To read this content please select one of the options below:

Fire resistance of DELTABEAM® composite beams: a numerical investigation

Chrysanthos Maraveas (Fire Safety Unit, ArGEnCo Department, University of Liege, Liege, Belgium)

Journal of Structural Fire Engineering

ISSN: 2040-2317

Article publication date: 11 July 2017

Issue publication date: 22 September 2017

161

Abstract

Purpose

The DELTA® beam composite floor system is a recently developed shallow floor type that has seen many applications in contemporary construction. It involves partially encasing DELTA® steel beams in concrete, with the lower flange remaining exposed. Besides the satisfactory behavior of the system at ambient conditions, understanding its response under elevated temperatures is critical in evaluating its overall performance. Despite certification from the manufacturing company that the system has adequate fire resistance, its behavior under fire conditions has neither been investigated to depth nor reported in detail. The purpose of this paper is the detailed numerical investigation of their behavior in fire. For this reason, the finite element method was implemented in this paper to simulate the response of such beams subjected to fire. Material properties were modeled according to the Eurocodes. The coupled thermal-structural parametric analyses involved four different variations of the “shortest” and “deepest” cross-section (eight case studies in total) specified by the manufacturing company. Other simulations of these cross-sections, in which either the thermal expansion or the structural load were not taken into account, were carried out for comparison purposes.

Design/methodology/approach

The methodology for simulating such systems, which has been successfully implemented and validated against fire test results elsewhere (Maraveas et al., 2012) was also followed here. To investigate the statement made by Maraveas et al. (2014) and the equations proposed by Zaharia and Franssen (2012) that the insulation is not so effective for “short” cross-sections, two beams, one with a D20-200 (Deltabeam Technical Manual, 2013) cross-section (shallowest section) and one with a D50-600 (Deltabeam Technical Manual, 2013) cross-section (deepest section), were simulated in this paper for comparison purposes. Additionally, reasonable assumptions were made for the cross-sectional dimensions not specified by the manufacturer (Deltabeam Technical Manual, 2013) and parametric analyses were carried out to investigate their effect on the structural response of the system.

Findings

Composite DELTA® beams can achieve fire resistances ranging from 120 to 180 min, depending on the depth and geometry of their cross-section, with deeper sections displaying a better fire response. The intense thermal bowing that occurs when these beams are heated from below has a more pronounced effect, in terms of thermally induced deflections for deeper sections. The satisfactory fire resistance of these beams is achieved due to the action of the concrete encased web and the reinforcement which compensate for the loss of the exposed lower flange. Increasing the thickness of the web in deeper sections improves their fire rating up to 180 min. The thickness of the lower flange affects the fire rating of the beams only in a minor way.

Practical/implications

The paper describes a numerical methodology to estimate the fire resistance of complex flooring systems.

Keywords

Citation

Maraveas, C. (2017), "Fire resistance of DELTABEAM® composite beams: a numerical investigation", Journal of Structural Fire Engineering, Vol. 8 No. 4, pp. 338-353. https://doi.org/10.1108/JSFE-05-2016-0003

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles