architecture of the

proposed DeepRoot
network
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network converge quickly or be used as a combination of the classification. The structure of
the DeepRoot network, as shown in Figure 1, consists of one main branch and two side
branches. Descriptions of the three branches and their parameters are listed in Table 1.

In addition, in the proposed solution, each of the three branches (i.e. one main branch and
two side branches) generates its own output classes. Therefore, in Figure 1, the fusion is
referred to as score-level fusion, instead of feature-level fusion as in other existing methods of
the multi-branches network. The learning loss is a combination of the three outputs of the
three branches. More details on each branch are explained in the following subsections.

2.1.1 Main branch. The main branch of the proposed DeepRoot network acts as the
primary feature extractor in both high- and low-level features. Then, the extracted features
are passed to the side branches formore complex feature extraction. Thus, the structure of the
main branch can be easily changed or even replaced by other well-known CNN architectures.
This makes the DeepRoot network flexible and easily adapts to various problem domains. In
this proposed method, the EfficientNet [31] is used as the main branch. At the final stage, an
output from the main branch will be concatenated with the side branch’s outputs. This can
prevent diminishing gradients due to the extra information from the top layer.

2.1.2 Side branch. Each side branch of the DeepRoot network does not have to be the same
structure or do the same things. One of the advantages of themulti-branch networkwithmultiple
outputs, like the DeepRoot network, is flexibility. Because each side branch can have a different
shape due to its distinct purpose, it can be designed to do various tasks such as extracting finer
feature detail, up-sampling feature size or grouping feature for global information. TheDeepRoot
network consists of two side branches designed to extract finer feature detail via a zoom-in/zoom-
out [35] module and collect dominant features via an attention layer.

2.2 Zoom-in/zoom-out
In retinal images, many signs of diseases are very small, especially for DR. This canmake the
convolutional neural network struggle to converge on this data type. So, an additionalmodule
is needed for the network to achieve high performance. This is where a zoom-in/zoom-out
module is added to the proposed network. The structure of zoom-in/zoom-out module is
shown in Figure 2 (Left).

As shown in Figure 2 (Left), features extracted from this zoom-in/zoom-out block are the
concatenation of features before and after the zooming process. This zooming process
consists of four steps: zoom-in, convolution, zoom-out and convolution. The structure of the
zoom-in/zoom-out module, as introduced by Ref. [35], is the process to re-size the feature. The
zoom-in is for low-level feature extraction, whereas the zoom-out is for up-sampling back to
the original size. This lets the network learn the low-level feature information and pass this
extracted information to the up-sampling process. Then, the extracted data is re-sized to the
original size for concatenation with the shortcut feature.

From this procedure, the network has extra information on tiny-size features for the
classification at the terminal. But the typical structure of zoom-in/zoom-out still cannot
converge well on the DR problem, especially in Stage 1 and Stage 2 of the disease. This is
because features that define the symptoms in Stage 1 and Stage 2, i.e. microaneurysm and
hard exudate, are hard to see due to their tiny sizes.

Parts in the proposed solution Deployed architecture Number of parameters

Main Branch EfficientNet 12 M
Second branch Inception Module-A with Zoom 2.5 M
Third branch Inception Module-A with Zoom 2.5 M

Table 1.
Descriptions of the
three branches of the
proposed architecture
and their parameters
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Therefore, the proposed DeepRoot network improves the structure of zoom-in/zoom-out by
changing the convolution2d layer to the Inception module A [36]. As a result, the proposed
zoom-in/zoom-out is shown in Figure 2 (Right). This adds complexity to the module and has a
high performance on small-sized features. The Inception module A is used inside the
Inception V3 and V4, which are state-of-the-art classification models. By applying this
module, the zoom-in/zoom-out has more receptor fields for extra signals.

2.3 Attention layer
To detect DR, only parts of DR’ traces are helpful in the detection process. Thus, irrelevant
information in retinal images must be ignored in the learning and inferencing processes.
Attention layers [16, 37] would help emphasize traces of the disease, which would be learned
from common features seen across input data samples. Particularly, in Stage 3 and Stage 4 of
DR, it contains lots of small new blood vessels and various diffuse patterns. This type of layer
can be used for enhancing the performance of detecting Stage 3 and Stage 4. Also, it could be a
benefit for separating Stages 3 and 4 from Stages 1 and 2. In the proposed DeepRoot network,
attention layers are applied after the main branch’s output and before the two side branches,
as shown in Figure 1. The adopted attention layers contain three sequential sets of
normalization, ReLu and convolutional layers.

2.4 Output fusion
Since the DeepRoot network contains three outputs from three different branches, the
classification process needs an extra step to combine all three outputs. Unlike other well-
known CNN that combine branches together at some point in the network, the DeepRoot
network uses all three outputs in the classification process with pre-defined fusion conditions.
These conditions combine all outputs into one final output. The conditions can be changed for
specific problems. The conditions for the DR stage classification are shown in Table 2.

3. Experiments and discussions
In the experiments, two datasets have been used in the evaluations. The first dataset is
a well-known public dataset from Kaggle’s DR competition dataset. The second dataset is a
sell-collected dataset from the real environment of a hospital.

Figure 2.
The structure of zoom-

in/zoom-out module
(Left), and the

improved structure of
zoom-in/zoom-out

module (Right)
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The Kaggle DR dataset is very popular due to its purpose for the competition. Also, its
large sized-dataset can be trained for a complex CNN. The training and testing datasets
distributions are shown in Figure 3. Figure 3 indicates unbalanced datasets in both training
and testing sets. In addition, Stage 4 images have the least amount of training and testing
datasets. So, the numbers of images used in the experiments are 700 and 1,200 for training
and testing processes, respectively, for each class. Then, 10% of the selected images of the
training dataset are separated for a validating process. For noise and irrelevance details
reduction, the datasets are applied with pre-processing techniques, including a low-pass filter
on a green channel and central cropping. Figure 4 shows examples of original and
pre-processed images. It could be noticed that the details of each image are reduced after the
pre-processing step. However, the irrelevance information in each image is also significantly
reduced. In the fourth column of Figure 4, some details of hemorrhages are removed (i.e. color
information), but corresponding patterns of the lesion were remained in the image.

In addition, our self-collected dataset contains a limited number of images compared with
the Kaggle dataset. However, it includes images from a real scenario in a hospital. The
distribution of all stages is shown in Figure 3. This dataset is used for testing only to validate
the generalization of the trained model when it must be applied to unseen data samples in the
real scenario. Similarly, the pre-processing technique is applied to the Kaggle dataset, where
sample images are shown in Figure 4.

These fundus images were captured with a 458–508 field of view (FoV) and converted into
a jpeg file format. The original size of images from the self-collected dataset is 1,6043 1,206,

Conditions Final output

Second branch output 5 Stage 0 Stage 0
Third branch output 5 Stage 3 or Stage 4 corresponding Stage 3 or Stage 4
Main branch output 5 Stage 1 or Stage 2 corresponding Stage 1 or Stage 2
Third branch output 5 Stage 0 Stage 0
Not in any conditions uses third branch output

Table 2.
The conditions for
outputs combination at
the classification
process

Figure 3.
The distribution of
images in three
datasets across five
stages
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Figure 4.
The examples of

original retinal images
(top row) and their
corresponding pre-
processed images

(bottom row)
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while the original size of images from the Kaggle DR dataset varies from 433 3 289 up to
5,184 3 3,456.

In the experiments, the proposed CNN network is trained using four GPUs of Nvidia A100
with VRAM of 40 GB and systemmemory of 1,024 GB. The proposed network is trained using
the Kaggle training dataset for 300 epochs, with an image’s size of 1500 3 1500 pixels. The
training time is approximately 21 h.AdamOptimizer is used in the optimization process,where a
batch size is 16, and a learning rate is dynamically adjusted, starting from a value of 0.001 and
reduced by 1/10 in a period of epochs. Also, early stopping and data augmentation are applied to
prevent overfitting. The augmentation includes vertical flips, linear contrast and rotation.

Then, theKaggle validation dataset is used at the end of every epoch formeasuring themodel
performance. The epoch checkpoint with the highest performance is chosen as the final model.
Finally, the Kaggle test dataset and self-collected dataset are used for the testing. A confusion
matrix is used to demonstrate the corresponding results. It is a tool to show correct and incorrect
classification results to explain which classes testing images are miss-classified [38].

In Figure 5a, it could be seen that the trained model can achieve good performances in Stage
0 (normal) and Stage 4,where there is nodisease at all in Stage 0 and a significant trace of disease
in Stage 4. It obtains moderate performances in Stage 2 and Stage 3, where traces of the disease
are still sufficiently significant and couldbe noticed. In contrast, it achieves a lowperformance on
Stage 1 since it could be noticed using traces of microaneurysm, which is very small (less than
2% of the total size of a retinal image). Particularly, the used dataset from Kaggle seems to be
very difficult since it contains many challenges due to its first objective of being used in the
competition. Compared with the recent technique using the same dataset on the five-classes
scenario, the proposed solution achieves accuracies of 0.83, 0.19, 0.53, 0.48 and 0.72. In contrast,
the method in Ref. [34] achieves the accuracies of 0.98, 0.54, 0.84, 0.35 and 0.29 for Stages 0–4,
respectively. The proposed solution outperforms for detecting Stages 3 and 4.

Then, Figure 5c shows the confusion matrix of classifying two classes (normal and
abnormal classes). The sensitivity is 79.64%, whereas the specificity is 83.08% for unseen
data samples. However, the trained model of the proposed CNN architecture could perform

Figure 5.
Confusion matrix (%)
on: (a) the Kaggle test
dataset of five classes,
(b) the self-collected
dataset of five classes,
(c) the Kaggle test
dataset of two classes
(normal and abnormal),
(d) the self-collected
dataset of two classes
(normal and abnormal),
(e) the self-collected
dataset of three classes
(C0 contains Stage 0, C1
contains Stage 1 and
Stage 2, and C2
contains Stage 3 and
Stage 4)
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better on unseen samples that were collected from the real scenario in a hospital. The results
are shown in Figure 5b.

In addition, the ablation study is performed on a scenario of two classes (normal and
abnormal) based on the Kaggle dataset. Four components of the proposed solution are
investigated. The experimental results are shown in Table 3. It is proved that all additional three
components of side-branch, zoom and attention can enhance the performance on top of themain
branch. So, all components of the proposed solution are applied for the rest of the experiments.

In Figure 5b, the trainedmodel is testedwith unseen data samples, whichwere collected from
a real scenario in a hospital, where test images were classified into five classes, including a
normal class and four abnormal classes of four stages. Then, Figure 5d shows the confusion
matrix of classifying two classes (normal and abnormal). The sensitivity is 98.18%, where the
specificity is 54.55 % for unseen data samples. Compared with testing on Kaggle, the trained
model could detect the abnormality (i.e. high sensitivity) better on the unseen data of the self-
collected dataset. This could be because the retinal images collected from a hospital are of better
qualitywhen comparedwith the retinal images in theKaggle dataset designed for a competition.

The trainedmodel developed in this paper is also comparedwith other existing techniques
under both scenarios of two classes and five classeswith four stages. The results are shown in
Table 4. For the two-classes scenario, the performances are reported in terms of sensitivity,
specificity and accuracy. While for the five-classes scenario, the performances are reported
using a weighted average of accuracies from the five classes.

In Table 4, for a fair comparison, the performances of our proposed method are also
evaluated based on the dataset without the test set balancing as done for results reported in
Figure 5. It can be seen that the proposed model is somehow comparable with the other

Components Combination#1 Combination#2 Combination#3 Combination#4 Combination#5

Main-branch x x x x x
Side-branch x x
Side-branch
with zoom

x x

Attention x x
65.61/67.50 73.98/71.08 78.73/79.83 78.81/76.75 79.64/83.08

Note(s): The performances of each combination are reported using sensitivity (%)/specification (%)

Methods 2 classes 5 classes

CNNwith 12 layers [15] sensitivity 5 0.95, accuracy 5 0.75 –
VGG-D [18] accuracy 5 0.82 accuracy 5 0.51
ResNet-50 [16] – accuracy 5 0.47
Bi-ResNet [16] – accuracy 5 0.49
RA-Net [16] – accuracy 5 0.47
BiRA-Net [16] – accuracy 5 0.54
VGG16 [17] – accuracy 5 0.51
Two-stages CNN [19] – accuracy 5 0.54 (approx. from a

result graph)
Multi-task CNN [33] sensitivity 5 0.64, accuracy 5 0.82 –
Deep feature extraction
[34]

– accuracy 5 0.51

Proposed method
(DeepRoot)

specificity 5 0.83, sensitivity 5 0.80,
accuracy 5 0.80

accuracy 5 0.55

Table 3.
The ablation study on
four components of the

proposed solution,
using a scenario of two

classes (normal and
abnormal) based on

Kaggle dataset

Table 4.
Comparisons under

both scenarios of two
classes and five classes

with four stages
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methods. The main objective of this paper is also to introduce the new CNN-based
architecture, as explained above. Also, the trained model is validated to be sufficiently
generalized on unseen samples of the self-collected dataset, with a sensitivity of 98.18%
under the 2-classes scenario.

In addition, it is sometimes useful to classify the retinal image into three classes in a real-
world scenario, where Stages 1 and 2 are grouped and Stages 3 and 4 are grouped. Thus, this
experiment further validates the proposed method in this scenario of three classes. Figure 5e
shows that the accuracy across the three classes becomesmore stable at 81.86%, 72.71% and
84.29%. The sensitivity and specificity values of classifying normal from abnormal cases
also balance, as 81.86% and 78.5%, respectively.

The advantage of the proposed solution is that it could distinguish DR from non-DR cases
with high accuracy of over 80%. It could elaborate the sensitivity up to 98% with the lower
specificity. The early stages (i.e. Stage 1 and Stage 2) could also be differentiated from the
severe stages (i.e. Stage 3 and Stage 4) with high accuracy of 80% on average. However, the
proposed solution’s main limitation is grading individual stages. It still suffers from a low
performance of separating Stage 1 from Stage 2 since the traces of the early stages of DR are
very small (i.e. cover less than 2% of the whole image). In future work, the proposed solution
can be used to classify Stage 1 and Stage 2 into the same category. Then, the two classes could
be further split using microaneurysm, exudate and hemorrhage detections.

4. Conclusion
This paper proposed a new CNN architecture, DeepRoot, to detect and grade DR in retinal
images. DeepRoot was designed to cope with fine-level features for detecting tiny traces of
DR, such as microaneurysm and exudate. The staging outputs were determined at different
locations in different layers of DeepRoot. DeepRoot was then trained and validated with the
retinal images dataset from Kaggle. The trained model was also tested with unseen data
samples, i.e. self-collected from a hospital. The model could achieve a very high sensitivity of
98.18% for the scenario of classifying into two classes of normal and DR. It could also be seen
from the confusion matrix that the model could handle well with severe Stages 3 and 4 due to
the advantage of the added attention layers. However, the performance significantly dropped
in the early stages. In future work, the techniques of DR traces segmentation and CNN-based
solution of DR staging should be combined. The segmentation-based solution should be
employed for detecting Stage 1 and Stage 2, by segmentation microaneurysm and exudate.
Then, Stage 3 and Stage 4 should be detected using the CNN-based classifier.
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