To read this content please select one of the options below:

A read-disturb-free stable low power and high-density GNRFET 6T SRAM with multi-VT technology

Pramod Kumar Patel (Department of Nano Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India)
M.M. Malik (Department of Nano Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India)
Tarun Kumar Gutpa (Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal, India)

Circuit World

ISSN: 0305-6120

Article publication date: 23 March 2020

Issue publication date: 18 June 2020

145

Abstract

Purpose

The performance of the conventional 6T SRAM cell can be improved by using GNRFET devices with multi-threshold technology. The proposed cell shows the strong capability to operate at the minimum supply voltage of 325 mV, whereas the conventional Si-CMOS 6 T SRAM unable to operate below 725 mV, which result in an acceptable failure rate.The advance of Si-CMOS (complementary metal-oxide-semiconductor) based 6 T SRAM cell faces inherent limitation with aggressive downscaling. Hence, there is a need to propose alternatives for the conventional cells.

Design/methodology/approach

This study aims to improve the performance of the conventional 6T SRAM cell using dual threshold technology, device sizing, optimization of supply voltage under process variation with GNRFET technology. Further performance can be enhanced by resolving half-select issue.

Findings

The GNRFET-based 6T SRAM cell demonstrates that it is capable of continued improve the performance under the process, voltage, and temperature (PVT) variations significantly better than its CMOS counterpart.

Research limitations/implications

Nano-material fabrication technology of GNRFETs is in the early stage; hence, the different transistor models can be used to evaluate the parameters of future GNRFETs circuit.

Practical implications

GNRFET devices are suitable for implementing low power and high density SRAM cell.

Social implications

The conventional Si-CMOS 6 T SRAM cell is a core component and used as the mass storage element in cache memory in computer system organization, mobile phone and other data storage devices.

Originality/value

This paper presents a new approach to implement an alternative design of GNRFET -based 6T SRAM cell with doped reservoirs that also supports process variation. In addition, multi-threshold technology optimizes the performance of the proposed cell. The proposed design provides a means to analyze delay and power of GNRFET-based SRAM under process variation with considering edge roughness, and offers design and fabrication insights for cell in the future.

Keywords

Acknowledgements

This work was supported by Nanoscience and Engineering Center, Maulana Azad National Institute of Technology, Bhopal, 462003, India.

Citation

Patel, P.K., Malik, M.M. and Gutpa, T.K. (2020), "A read-disturb-free stable low power and high-density GNRFET 6T SRAM with multi-VT technology", Circuit World, Vol. 46 No. 3, pp. 203-214. https://doi.org/10.1108/CW-06-2019-0054

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles