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Abstract
Purpose – The purpose of this paper is to set out a methodology for characterising the complexity of air traffic control (ATC) sectors based on
individual operations. This machine learning methodology also learns from the data on which the model is based.
Design/methodology/approach – The methodology comprises three steps. Firstly, a statistical analysis of individual operations is carried out using
elementary or initial variables, and these are combined using machine learning. Secondly, based on the initial statistical analysis and using machine
learning techniques, the impact of air traffic flows on an ATC sector are determined. The last step is to calculate the complexity of the ATC sector
based on the impact of its air traffic flows.
Findings – The results obtained are logical from an operational point of view and are easy to interpret. The classification of ATC sectors based on
complexity is quite accurate.
Research limitations/implications – The methodology is in its preliminary phase and has been tested with very little data. Further refinement is
required.
Originality/value – The methodology can be of significant value to ATC in that when applied to real cases, ATC will be able to anticipate the
complexity of the airspace and optimise its resources accordingly.
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1. Introduction and objectives

The objective of the air traffic management (ATM) system is to
enable efficient, safe operations for airspace users (Gallego
et al., 2018a). The number of flights is forecast to almost
double by 2035 (EUROCONTROL, 2010). Within this
context, Europe has a very complex transport network,
specifically air transport, due to the high level of mobility of its
inhabitants (Samolej et al., 2021).
However, simply counting the number of aircraft in the

airspace gives a misleading idea of its complexity. It is important
to take other factors into account, such as the number of
interactions of air traffic control (ATC) with aircraft (Lee et al.,
2009). Furthermore, the complexity of the operational scenario
depends in part on the variability between the predicted and
actual trajectories of the aircraft. The actual trajectory differs
from the predicted one due to several factors, including the
weather forecast, the integration of operational information and
operational uncertainty (Gallego et al., 2018b).

At present, there is no single universal indicator of complexity
(Gianazza, 2007). However, over the past 25years, concern has
grown over the need to measure the complexity of airspace
(Pejovic et al., 2020). This complexity and the resulting
unpredictability for the ATM system is one of themain reasons for
the deployment of technical and operational solutions to balance
the capacity and the demand of ATM (SESAR, 2015). The
research and projects on this topic are important for the ATC
service, as an increasing airspace complexity directly leads to an
increase in air traffic controllers’workload (Xie et al., 2021). Thus,
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the definition of a unique complexity parameter would imply a
more exact and earlier evaluation of the controllers’workload.
This paper attempts to further the development of the

universal definition of the complexity of an ATC sector.
A parameter called complexity will be defined based on the
main traffic flows within the sector and ultimately based on the
data of individual operations. As such, the complexity of a
sector will depend on the characteristics of overflying aircraft.
This methodology will be data-driven. Data-driven

complexity models are being developed to overcome the
limitations of expert opinion-based models, such as bias or
dependence of air traffic controllers’ confirmation (Gianazza
and Guittet, 2006). This methodology will thus have some
advantages when being compared with previously made
airspace complexity evaluationmodels:
� Possibility of using massive data to develop and test the

methodology.
� Adaptability, as the methodology, presents updated

results when new data are provided.
� Autonomy from controllers and other stakeholders when

updating results.

Furthermore, a tool will be developed that, via this definition of
complexity, will help ATC to increase its capacity to better cope
with demand. This increase in capacity will be due to better
management of resources. This tool works by characterising
airspace sectors according to their complexity. This will enable
ATC to anticipate the operational scenario and react in good time.
For the tool to be of practical value in a real scenario, wewill use

machine learning. The function of machine learning will be to
make an automatic tool that learns based on the data. In this way,
if the data are from different sectors, machine learning will learn
different patterns and give different results, thereby taking the
intrinsic characteristics of each sector into account. If historical
data are available, machine learning will be able to capture longer-
term patterns resulting in different predictions. This variability
means that the model is dynamic. Furthermore, the aim is to
ensure that the results are easy to interpret, thereby assistingATC.
The addition of machine learning to this tool will also

provide some advantages to the ATC service when using it:
� Possibility to learn historical trends if the necessary data

are available.
� Possibility to learn patterns from structural aspects of

different ATC sectors based on the characteristics of the
operation within the sectors.

The addition of machine learning to this tool will make the
application of the complexity characterisation methodology
automatic. Therefore, this predictive tool will be the perfect
complement to the proposed methodology. The proposed
methodology, set out in Section 2, details the process for
classifying sectors according to their complexity. Section 3
shows the results obtained using real data from Spanish
airspace. Finally, Section 4 gives the conclusions of the paper
and outlines future research in this area.

2. Methodology

The objective of this paper is to develop amethodology that will
enable airspace sectors to be characterised based on historical
data. The methodology will be such that it is capable of

adaptation and learning as per data-based models. The
characterisation will be based on a statistical analysis of
individual aircraft overflying the specific sector. This statistical
analysis will enable us to define parameters to characterise the
traffic flows in the sector and, carrying on from that, the
complexity of the sector itself. To carry out this work, data for
the whole of 2019 from Spanish airspace were used.
The characterisationmust be such that it is of genuine help to

ATC in managing its resources. For this very reason, it was
decided to make a model based on the daily complexity of the
sectors themselves. As regards ATC, the complexity of a sector
depends both on its structural aspects and on the characteristics
of its traffic flows (Sridhar et al., 1998). Specifically, the
characteristics of the traffic flow within a sector are related to
aspects of individual flights such as the number of aircraft, mix
of aircraft models, weather, aircraft separation, aircraft speed
and regulations affecting traffic (Oktal and Yaman, 2011).
According to the literature, the process of estimating the

complexity of the sectors begins with the flights themselves. In
other words, to define the complexity of a sector using a data-
based methodology, it is necessary to start with the most basic
unit, which is the individual operation.
The flight plans for one day will be used to carry out

statistical analysis to characterise which traffic flows will be
the most complex for ATC to control. The first step in
the methodology is to carry out this statistical analysis. For the
statistical analysis, different indicators based on the literature
have been used and classified into four fields of study.

2.1 Traffic density
The ever-increasing density in air traffic results in a heavier
workload for air traffic controllers (Debbache, 2003). Traffic
density is key for identifying the main traffic flows, and thus, the
complexity of the airspace. The indicators used to define this
variable are the number of aircraft per day, the number of aircraft
per hour and themaximumnumber of aircraft in an hour.

2.2 Vertical density
This is obviously related to traffic density. It is important to
understand how the traffic is structured at the different flight
levels within the sector. The number of ascending/descending
aircraft is important to define the airspace complexity (Cao
et al., 2018). This variable has been defined from the
percentage of ascending/descending aircraft, the number of
ascending/descending aircraft, the number of Flight Levels and
the number of aircraft per Flight Level.

2.3 Time distribution
Delays in air transport are amajor concern for the industry because
of inconvenience to the main actors and the resulting costs
(Rodriguez-Sanz et al., 2021). To include possible delays in the
overall model, we must study the time distribution and hourly
milestones of the aircraft in the sector. To maintain a simple
definition of this variable, it is calculated based on the percentage of
hours in a day that aircraft areflyingwithin the air trafficflow itself.

2.4 Air traffic flow and capacitymanagement
regulations
Air traffic flow and capacity management (ATFCM) regulations
are very important when determining the complexity of airspace.
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Furthermore, ATFCM regulations reveal mechanisms for
balancing capacity and demand (Sanaei et al., 2019).When there
is excess demand with respect to ATC capacity, this generates
complexity in the sector; therefore, it is important to study the
regulations. The ATFCM regulations are directly related to
complexity, so special concerns will be shown in the definition of
this variable. The indicators that will define the variable ATFCM
regulations will be the percentage of regulated flights, the
percentage of delayed flights, the average number of regulations,
and the average delay faced by flights in their operation.
The aim of the paper remains the definition of a simple

methodology to characterise ATC sectors. We will define the four
initial variables in the simplest way possible to be consistent with
this objective.
The indicators which are the base of the methodology can be

directly subtracted from the statistical analysis of the data. The
mean values of these indicators and their variation coefficients
will be calculated on a daily basis for each flow within a sector
[equation (1)]. This will ensure a complete description of the
future complexity of the sector:

Var: Coef : ¼ s

m
(1)

where:
s = Standarddeviation; and
m =Mean.

The four initial variables will be later defined by the sum of their
respective indicators [equations (2) and (3)]. A distinction will
be made betweenmean and variability values, so eight variables
will be calculated:

Mean Variable ¼
X

i

Mean Ii (2)

Variability Variable ¼
X

i

Variability Ii (3)

Using these mean values and variabilities, we will calculate two
parameters that will enable us to know the impact of the flows.
These parameters will be called “mean impact” (based on the
average values) and “impact variability” (based on the variation
coefficients). To obtain the values of mean impact and impact
variability, we calculate the weighted sum using the initial
variables previously identified. Therefore, the mean impact and
the impact variability are given by the following:

Mean Impact ¼ x �Mean traffic density 1

1 y �Mean vertical density 1

1 z �Mean time distribution1

1w �Mean regulations

(4)

x1 y1 z1w ¼ 1 (5)

Impact Variability ¼ x0 �Traffic density variability 1

1 y0 � Vertical density variability 1

1 z0 �Time distribution variability 1

1w0 � Regulations variability
(6)

x0 1 y0 1 z0 1w0 ¼ 1 (7)

Where x, y, z and w are the relative importance of each of the
initial variables in the calculation of the mean impact. In
equation (6) x0, y0, z0 and w0 are the relative importance of each
of the initial variables in the calculation of the impact
variability. Both mean and variability values remain the same in
the first iteration, but they will independently vary once
machine learning is introduced.
Thereafter, the mean impact and impact variability are

rescaled so that they fall within the preestablished range of one
to five. To rescale the mean impact and the impact variability,
the calculation will be based on the maximum and minimum
values [equation (8)]:

Impactnew ¼ Impactold � Impactmin

Impactmax � Impactmin
� 5� 1ð Þ

� �
1 1 (8)

Once the mean impact and the impact variability are rescaled,
the daily impact of the traffic flow can be ascertained from a
table model using a combination of both. The impact of the
traffic flow variable will be discretised and arranged into five
groups, named one to five, the value of which will indicate the
treatment that each flow requires from ATC. The flows with
low levels of impact will hardly require attention from ATC,
whereas those of Level 5 will require significantlymore.
The impact of the traffic flows will give a snapshot of the

sector, enabling us to easily identify the most important flows
and concentrate on them. That being said, the final goal is to be
able to characterise the sector using a single variable. This
variable is aptly named “complexity”.
From an operational point of view, complexity is a function

of many variables, the most important of which are the number
of flows and their distribution (Comendador et al., 2019).
Adapting this to the methodology being developed, we will
define the complexity of the sector using a table model
(Figure 1) based on the number of flows within the sector on
the day in question and the percentage of those that have an
impact on Level 5. The complexity variable will be discretised
into five classes, ranging from one to five. The lowest level is
one and the highest five.
Once this parameter has been defined, it is now possible to

characterise the airspace volumes. Furthermore, this successive
approximation enables us to observe all the steps of the process.
It is possible to see the level of complexity of the sector and also
the flows that have the greatest impact within it. If necessary,
we can also see themain characteristics of a specific flow.
Interesting initial variables, their relative importance and

table models have been established based on expert opinion,
through meetings and discussions with operational personnel,
along with results from previous projects (SESAR Joint
Undertaking, 2019).
That being said, each sector will have unique characteristics.

To cater to this, the model will be automatically updated with
the help of machine learning. Machine learning will learn from
the data provided once it has performed individual operations
on it. As these modifications are based on machine learning,
they will be uniquely tailored to the specific sector. This will
make the model dynamic and means that it will constantly
change based on the airspace in question.
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Certain learning algorithms enable us to see the relative
importance of input variables when predicting the target
variable in regression problems (Bi and Chung, 2011). The
relative importance of the initial variables will show which of
these are most relevant when calculating the mean impact and
impact variability. The values assigned as per expert opinion
will be updated with those provided by the machine learning
model until convergence is reached. The result will be that, for
each sector, the variables that are genuinely the most important
will stand out in themachine learningmodel.
Furthermore, the table models that enable the values of the

variables’ impact and complexity to be determined can also
benefit from machine learning. In this classification, the relative
importance of the x- and y-axes can also be calculated (Holz and
Loew, 1994). The goal of machine learning here will be different.
By studying the relative importance of the parameters in the
tables, we will attempt to ensure a balance between the different
intermediate and final variables. In this way, we can ensure that
the classification of the levels of impact and levels of complexity is
influenced by all of the respective variables contemplated.
By using machine learning in the overall model, we not only

can tailor the model for each sector but can also update it
continuously. In this paper, we used data from 2019. If,
however, data from other years had been added, then the values
of relative importance would have been different. This model
can be used to view the evolution of the characteristics of air
traffic and to see how the relative importance of the different
variables changes over time.
The overview of the characterisation methodology, starting

from the initial variables and arriving at the complexity of the
sectors, is given in Figure 1.

3. Results

In this section, we see the results of applying the methodology
to a set of initial sectors of Spanish airspace. The data

correspond to operations in five ATC sectors of Spanish
airspace during 2019. The data have been obtained based on
ENAIRE radar traces and have been provided to the authors
after processing and validation by the company CRIDA. The
methodology is divided into three steps. The results of each are
shown in the respective subsections:
1 Calculate the mean impact and impact variability via

statistical analysis of the data: to obtain the values of mean
impact and impact variability, we calculate weighted sums
of the mean values and variation coefficients using the
initial variables identified.

2 Calculate the impact of the flows based on the mean
impact and impact variability: following on from the
previous step and using a table model, we calculate the
“impact” of the traffic flows within a sector during a single
day.

3 Calculate the complexity of the sector: once the impact of
the flows is known and based on the number of flows in
the sector and the percentage of these with an impact of
Level 5, we can calculate the “complexity” of the sector
with the aid of a table model. Achieving a value for this
parameter is the overall aim of the sector characterisation
methodology we have developed.

3.1 Results: relative importance
The first step is to calculate the mean impact and impact
variability. To do this, we start with the initial variables. The
initial relative importance of each of these variables is
determined by expert opinion and shown in Figure 2.
Looking at both graphs in Figure 2, we can clearly see that

the values of relative importance used to calculate the mean
impact and impact variability are the same. The reason for this
is that in both cases, the same four initial variables, i.e. traffic
density, vertical density, time distribution and regulations, are
involved. According to expert opinion, the values of relative

Figure 1 Overview of the characterisation methodology

Machine learning techniques

Francisco Pérez Moreno et al.

Aircraft Engineering and Aerospace Technology

Volume 94 · Number 9 · 2022 · 1537–1545

1540



importance should be the same in both cases, and it should be
up to the machine learning model to establish the differences
going forward.
The model will begin the first iteration using these initial

values of relative importance. Thereafter, a random forest
model will be used to ascertain the new values of relative
importance for each of the initial variables. These values will be
continually updated. This algorithm was chosen due to its
versatility and the results obtained in delay prediction problems
(Rebollo and Balakrishnan, 2014).
Figure 3 shows how the values of the relative importance of

the different initial variables evolve over eight iterations.
Relative importance converges from the sixth iteration

onwards. In the seventh and eighth iterations, the relative
importance of the four initial variables varies by 0.01 or less.
This limit has been considered acceptable, and for this reason,
the relative importance of the sixth iteration is used to calculate
the rest of the variables of the methodology. To validate this
regression machine learning model, the mean absolute error
(MAE) has been used (Georgiou et al., 2020). This parameter
is used in regression models to give an overall picture of the
model. This indicator calculates the difference between the
estimated and actual value for each element of the test set and
then calculates the mean. In the case of the expert opinion-
based model, the MAE is 0.02, while in the eighth machine
learning iteration, the MAE is 0.007. Both values and those of
the rest of the models which are within this interval are correct,
and wewill consider all models to be valid.
As the model progresses, the regulations variable becomes

increasingly important in predicting the mean impact and
impact variability. In fact, when calculating the mean impact,
with the data provided, this initial variable is practically the only
one that is relevant, having final relative importance of more
than 0.9. When calculating the impact variability, the

regulations variable continues to be the most important factor,
with a relative importance of over 0.5, but traffic density is also
important, with a relative importance of over 0.4. In neither
case does time distribution or vertical density appear to be
important.
Relative importance is different from what was expected by

expert opinion. Airspace complexity models are typically based
on expert opinion and will therefore be subject to bias
(Gianazza and Guittet, 2006). Data-driven methodologies are
trying to overcome this limitation by extracting their results
directly from the data provided. This difference in results can
be seen in this evaluation, as machine learning is obtaining
relative importance based on data, which are different from the
relative importance expected from expert opinion.
From an operational point of view, these results seem to be

logical. The existence of regulations in specific airspace is
due to the fact that the ATC service provider does not have
sufficient capacity to handle the demand. For this reason, the
flows in which there are a greater number of regulations will
have a greater impact on the airspace by pushing the system to
the limit of its capacity. The number of aircraft, which may
seem significant, will not really have a great influence on the
service provider if it has sufficient capacity to meet the demand.
However, variability in the number of aircraft is extremely
relevant because an ATC service provider may have more
problems in satisfying a demand that is continuously changing.
The project on which this paper is based is in a preliminary

phase. Thus far, it has been applied to a small number of
sectors of Spanish airspace. Once themodel has been expanded
to handle data from all sectors within Spanish airspace, it may
be necessary to incorporate new initial variables. That being
said, with the initial variables already used, it is clear that the
model is capable of iterating and distinguishing which initial
variables are themost important.

Figure 2 Initial relative importance of the four initial variables using expert opinion

Figure 3 Evolution of the values of relative importance upon incorporating the machine learning model
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3.2 Results: impact
Starting with values for the mean impact and impact variability
and with the help of a table model (Figure 1), we can obtain a
value for the daily impact of each of the flows within the sector.
This calculation is influenced by machine learning and
continually updated by it. By knowing the values of relative
importance, we can ascertain whether the table model is
appropriate or not for the calculation. To be appropriate, the
relative importance of both the mean impacts and the impact
variabilities must be balanced. In other words, one should not
be significantly greater than the other.
Figure 4 gives the table initially proposed and the relative

importance of each intermediate variable.
In this model, the relative importance of the mean impact is

greater than that of the impact variability (0.65 vs 0.35).
Therefore, in this case, the calculation of the impact will be
influenced to a greater extent by the mean impact. To
compensate for this imbalance, another table model is
presented in Figure 5.
In this case, the calculation gives roughly the same relative

importance to themean impact and the impact variability (0.48
vs 0.52). This means that this particular table will be more
appropriate for the data analysed. The table model is updated
from a variety of initial tables, which the machine learning
model will use automatically to obtain the values of relative
importance. Themodel will decide which table best fits the case
in question. This means that the model is dynamic because

different data sets will have different tables that better adapt to
their characteristics.
This time, the accuracy of the model has been calculated to

ensure the quality of themachine learningmodel. The accuracy
is calculated as total accurate prediction divided by total
number, or one minusmisclassification rate (Truong and Choi,
2020). This parameter is used in classification problems, giving
an overall idea of the behaviour of the model. All the machine
learning models used to calculate the impact of the air traffic
flows have an accuracy of over 97.5%, being very precise
models. Themodel used to obtain the results in Figure 4 has an
accuracy of 98.7%, whereas the model used to obtain the
results in Figure 5 has an accuracy of 99.2%.
Once it has been decided which table will be used to calculate

the daily impact of the flows, the methodology can then
calculate the impact of the flows in an air traffic sector. The
impact of the flows will be calculated on a daily basis to enable
ATC to organise its resources, allowing it to allocate more
resources to the flows with greater impact and less to those with
lesser impact. The final result of this step of the sector
characterisation methodology will be an image of the sector in
question and the associated traffic flows along with their
impact. Figure 6 shows a typical day during 2019 in the
LECMPAU control sector.
In the example, the traffic flows in a north-south direction are

clearly visible, these mostly being flights between Madrid-
Barajas airport and northern Europe. There are also traffic
flows that cross LECMPAU in an east-west direction, these
being flights between North America and Barcelona-El Prat
airport. The results obtained correspond to the main traffic
flows expected in LECMPAU on a typical day. Therefore, we
can say that, from an operational point of view, the results are
correct.
With respect to the impact of the flows, there was a lot of

variety on the day in question. As such, it is not possible to draw
further conclusions other than state that the methodology
works and can be applied using real operational data.

3.3 Results: complexity
The last step of the proposed methodology is to calculate the
complexity of the sector based on the air traffic flows
(Figure 1). This is similar to the previous step, in which the
impact of flows is calculated. The machine learning tool that
enables us to obtain the relative importance of the final

Figure 4 Initial table model used to calculate the impact

Figure 5 Final table model used to calculate the impact
Figure 6 Example of traffic flows with their associated impact level
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variables is used again. The aim is that both final variables
should have similar relative importance to ensure that their
influence on the table model is balanced. In each case, the table
model is adjusted to the needs of the data. Figure 7 shows the
initial table used in this case with the associated relative
importance of the final variables.
The initial table model does not fit the nature of the data.

When calculating the complexity, the relative importance of the
number of flows is much greater than that of the percentage of
flows with an impact Level 5 (0.82 vs 0.18). For the calculation
to treat both final variables equally, another table model is
required that results in a similar weighting for both final
variables. This is shown in Figure 8.
This table model achieves a balance between the number of

flows in the sector (0.55) and the percentage of these flows that
have an impact of Level 5 (0.45). The calculation of the
complexity of the sector is now balanced with respect to the real
data. As in each of the previous steps, machine learning has
been used to define a model that adapts to the data and learns
from them. In other words, this model is tailored for each
possible scenario within the airspace.
To validate the machine learning models used to calculate

the complexity of the ATC sectors, accuracy has been used
again. All the machine learning models provide again an
accuracy of over 97.5%. Themodel used to obtain the results in
Figure 7 has an accuracy of 99.3%, whereas the model used to
obtain the results in Figure 8 has an accuracy of 99.0%.

This last step will determine the final complexity of the sectors.
The classification ranges from Level 1, the least complex, to
Level 5, the most complex. Figure 9 shows the results for five
sectors of Spanish airspace on a typical day.
Of the five sectors studied, Castej�on (LECMCJI) is the most

complex, Level 5. Arrival and departure traffic to and from
Madrid-Barajas is concentrated in this sector, so it is very
difficult to control. Santiago (LECMSAN) and central
Barcelona (LECBCCC) are of complexity Level 4. These
are control sectors that have a lot of traffic. Santiago also has
free-route traffic, which increases the difficulty as regards
control. The Balearic Islands (LECBBAS) and Pamplona
(LECMPAU) sectors are less complex. Even so, they are still
above theminimum level of complexity.
The results produced by the model are logical from an

operational point of view. They enable ATC to anticipate the
real complexity of the airspace and optimise its resources
accordingly.

4. Conclusions and further work

By establishing a methodology that uses one day’s worth of
operational data within a sector, it is possible to get an idea of
the complexity of that sector. This will enable ATC to
anticipate the real complexity of the airspace and optimise its
resources accordingly. The methodology is automatic;
therefore, it is simple to apply, and the results are easy to
interpret.
By incorporating the machine learning tool, it is possible to

know the relative importance of the different variables (initial,
intermediate, final) used in each step of the methodology. This
acts as a support to expert opinion and enables the values of
relative importance in these steps to be updated to achieve the
objectives of the step in question. In addition, this machine
learning tool will learn based on the data entered in the model.
This is useful because the results obtained will be different
depending on the scenario in question. Thus, the
characteristics of each volume of airspace are captured with the
help of machine learning.
Specifically, when this methodology is evaluated using data

captured in 2019 from Spanish airspace, the following
conclusions are possible:
� When calculating the mean impact of a flow (Figure 3),

ATFCM regulations are of paramount importance. This

Figure 7 Initial table model used to calculate the complexity

Figure 8 Final table model used to calculate the complexity Figure 9 Classification of the complexity of the sectors
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makes sense. When there is excess demand with respect to
capacity in the sector, this creates complexity for ATC,
and this is when the need for regulations arises. When
calculating the impact variability of a flow (Figure 3),
ATFCM regulations are again very important. In this
case, the traffic density is also important. The same
conclusions as in the calculation of the mean impact can
be drawn.

� The table models for calculating the impact of the flows
(Figure 5) and the complexity of the sectors (Figure 6)
behave differently and will, therefore, need to be balanced
differently by the machine learning model. To automate
these steps, a database with different table models will be
required. The machine learning model will then choose
the most suitable of these for the scenario in question.

� The results obtained when calculating the impact of the
flows (Figure 6) are correct from an operational point of
view. The flows identified in the LECMPAU sector
correspond to the traffic flows actually experienced in the
sector. Furthermore, the impact levels that were
calculated are consistent with real operations on a typical
day.

� The results obtained when calculating the complexity of
the sectors (Figure 9) also appear to be correct. All the
sectors studied have levels of complexity above the
minimum, but these vary according to their intrinsic
characteristics.

Based on the results obtained in the specific case outlined,
it is safe to conclude that the methodology produces
realistic and easily interpretable results. That having been
said, the methodology is in a preliminary phase, and certain
aspects will have to be refined to improve upon it. These
include:
� Apply to more sectors. This will produce a greater variety

of results and will allow more exhaustive testing of the
methodology.

� Review the definition of the four initial variables. It is clear
that, of the four initial variables, “regulations” is by far the
most influential. Although this is entirely logical, it would
be wise to review the choice of initial variables to ensure
that each of them has at least some influence on the overall
results.

� Study the incorporation of other variables when
calculating the complexity of the sectors. The complexity
of a sector is currently defined based on the number of
flows and the percentage of flows of impact Level 5. There
are, however, many other parameters that influence the
complexity of a sector. It would be interesting to see if an
expanded list of parameters could be incorporated within
this table model.

� Add more variety to the table models. This would give a
more exact fit.

The objective of all future steps should be to improve the
model, both by reviewing the current model to see where it
needs to be modified and by incorporating additional
parameters to make it even more complex and realistic. That
being said, the results to date are promising and indicate that
themethodology is worthwhile.
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