To read this content please select one of the options below:

Automated sizing of a composite wing for the usage within a multidisciplinary design process

Tobias Bach (Institute of Composite Structures and Adaptive Systems, German Aerospace Center, Braunschweig, Germany)
Tanja Führer (Institute of Composite Structures and Adaptive Systems, German Aerospace Center, Braunschweig, Germany)
Christian Willberg (Institute of Composite Structures and Adaptive Systems, German Aerospace Center, Braunschweig, Germany)
Sascha Dähne (Institute of Composite Structures and Adaptive Systems, German Aerospace Center, Braunschweig, Germany)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 7 March 2016

354

Abstract

Purpose

The purpose of this paper is to present a structural design and optimization module for aircraft structures that can be used stand-alone or in a high-fidelity multidisciplinary design optimization (MDO) process. The module is capable of dealing with different design concepts and novel materials properly. The functionality of the module is also demonstrated.

Design/methodology/approach

For fast sizing and optimization, linear static finite element (FE) models are used to obtain inner loads of the structural components. The inner loads and the geometry are passed to a software, where a comprehensive set of analytical failure criteria is applied for the design of the structure. In addition to conventional design processes, the objects of stiffened panels like skin and stringer are not optimized separately and discrete layups can be considered for composites. The module is connected to a design environment, where an automated steering of the overall process and the generation of the FE models is implemented.

Findings

The exemplary application on a transport aircraft wing shows the functionality of the developed module.

Originality/value

The weight benefit of not optimizing skin and stringer separately was shown. Furthermore, with the applied approach, a fast investigation of different aircraft configurations is possible without constraining too many design variables as it often occurs in other optimization processes. The flexibility of the module allows numerous investigations on influence of design concepts and failure criteria on the mass and layout of aircraft wings.

Keywords

Citation

Bach, T., Führer, T., Willberg, C. and Dähne, S. (2016), "Automated sizing of a composite wing for the usage within a multidisciplinary design process", Aircraft Engineering and Aerospace Technology, Vol. 88 No. 2, pp. 303-310. https://doi.org/10.1108/AEAT-02-2015-0057

Publisher

:

Emerald Group Publishing Limited

Copyright © 2016, Emerald Group Publishing Limited

Related articles