To read this content please select one of the options below:

Micro/macro fatigue crack growth rate model for 2024-T3 aluminum panel

George Sih (International Center for Sustainability, Accountability and Eco-Affordability of the Large and Small (ICSAELS), Lehigh University, Bethlehem, Pennsylvania, United States.)

International Journal of Structural Integrity

ISSN: 1757-9864

Article publication date: 10 August 2015

234

Abstract

Purpose

Fatigue crack growth rate data for 2024-T3 aluminum are found using three parameters d*, σ* and μ* for short and long cracks for Regions I-III in conventional fatigue. Asymptotic solution of a line crack with a micro-tip is found to yield a singular stress behavior of order 0.75 in contrast to the 0.50 order known for the macrocrack. The difference is due to the micro-macro interaction effects. The three parameters account for the combined effects of load, material and geometry via the tip region. Data for short and long cracks lie on a straight with a slope of about 3.9-4.8 for R values of 0.286-0.565. The results were based on an initial crack a1 mm where a is the half length for a central crack panel. The paper aims to discuss these issues.

Design/methodology/approach

The belief that specimen fatigue data could assist the design of structural components was upended when FAA discovered that the NASGRO FCGD are not valid for short cracks that are tight and may even be closed. The regular ΔK vs da/dN model was limited to long cracks. The issue become critical for short cracks connecting the long ones of a few mm to cm or even m according to da/dN for the same crack history. The danger of short/long fatigue crack growth (SLFCG) prompted FAA to introduce an added test known as Limit of Validity (LOV), a way of setting empirical limits for structural components. The dual scale SLFCG data from ΔK micro/macro provide support for the LOV tests.

Findings

Data for short and long cracks lie on a straight with a slope of about 3.9-4.8 for R values of 0.286-0.565. The single dual scale relation on ΔK micro/macro can switch from microscopic to macroscopic or vice and versa. The difference is fundamental. Order other than 0.75 can be obtained for simulating different microstructure effects as well as different materials and test conditions.

Originality/value

Scale shifting from short to long fatigue cracks for 2024-T3 aluminum is new. The crack driving force is found to depend on the crack tightness. The sigmoidal curve based on the regular ΔK plot disappeared. The data from ΔK micro/macro for short cracks may supplement the FAA LOV tests for setting more reliable fatigue safe limits.

Keywords

Citation

Sih, G. (2015), "Micro/macro fatigue crack growth rate model for 2024-T3 aluminum panel", International Journal of Structural Integrity, Vol. 6 No. 4, pp. 522-540. https://doi.org/10.1108/IJSI-05-2015-0014

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited

Related articles