To read this content please select one of the options below:

Engineering an afterburner for a miniature gas turbine engine

Jonathan Cooper (Cranfield University, Cranfield, UK)
Lloyd Dingle (Farnborough College of Technology, Farnborough, UK)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 1 April 2005

6841

Abstract

Purpose

This paper is concerned with the theoretical and practical engineering development issues, necessary for the design, build and test of an afterburner thrust augmentation system for a model aircraft gas turbine engine.

Design/methodology/approach

Research into key combustion parameters including, flame holder diameter, flame holder edge velocity, burner velocity and equivalence ratio were undertaken. This information was used as the basis for the design and fabrication of the afterburner combustion system. The after burner system had been designed to fit a Wren MW54 model gas turbine engine, that included FADEC control for the mother engine. Substantial testing of the afterburner system was undertaken.

Findings

Changes in “dry” and “wet” jet efflux temperature while the engine is accelerating from idle to full power are found. The increase in temperature between the dry and wet case are not markedly different, demonstrating the poor quality of the afterburner flame: the testing of the afterburner system resulted in limited flame substantiation being achieved.

Research limitations/implications

Further research is required and is currently being undertaken, into the computational modelling of fuel atomisation issues and further engineering of the fuel injection system.

Practical implications

This afterburner design may eventually be adopted by Wren Turbines for economic production.

Originality/value

Provides further information on the engineering and efficiency problems associated with very small‐scale gas turbine engines.

Keywords

Citation

Cooper, J. and Dingle, L. (2005), "Engineering an afterburner for a miniature gas turbine engine", Aircraft Engineering and Aerospace Technology, Vol. 77 No. 2, pp. 104-108. https://doi.org/10.1108/00022660510585929

Publisher

:

Emerald Group Publishing Limited

Copyright © 2005, Emerald Group Publishing Limited

Related articles