To read this content please select one of the options below:

Vortex force of an impulsively started plate at high angle of attack

Xiang Fu (School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China)
Gaohua Li (School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China)
Fuxin Wang (School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 6 November 2017

120

Abstract

Purpose

A quantitative study that can identify the primary aerodynamic forces and relate them to individual vortical structures is lacking. The paper aims to clarify the quantitative relationships between the aerodynamic forces and vortical structures.

Design/methodology/approach

The various contributions to the aerodynamic forces on the two-dimensional impulsively started plate are investigated from the perspective of the vorticity moment theorem. The angles of attacks are set to 45°, 58.5° and 72°, while the Reynolds number is 10,000 based on the chord length. Compared with the traditional pressure force analysis, this theorem not only tells us the total aerodynamic force during the motion, but also enables us to quantify the forces contributed from the fluid elements with non-zero vorticity.

Findings

It is found that the time-dependent force behaviors are dominated by the formations and evolutions of these vortical structures. The analysis of the time-averaged forces demonstrates that the lift contributed from the leading edge vortex (LEV) is nearly four times larger than the total lift and the drag contributed from the starting vortex (SV) is almost equal to the total drag when the angle of attack (AoA) increases to 72°, which means the LEV is “lift structure” whereas the SV is “drag structure”.

Practical implications

The present method provides a better perspective for flow control and drag reduction by relating the forces directly to the individual vorticity structures.

Originality/value

In this paper, the Vorticity Moment Theory is first used to study the quantitative relationships between the aerodynamic forces and the vortices.

Keywords

Citation

Fu, X., Li, G. and Wang, F. (2017), "Vortex force of an impulsively started plate at high angle of attack", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 No. 11, pp. 2402-2414. https://doi.org/10.1108/HFF-10-2016-0391

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles