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Abstract
Purpose – To discuss subcopula estimation for discrete models.
Design/methodology/approach – The convergence of estimators is considered under the weak
convergence of distribution functions and its equivalent properties known in prior works.
Findings – The domain of the true subcopula associated with discrete random variables is found to be
discrete on the interior of the unit hypercube. The construction of an estimator in which their domains have
the same form as that of the true subcopula is provided, in case, the marginal distributions are binomial.
Originality/value – To the best of our knowledge, this is the first time such an estimator is defined and
proved to be converged to the true subcopula.
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1. Introduction
In the last decade, copulas have been successfully used in many multivariate models
appearing in various fields such as economic, finance, agriculture, hydrology, etc. One of the
reasons is that copula models allow us to investigate the behavior of each random variable
separately before combining their behavior via Sklar’s theorem.

According to Sklar’s theorem, any joint distribution function H with marginals H1, . . .,
Hk can be written as:

H x!ð Þ ¼ C H1 x1ð Þ; . . . ;Hk xkð Þ� �
(1)

for all x!2 Rk where C is a copula. Moreover, the converse is also true – any function H
defined as in equation (1) for some copula C will always be a joint distribution function with
marginals H1, . . ., Hk. As a result, copulas can be seen as functions that link marginal
distribution functions together. (copula means link or connection in Latin). They are
functions that contain dependence structures among random variables. This leads to, for
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example, the requirement that a measure of association should be able to be written in terms
of copulas in order to remove the effect of marginal distributions, which is also known as
scale-free property. This idea has been carried through several measures of association such
as Spearman’s rank correlation coefficient, Hoeffding’s Phi-square, and several measures of
functional dependence (Siburg and Stoimenov, 2010; Dette et al., 2013; Tasena and
Dhompongsa, 2013, 2016; Boonmee and Tasena, 2016). (see also (Tasena, 2020) for a recent
survey.)

At first glance, the above arguments are reasonable. If we were to carefully investigate
equation (1), however, we will see that the values of the copula C that effectH are only those
that lie on

Qk
i¼1 Range Hið Þ. Therefore, any two different copulas that agree on the setQk

i¼1 Range Hið Þ will define the same joint distribution function H. This might not pose a
problem if a copula were only used to define H, but this will not be the case if we need to
extract dependence structure. Consider the problem of defining measure of association
again. If there are more than one copulas that can be used to define the distribution function
H, then which one should be used to compute the association level among random variables.
After all, different choices might lead to different values yielding inconsistent results. This is
referred to as an identification problem: if we need to identify the copula responsible for the
dependence structure among random variables, which one should be used?

In the past, identification is never an issue since copulas are only used in continuous
models. If the joint distribution function H is continuous, so are its associated marginal
distribution functions H1, . . ., Hk. Thus, the range of Hi always contains the open unit
interval 0; 1ð Þ for all i 5 1, . . ., k. Therefore, all copulas associated to H must at least agree
on 0; 1ð Þk. Since any copula is continuous, we can extend this agreement to the unit
hypercube. Therefore, we can conclude that there is only one such copula.

The situation is different when one or more random variables are discrete. Say, for
example, the first marginal H1 is a Bernoulli distribution function. Then Range H1ð Þ is a
three-point set that is rather small comparing to the unit interval. As a result, there are
usually infinitely many copulas that can be used to define the joint distribution function H.
See de Amo et al. (2017) for characterization of such copulas. This situation appears in all
discrete models. We do not suggest that using copula extension is always a bad idea. We
simply state that there is usually no justification for using one particular form of extension
over another. Even if there is, it will only apply to a very specific situation. Also, several
discrete models include the form of marginal distribution functions. Therefore, the form of
the domains of subcopulas is also known as well. For example, if we know that all marginals
are Bernoulli, then the domain must be a product of three-point sets. If all marginals are
Binomial, then the domain must be a product of sets of the form:

0f g [
Xk
i¼0

m
i

� �
pi 1� pð Þm�i j k ¼ 0; . . . ;m

8<
:

9=
;

with the usual parameters p andm. The same applies to Poisson distribution functions, etc.
We should not ignore this information when constructing an estimator, should we?

So instead of focusing on the whole unit hypercube 0; 1½ �k, we suggest focusing only on
the set

Qk
i¼1 Range Hið Þ since this is all the information we can infer for H in equation (1). In

other words, we should simply be focusing on a subcopula obtained by restricting the
copula C on

Qk
i¼1 Range Hið Þ instead of the copula C itself.
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Mathematically, a subcopula is simply a restriction of a copula to a closed set of the form
A ¼ Qk

i¼1 Ai with the condition that 0; 1f gk � A. In the case of equation (1), the subcopula
associated with the joint distribution function H is obtained by restricted the domain of C toQk

i¼1 Range Hið Þ. Since all copulas are continuous, it can be proved that two copulas agree

on
Qk

i¼1 Range Hið Þ if and only if they are agree on
Qk

i¼1 Range Hið Þ. Therefore, the
subcopula associated with a joint distribution function is unique. Thus, the identification
issue is resolved.

It should be mentioned that using subcopulas also brings another complication to model
estimations. As we already know, the true joint distribution function is always unknown
and has to be estimated from the data. Therefore, we will also have to estimate the true
subcopula from data. Since the domain of the true subcopula depended on the marginal
distribution functions, it is also unknown and has to be also estimated. (This situation never
appears in continuous models since the domains of copulas are always known.) Using
plugin estimators will only partially solve the problem. Say, for example, we estimate the
marginal distribution functions Hi with its empirical version Hin. Then we may estimateQk

i¼1 Range Hið Þ with
Qk

i¼1 Range Hinð Þ ¼ Qk
i¼1 Range Hinð Þ. Similarly, we may construct

the empirical subcopula Sn from the empirical distribution function Hn of H. How can we
justify whether Sn is a good estimator of the true subcopula S? Recall that the domain of S isQk

i¼1 Range Hið Þ while the domain of Sn will be
Qk

i¼1 Range Hinð Þ that is clearly varied with
n. So we will have to compare functions with different domains. Something that cannot be
done directly. This is probably one of the reasons why subcopula estimation is harder than
copula estimation.

Recently, little work has been done to resolve this issue. The basic idea is to embed the
set of subcopulas into another set in which the concept of convergence is defined. In other
words, we need to replace a subcopula S with its representation, say, r Sð Þ so that we may
define Sn ! S as r Snð Þ ! r Sð Þ. de Amo et al. (2017) is the first one who worked in this
direction where they represent a subcopula S with its graph so that we have Sn ! S if and
only if their corresponding graphs converge under the Hausdorff distance in this case.

Rachasingho and Tasena (2020), on the other hand, identify a subcopula with the class of
its copula extensions. This provides a relationship between the convergence of subcopulas
and their corresponding copula extensions. In order to resolve the identification problem,
they also suggested that the distribution forms of subcopulas be used instead (Rachasingho
and Tasena, 2018; Tasena, 2021a, b). A nice property of distribution forms is that they do
not change the support of the underlying measures. Hence, they will never affect the
dependence structure contained in the subcopulas.

In the next section, we will summarize the results of these findings. In Section 3, we will
focus on the issue of the domain of subcopulas in discrete models. A discussion will also be
provided at the end of this work.

2. Concepts and terminologies
In this section, we will provide an overview on concepts and terminologies used throughout
this work, focusing on subcopula estimations. First, recall that a copula is simply the
restriction of a distribution functions with uniform marginals on the unit hypercube 0; 1½ �k.
Since the support of such distribution lies in 0; 1½ �k, the copula still contain all essential
information of that distribution function. Hence, it can also be thought of as a distribution
function by abusing the notation. A subcopula is simply a restriction of a copula on the
domain of the form

Qk
i¼1 Ai where 0, 1 [ Ai for all i5 1, . . ., k. Since a copula is continuous,

AJEB
5,2

104



any subcopula with domain
Qk

i¼1 Ai can be uniquely extended to a subcopula with domainQk
i¼1 Ai . Therefore, it is usually required that the domain of a subcopula is closed. It is also

possible for a subcopula to be a restriction of distinct copulas. In other words, copula
extensions of subcopulas are not unique in general. For characterization of such extensions,
see, for example (de Amo et al., 2017).

For convenient, we will define the vector-valued functions H
!

and H
!�

associated with a
joint distribution functionH by letting:

H
!

x1; . . . ; xkð Þ ¼ H1 x1ð Þ; . . . ;Hk xkð Þ� �

and

H
!�

x1; . . . ; xkð Þ ¼ H�
1 x1ð Þ; . . . ;H�

k xkð Þ� �
for all x1; . . . ; xk 2 R where H1, . . ., Hk are marginal distribution functions of H and H�

i is
the quantile function of Hi. With this notation, equation (1), for example, can be written

succinctly asH ¼ C�H
!

where the right side denote the function composition of C and H
!
.

Sklar’s theorem states that any joint distribution function can be written in the form

H ¼ S�H
!

and vise versa where S is a subcopula with domain

Range H
!� �

¼ Qk
i¼1 Range Hið Þ. In fact, S ¼ H�H

!�
on Dom Sð Þ. In this way, the tuple

S;H
!� �

can be thought of as a representation of the distribution functionH that is faithful in

the sense that different pairs of S;H
!� �

will provide different joint distribution functions.

Notice that H
!

only contains the behavior of each random variables. Thus, all information
regarding association among random variables must contain in the subcopula S. Thus, S is
usually considered to be the dependence structure of the joint distribution functionH.

Similar to the true joint distribution function, the true subcopula is unknown and has to
be estimated from data. In order to do that, we need a notion of convergence in the space of
subcopulas, or equivalently, the notion of distance between two subcopulas. Since the
domain of subcopulas varies, we need to consider a representation of subcopulas in a way
that their distance can be computed. In other words, we need to embed the set of subcopulas
into a metric space. Several works have been done in this direction.

First, de Amo et al. (2017) identified a subcopula Swith its graph

G Sð Þ ¼ x!;S x!ð Þ� �
j x!2 Dom Sð Þ

n o
:

They then define the distance j via

j S;Tð Þ ¼ hd1 G Sð Þ;G Tð Þ� �

for any subcopulas S and T where d1 is the Chebyshev distance and hd denotes the
Hausdorff distance between closed subsets in a metric space with d as its distance function.

Hausdorff distance has also been used by Rachasingho and Tasena (2020) to define a
distance between bivariate subcopulas. The idea has been extended to multivariate cases in
Tasena (2021b). Denote the class of copulas extending a subcopula S by S½ �. Rachasingho
and Tasena define:
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h S;Tð Þ ¼ hd1 S½ �; T½ �� �
þ hd1 Dom Sð Þ;Dom Tð Þ� �

for all subcopulas S and T. It is proved that h and j induced the same topology, that is,
convergence in h is the same as convergence in j (Tasena, 2021b, Theorem 3.3,
Theorem 3.6).

Rachasingho and Tasena (2018), Tasena (2021a) also consider another representation of
subcopulas. Recall that in the continuous case, the random variable F Xð Þ is uniform
whenever a random variable X has distribution F. Apply this fact in the multivariate setting

to a random vector X
!

with a continuous joint distribution function H, we can conclude that

the random vector U
!¼ H

!�
X
!

has uniform marginals. In fact, the joint distribution function

of U
!

is the copula associated with H. So we could argue that the joint distribution function

of U
!¼ H

!�
X
!

is the dependence structure of H and continue to do so even in the

noncontinuous case. In this latter case, the joint distribution function of U
!

is actually the
distribution form of the subcopula associated with the joint distribution H. Here, the
distribution form SD of a subcopula S is defined by:

SD x!ð Þ ¼ sup S s!ð Þ j s!# x!; s!2 Dom Sð Þ� 	

for all x!2 0; 1½ �k (Tasena, 2021a). Notice that SD 5 S when S is a copula and S is the
restriction of SD on Dom Sð Þ in general. Therefore, SD can be treated as a (faithful)

representation of S. Since the probability that U
!¼ H

!�
X
!

belongs to the domain of the
subcopula S is one, the extension part of SD does not really contain any information in the
probabilistic sense. Therefore, SD does not change the dependence structure of the joint
distribution function H. The fact that SD is a distribution function also implies that well-
studied modes of convergence for distribution functions can be applied to distribution forms
of subcopulas as well. In fact, the Chebyshev distance for distribution forms of subcopulas
has been studied in Rachasingho and Tasena (2018) while Levy distance, which metrise the
weak convergence, has been studied in Tasena (2021a). The latter has also been proved to
metrically equivalent to j (Tasena, 2021a, p. 8). For subcopulas S andT, their Levy distance
l S;Tð Þ can be written as:

l S;Tð Þ ¼ inf e > 0 j TD u!� e 1
!� �

� e #SD u!ð Þ#TD u!þ e 1
!� �

þ e ; 8 u!2 Rk
n o

:

We summarize the convergence results found in these works again in the following theorem.

Theorem 2.1. Let Sn be a sequence of subcopulas and S be another subcopula with the
same dimension. Then the following statements are equivalent.

(1) The graph of Sn converges to the graph of S under the Hausdorff distance.
(2) The domain of Sn converges to the domain of S under the Hausdorff distance and

the class of copula extensions of Sn converges to the class of copula extensions of
S. The latter is equivalent to the following two conditions:
� if a sequence of copula Cnk extending Snk converges to a copula C as nk ! 1,

then Cmust be a copula extension of S, and
� for any copula C extending S, there must be a sequence of copula Cn extending

Sn such that Cn converges to C.

AJEB
5,2

106



(3) SD
n converges weakly to SD, that is, either one of the following equivalent

conditions hold:

� SD
n u!ð Þ converges weakly to SD u!ð Þ for any continuity point u! of SD,

�
Ð
c dSD

n ! Ð
c dSD for any continuous function c ,

� limsupn!1
Ð
1KdSD

n #
Ð
1KdSD for any closed set K, and

� liminfn!1
Ð
1GdSD

n � Ð
1GdSD for any open set G.

Henceforth, we will denote Sn ! S if a sequence of subcopulas Sn converges to a subcopula
S in the sense of the above theorem.

3. Empirical subcopulas in discrete model
In the previous section, we focus on the convergence of subcopulas that lay a groundwork
for subcopula estimations. In this section, we will discuss empirical subcopulas in discrete
model and show that it is possible to construct an estimator with a specific form of domains
according to themarginal distributions.

First, recall the definition of empirical distribution functions. Let X
!

1; . . . ; X
!

n be an i.i.d.
sample from a k-dimensional distribution function H. Then the empirical distribution Hn

associated to this sample is defined by:

Hn x!ð Þ ¼ 1
n

Xn
i¼1

1
X
!

i # x!
n o

for all x!2 Rk. It is known thatHn is a (random) distribution function with its range being a

subset of 0; 1n ; . . . ; 1
n ok

. Thus, Hn is associated with a (random) subcopula Sn with

Dom Snð Þ ¼ Range H
!

n

� �
� 0; 1n ; . . . ; 1

n ok
defined by Sn ¼ Hn

�H
!�

n . We will called Sn an

empirical subcopula.
ByTasena (2021a, Theorem 4.6), we know that:

l Sn; Sð Þ# 2kþ 1ð Þd1 Hn;Hð Þ

where S is the true subcopula associated with H. Thus, we have Sn ! S since Hn ! H
uniformly.

Next, we will provide some implications of these results in discrete model. Recall that a
random variableX is discrete if it supportD5 DX is a discrete set, that is, d1 x;D xf gð Þ > 0
for all x [ D. It follows that such D must be countable and do not have any limit point. For
example, if X has binomial distribution, then D ¼ 0; 1; . . . ; nf g while if X is Poisson, then
D ¼ N, etc. It follows that the range of its distribution function is also discrete.

Proposition 3.1. Let F be the distribution function of a discrete random variable. Then
Range Fð Þ is a discrete set and Range Fð Þ ¼ Range Fð Þ [ 0; 1f g.

Proof. Let X have distribution F and D be its support. Let u 2 Range Fð Þ, that is, u ¼ F xð Þ
for some x [ D. Denote x� ¼ supD \ �1; xð Þ and xþ ¼ infD \ x;1ð Þ. Since D is discrete
and closed, x�, xþ [ D and x� < x< xþ. Denote u� ¼ F x�ð Þ and uþ ¼ F xþð Þ, then we also
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have u� ¼ P X < xð Þ and u ¼ P X < xþð Þ. Therefore, u�; uþð Þ \ Range Fð Þ ¼ uf g. Since
x [Dwemust have u�= u= u þ that implies d1 u;Range Fð Þ uf g

� �
> 0 as desired.

Next, suppose that un ! u 2 0; 1ð Þ Range Fð Þ. Since Range Fð Þ is discrete, we must have
un 2 0; 1ð Þn Range Fð Þ for all large n. Thus, u cannot be a limit point of Range Fð Þ.
Therefore, Range Fð Þ � Range Fð Þ [ 0; 1f g. Since 0 ¼ limx!�1F xð Þ and 1 ¼ limx!1F xð Þ,
we also have 0; 1 2 Range Fð Þ. Thus, Range Fð Þ ¼ Range Fð Þ [ 0; 1f g.h

As a consequence of the above theorem, the limit points of Dom Sð Þ only lie on the
boundary of 0; 1½ �k. Therefore, d1 u!;Dom Sð Þ u!f g� �

> 0 for all u!2 Dom Sð Þ \ 0; 1ð Þk.
Notice that Dom Sð Þ is finite if its associated random variables all have finite support.

Now, Theorem 2.1 and the fact that Sn ! S implies Dom Snð Þ ! Dom Sð Þ under the
Hausdorff distance. Nevertheless, Dom Snð Þ might be undesirable in semi-parametric model
where the form of marginal distribution functions are known. In such a case, it is also
possible to construct another estimator of subcopulas with the desired domain. We will
provide a demonstration for this point in the case of Binomial distributions. Similar
arguments can be applied to other discrete distributions.

Denote Rm,p the range of the binomial distribution function with parameter m 2 N and
p 2 0; 1ð Þ. Then:

Rm;p ¼ 0f g [
Xk
i¼0

m
i

� �
pi 1� pð Þm�i j k ¼ 0; . . . ;m

8<
:

9=
;:

if we define:

fk pð Þ ¼
Xk
i¼0

m
i

� �
pi 1� pð Þm�i

:

then

f
0
k pð Þ ¼

Xk
i¼0

m
i

� �
ipi�1 1� pð Þm�i � m� ið Þpi 1� pð Þm�i�1

� �

¼
Xk
i¼0

m
i

� �
i 1� pð Þ � m� ið Þp
� �

pi�1 1� pð Þm�i�1

¼
Xk
i¼0

m
i

� �
i �mpð Þpi�1 1� pð Þm�i�1

that implies:

f
0
k pð Þ#mþm

Xk
i¼1

m
i

� �
#m 2m þ 1ð Þ

when k<m. It follows that

fk pð Þ � fk p
0� �
#m 2m þ 1ð Þp� p

0
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for all k<m. Therefore,

hd1 Rm;p;Rm;p0
� �

#m 2m þ 1ð Þp� p
0

also. In particular, Rm;pn ! Rm;p under Hausdorff distance whenever pn ! p. Note that the
numberm 2m þ 1ð Þmight seem rather large but this is only a rough upper bound for fk0 that
is sufficient for the current argument.

Now, assume that the ith marginal distribution of our sample is binomial with parameter
mi 2 N and pi 2 0; 1ð Þ so that Dom Sð Þ ¼ R

m!; p
! ¼ Qk

i¼1 Rmi ;pi . In this case, we might

want to estimated S with subcopula Ŝn with domain of the same form, say,
Dom Ŝn

� �
¼ R

m!; p
!

n

where p
!

n ! p
!

a.s. One construction method is as follows.

(1) Estimate p
!¼ p1; . . . ; pkð Þwith p

!
n ¼ p1n; . . . ; pknð Þwhere pjn ¼ 1

nmj

Pn
i¼1 Xji.

(2) Extend the empirical subcopulas Sn to random copulas Cn. (For characterization of
copula extensions, see (de Amo et al., 2017)).

(3) Set Ŝn to be the restriction of Cn on Rm!; p
!

n

.

Theorem 3.2. The (random) subcopula Ŝn constructed above is (weakly) consistent,
that is, Ŝn ! S a.s.

Proof. It is well-known that p
!

n ! p
!

a.s. Thus, we have Dom Ŝn

� �
! Dom Sð Þ under the

Hausdorff distance. Since Ŝn and Sn share a common copula extension,

l Ŝn; Sn
� �

# khd1 Dom Ŝn

� �
;Dom Snð Þ

� �

by Tasena (2021a, Proposition A.4). Note that the right side converges to zero since
Dom Snð Þ ! Dom Sð Þ also under the Hausdorff distance. Now, the fact that Sn ! S implies
Ŝn ! S as desired.

4. Conclusion and discussion
In this work, we discuss subcopula estimation in discrete models. We summarize the results
discover recently regarding convergences of subcopulas focusing on weak convergences of
distribution functions. It is known that empirical subcopulas weakly converge to the true
subcopula. We also construct another subcopula estimator in the case where the marginal
distributions of random vectors are known. For example, in the case that each random
variable has Binomial distribution. While empirical subcopulas, in this case, might not
correspond to those that have Binomial distributions as their marginals. This new
subcopula estimator does possess such property. We also argue that it is better to use
subcopulas instead of copulas in a discrete model. There are a few works sharing our
opinion, see for example (Faugeras, 2017; Geenens, 2020; Trivedi and Zimmer, 2017). See
also Nikoloulopoulos (2013) for the problem that might arise when using copula to model
discrete data.
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