To read this content please select one of the options below:

Tuning of controller for an aircraft flight control system based on particle swarm optimization

Emre Kiyak (Department of Avionics, Anadolu University, Eskisehir, Turkey)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 3 October 2016

404

Abstract

Purpose

This study aims to present a method for the conceptual design and simulation of an aircraft flight control system.

Design/methodology/approach

The design methodology is based on particle swarm optimization (PSO). PSO can be used to improve the performance of conventional controllers. The aim of the present study is threefold. First, it attempts to detect and isolate faults in an aircraft model. Second, it is to design a proportional (P) controller, a proportional derivative (PD) controller, a proportional-integral (PI) controller and a fuzzy controller for an aircraft model. Third, it is to design a PD controller for an aircraft using a PSO algorithm.

Findings

Conventional controllers, an intelligent controller and a PD controller-based PSO were investigated for flight control. It was seen that the P controller, the PI controller and the PD controller-based PSO caused overshoot. These overshoots were 18.5, 87.7 and 2.6 per cent, respectively. Overshoot was not seen using the PD controller or fuzzy controller. Steady state errors were almost zero for all controllers. The PD controller had the best settling time. The fuzzy controller was second best. The PD controller-based PSO was the third best, but the result was close to the others.

Originality/value

This study shows the implementation of the present algorithm for a specified space mission and also for study regarding variation of performance parameters. This study shows fault detection and isolation procedures and also controller gain choice for a flight control system. A comparison between conventional controllers and PD-based PSO controllers is presented. In this study, sensor fault detection and isolation are carried out, and, also, root locus, time domain analysis and Routh–Hurwitz methods are used to find the conventional controller gains which differ from other studies. A fuzzy controller is created by the trial and error method. Integral of squared time multiplied by squared error is used as a performance function type in PSO.

Keywords

Citation

Kiyak, E. (2016), "Tuning of controller for an aircraft flight control system based on particle swarm optimization", Aircraft Engineering and Aerospace Technology, Vol. 88 No. 6, pp. 799-809. https://doi.org/10.1108/AEAT-02-2015-0037

Publisher

:

Emerald Group Publishing Limited

Copyright © 2016, Emerald Group Publishing Limited

Related articles