To read this content please select one of the options below:

Recent progress in wiring networks diagnosis for automotive applications

M.K. Smail (Laboratoire de Génie Electrique de Paris, Université Paris‐Sud 11, Paris, France)
L. Pichon (Laboratoire de Génie Electrique de Paris, Université Paris‐Sud 11, Paris, France)
M. Olivas (CEA‐LIST, Laboratoire de Fiabilisation des Systèmes Embarqués, Paris, France)
F. Auzanneau (CEA‐LIST, Laboratoire de Fiabilisation des Systèmes Embarqués, Paris, France)
M. Lambert (Laboratoire des Signaux et Systèmes, Université Paris‐Sud, Paris, France)

Abstract

Purpose

Aging wiring in cars, aircraft, trains and other transportation means is identified as a critical security area. The purpose of this paper is to develop a new methodology for wire diagnosis allowing the detection, localization and characterization of the fault in wiring network.

Design/methodology/approach

The direct problem (propagation along the cables) is modelled by RLCG circuit parameters and the finite difference time domain method. This model provides a simple and accurate method to simulate time domain reflectometry (TDR) responses. Genetic algorithms are combined with this wire propagation model to solve the inverse problem and to deduce physical information's about defects from the reflectometry response.

Findings

The results show the applicability of an inverse procedure dedicated to TDR for the localization and characterization of defects in simple wires and faulty wiring networks. With experimental results, the paper demonstrates the accuracy which can be provided for wire diagnosis.

Practical implications

The work provides an efficient tool for the diagnosis of embedded wire networks.

Originality/value

In this paper, a new method is developed and applied to detect, characterize and localize the defects in wiring networks: an inverse procedure is introduced for wire diagnosis. The presented methodology is applied for complex network structures and with measurement data.

Keywords

Citation

Smail, M.K., Pichon, L., Olivas, M., Auzanneau, F. and Lambert, M. (2011), "Recent progress in wiring networks diagnosis for automotive applications", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 30 No. 4, pp. 1148-1161. https://doi.org/10.1108/03321641111133091

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Related articles