To read this content please select one of the options below:

Augmentation of heat transfer in wall‐rooted‐fins systems

A.‐R.A. Khaled (Department of Thermal Engineering and Desalination Technology, King Abdulaziz University, Jeddah, Saudi Arabia)
I. Alqadi (Department of Aeronautical Engineering, King Abdulaziz University, Jeddah, Saudi Arabia)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 23 March 2012

145

Abstract

Purpose

The purpose of this work is to consider heat transfer inside wall‐rooted‐fins systems.

Design/methodology/approach

The coupled two‐dimensional heat diffusion equations are nondimensionlaized and solved numerically using an iterative finite volume method. Approximate fine analytical solutions for various augmentation indicators are derived. Excellent agreement is obtained between the numerical and the analytical results. A parametric study including all of the involved dimensionless parameters is conducted and presented graphically. Accurate correlations are generated.

Findings

It is found that fin‐roots with large root lengths experience bi‐directional heat transfer rates. Moreover, the wall‐rooted‐fins system is found to possess an effectiveness that can be more than 60 percent above that with rootless fins at wall Biot numbers of unity order. This value is found to increase as the Biot number increases or as the wall‐to‐fin thermal conductivities and volumes ratios decrease. In addition, heat transfer rates through wall‐rooted‐fins systems can be more than 100 percent above those having uniform thermal conductivities. Eventually, the heat transfer coefficient between the fin‐roots and wall are derived, which is found to be independent on the wall thickness.

Originality/value

Finally, this work paves a way for an effective passive method for augmenting heat transfer inside wall‐fins systems.

Keywords

Citation

Khaled, A.‐.A. and Alqadi, I. (2012), "Augmentation of heat transfer in wall‐rooted‐fins systems", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 22 No. 2, pp. 194-214. https://doi.org/10.1108/09615531211199827

Publisher

:

Emerald Group Publishing Limited

Copyright © 2012, Emerald Group Publishing Limited

Related articles