To read this content please select one of the options below:

High temperature isothermal and cyclic oxidation behaviour of pure recycled titanium

Omar Alejandro Valdés-Saucedo (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Liliana Judith Vázquez-Rodríguez (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Brenda López-Zárate (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Lorena Garza-Tovar (Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Nora Aleyda García-Gómez (Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Alfredo Artigas (Departamento de Ingeniería Metalurgica, Universidad de Santiago, Santiago, Chile)
Alberto Monsalve (Departamento de Ingeniería Metalurgica, Universidad de Santiago, Santiago, Chile)
Javier H. Humberto Ramírez-Ramírez (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Francisco Aurelio Pérez-González (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Rafael Colás (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)
Nelson Federico Garza-Montes-de-Oca (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico)

Anti-Corrosion Methods and Materials

ISSN: 0003-5599

Article publication date: 14 June 2018

Issue publication date: 24 July 2018

260

Abstract

Purpose

This paper aims to analyse the surface evolution of pure recycled titanium subjected to isothermal and cyclic oxidation conditions using dry air as oxidant gas. It is important to mention that the cyclic oxidation behaviour of pure titanium is a process that has been barely studied.

Design/methodology/approach

An isothermal and cyclic oxidation reactor was built for these purposes. This installation allows the oxidation of material under the action of any atmosphere and for temperatures up to 1,200°C. For this study, the oxidation behaviour of the material was studied at 850°C and 950°C.

Findings

Oxide growth under isothermal oxidation conditions in air follows a parabolic behaviour with an activation energy of 118 kJ/mol, and the oxide phase formed on the surface of the metal was rutile. The cyclic oxidation of the material indicates that oxide is spalled from the surface following linear behaviours; this phenomenon is controlled by the thermal stresses experienced by the samples during heating and cooling cycles.

Originality/value

The material is obtained from the production of electrolytic copper, and during its reprocessing practices at high temperature, it was thought that it could experience some abnormal oxidation. In addition, given that pure titanium is currently used for biomedical application, some surface degree can be given by means of oxidation and subsequent spallation process situation that is found during the cyclic oxidation experiments, which could be a low-cost method to engineer a surface for these purposes.

Keywords

Acknowledgements

The authors would like to thank National Council for Science and Technology in Mexico (Conacyt) particularly the project 238232, the Mexican program for lecturer formation and development (PRODEP) and Universidad Autónoma de Nuevo Leon (UANL) for the facilities provided to develop this investigation.

Citation

Valdés-Saucedo, O.A., Vázquez-Rodríguez, L.J., López-Zárate, B., Garza-Tovar, L., García-Gómez, N.A., Artigas, A., Monsalve, A., Ramírez-Ramírez, J.H.H., Pérez-González, F.A., Colás, R. and Garza-Montes-de-Oca, N.F. (2018), "High temperature isothermal and cyclic oxidation behaviour of pure recycled titanium", Anti-Corrosion Methods and Materials, Vol. 65 No. 4, pp. 340-349. https://doi.org/10.1108/ACMM-04-2017-1790

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles