To read this content please select one of the options below:

Influence of flexible interface on the performance of whole spacecraft vibration isolation

Liang Lu (Department of Space Engineering and Applied Mechanics, Harbin Institute of Technology, Harbin, People's Republic of China)
Wenhu Huang (Department of Space Engineering and Applied Mechanics, Harbin Institute of Technology, Harbin, People's Republic of China)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 25 January 2008

464

Abstract

Purpose

As the installation of the vibration isolation device to the spacecraft for the whole spacecraft vibration isolation, the interface structure is typically modeled as a rigid structure during the design phase. However, the flexibility of the interface structure does exist for a large‐sized adaptor. This is a source of uncertainty and could reduce the reliability of the system. It is necessary to investigate the influence of this type of flexibility on the vibration isolation performance in an engineering practice. This paper aims to address this situation.

Design/methodology/approach

The vibratory transmissibility from the bottom of the isolator is generally used to evaluate the performance of the vibration isolation. By introducing the interface flexibility from both the adaptor and the vibration isolation device, a planar model which includes a flexible beam representing the interface structure is established to study the influence of this type of flexibility on the vibratory transmissibility.

Findings

It is found that, when this type of flexibility is included, an extra low‐frequency mode dominated locally by the interface structure is induced, and then a significant resonance appears in the vibratory transmissibility of the vibration isolation device at a low frequency.

Originality/value

The vibration isolation performance may be over‐estimated in the design by taking the interface as rigid. The inherent flexibility of the interface structure, on the other hand, may degrade the performance of the vibration isolation device and degrade the function of the rotation constraint device added into the vibration isolation device.

Keywords

Citation

Lu, L. and Huang, W. (2008), "Influence of flexible interface on the performance of whole spacecraft vibration isolation", Aircraft Engineering and Aerospace Technology, Vol. 80 No. 1, pp. 35-43. https://doi.org/10.1108/00022660810841994

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Related articles