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Abstract
Purpose – The purpose of this paper is to reduce the artifacts in fast Bayesian reconstruction images
in electrical tomography. This is in particular important with respect to object detection in electrical
tomography applications.
Design/methodology/approach – The authors suggest to apply the Box-Cox transformation in
Bayesian linear minimum mean square error (BMMSE) reconstruction to better accommodate the
non-linear relation between the capacitance matrix and the permittivity distribution. The authors
compare the results of the original algorithm with the modified algorithm and with the ground truth in
both, simulation and experiments.
Findings – The results show a reduction of 50 percent of the mean square error caused by artifacts in
low permittivity regions. Furthermore, the algorithm does not increase the computational complexity
significantly such that the hard real time constraints can still be met. The authors demonstrate that the
algorithm also works with limited observations angles. This allows for object detection in real time,
e.g., in robot collision avoidance.
Originality/value – This paper shows that the extension of BMMSE by applying the Box-Cox
transformation leads to a significant improvement of the quality of the reconstruction image while
hard real time constraints are still met.
Keywords BMMSE, Box-Cox, ECT, OFOA, OSOA, Real time
Paper type Research paper

I. Introduction
Electrical capacitance tomography (ECT) is a well-investigated and well-documented
method to non-invasively determine the permittivity distribution in a pipe and to
provide cross-sectional images of this distribution. The permittivity distribution within
a region of interest (ROI) is reconstructed from measurements of the electrical
capacitances between sets of electrodes, e.g. placed on the outer circumference of a
non-conductive pipe section or on the surface of an object to monitor its surroundings
(e.g. Plaskowski et al., 1995; Isaksen, 1996; and Yang and Peng, 2003).

This procedure leads to a non-linear and ill-posed inverse problem, where the
number of unknowns (i.e. pixel number) typically exceeds the number of independent
measurements (i.e. different pairs of electrodes). The reconstruction methods require
some kind of regularization (e.g. Tikhonov regularization, total variation) in order to
provide a reasonable solution.
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In our research, we aim to use the images obtained with electrical tomography to detect
objects (e.g. Schlegl et al., 2013). We use this in robotic applications, e.g. collision avoidance
for human safety (Figure 1) or in robot graspers. This implies two requirements:

• The algorithms need to work in real time, i.e. we have less than one millisecond in
collision avoidance for data acquisition, reconstruction, decision and execution
(i.e. more than 1,000 frames per second). The signal processing hardware may
comprise comparatively slow low power microcontrollers.

• Artifacts, i.e. ghost images at locations where no object is present, should not
appear in the image.

Low complexity reconstruction is typically achieved with non-iterative algorithms such as
linear backprojection (LBP), offline iteration/online reconstruction (OIOR) or fast Bayesian
methods (Bayesian linear Minimum Mean Square Error (BMMSE)) such as optimal first/
second-order approximation (OFOA, OSOA). Also approaches based on neural networks
as suggested for electrical impedance tomography Adler and Guardo (1994) and Jeon et al.
(2005) and also for capacitance tomography Nooralahiyan et al. (1995) and Zang et al.
(2006) may be suitable for resource limited systems and implemented, e.g. in an FPGA.
Other approaches in the field of electrical impedance tomography using reduced-order
modeling achieve frame rates in the order of 500 frames per second on a quad core
computer (Voutilainen et al., 2012). In this paper, we further investigate the Bayesian
approach as it combines reasonable and predictable reconstruction quality with low
computational effort. While the overall reconstruction performance of fast Bayesian
algorithms such as OSOA can be quite good it was found that artifacts may occur in
regions where the permittivity is low. This is not too surprising as the influence of the
material on the measurements is strongly non-linear, whereas the algorithm is constraint
to linear or quadratic functions of the measurements. Consequently, it appears to be
feasible to perform a non-linear transformation, e.g. the Box-Cox transformation Box and
Cox (1964), of the permittivity and apply fast BMMSE algorithms to the transformed
values to be able to meet the requirements in robotic applications.

The paper is structured as follows. In Section II, we describe the fast Bayesian
approach. In Section III, we present a concept to reduce artifacts of these algorithms by
using the Box-Cox transform and show simulation results. In Section IV, we present
experimental results focusing on object detection with limited observation angle and
we summarize our results in Section V.

Figure 1.
Example application
of Electrical
Capacitance
Tomography for
robot collision
avoidance Schlegl
et al. (2013)
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II. Fast Bayesian reconstruction
The means square error between the reconstruction result and the true spatial permittivity
distribution is given by:

MSE ¼ tr E ê�eð Þ ê�eð ÞT
n on o

¼
XN
i¼1

e2i (1)

where E{.} represents the expectation and ε is a random vector representing the spatial
distribution of the permittivity observed at locations of interest and ê the corresponding
estimator (reconstruction result), tr{.} is the trace of a matrix. However, the reconstruction
result ê is obtained from the measurement data y (with y being a realization of the random
vector Y)[1]:

ê ¼ f yð Þ (2)

which depends on the true spatial permittivity distribution ε and in turn it is a random
vector due to measurement noise and other random deviations. In case of additive noise
this is given by:

Y ¼ g eð ÞþN (3)

where N is the random noise vector, e.g. following a jointly Gaussian distribution.
The function g(.) represents the forward problem and can be calculated, e.g. using finite
element simulations.

In order to find the optimal reconstruction function we have to minimize the expected
value of the mean square error MSE between the reconstruction result obtained by the
function fi and the true permittivity value εi by:

f i;opt ¼ arg min
f i AF

E f i Yð Þ�eið Þ2
n o

¼ arg min
fi AF

E f i g eð ÞþNð Þ�eið Þ2
n o

(4)

where fi,opt is the optimal reconstruction function for the ith reconstruction element out of
the set of allowed reconstruction functions Φ. Please note that the optimization could be
done for each reconstruction element independently. However, the prior distribution for
all reconstruction elements has to be known.

The expected value of the permittivity conditioned on the measurement (posterior
distribution):

êMMSE ¼ E e9y
� �

(5)

is – with no constraints on Φ – a solution of (4) and thus becomes an optimal estimator
to minimize the mean square error.

The posterior probability distribution needed to evaluate (5) can be obtained using
Bayes’ rule (e.g. Kay, 1993):

p e9y
� � ¼ p y9e

� �
p eð Þ

p yð Þ (6)

In order to apply (6) we need the prior distribution of the permittivities. In Watzenig
and Fox (2009) the authors summarize common choices for the prior and describe the
evaluation of (6) by means of Markov Chain Monte Carlo (MCMC) methods. Certain
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variants have been suggested, e.g. in Bardsley (2012) also for linear models. Although
methods like MCMC provide fairly optimal solutions, their computational complexity
makes them less attractive for real time reconstruction on resource constraint hardware.

Consequently, we want to speed up the procedure. One approach is to restrict the
allowed reconstruction functions to simple functions, e.g. linear functions. This leads to
the linear minimum MSE (LMMSE) approach, where we assume that (5) can be
approximated by a linear function of the measurement vector:

êMMSE ¼ WyþB� E e9y
� �

(7)

It can be shown that the optimal solution is obtained with:

W ¼ CeYC
�1
YY (8)

and:

B ¼ e�Wy (9)

where CεY is the cross-covariance matrix between the measurements and the permittivities
and CYY is the auto-covariance matrix of the measurements. The expected value of
the permittivity according to the prior probability is denoted by e and correspondingly the
expected value of the measurements by y.

This means that all we need to know about the prior distributions are the first two
moments of the joint distributions, it is not necessary that the distributions are
Gaussian. The first two moments can be found using the sampling technique suggested
in Zangl et al. (2007), which falls into the category of sample based priors according to
Watzenig and Fox (2009). By means of Monte Carlo sampling, samples are drawn from
the prior distribution and the covariances matrices are calculated based on a large
number of samples. As this is only needed to determine the coefficients of the linear
model, a large number of samples can be generated. In Zangl et al. (2007) a slightly
different notation is used but the result is equivalent to (8) and (9). The approximate
optimality (approximate as it is based on random sampling) in the least squares sense
is also proven in Zangl et al. (2007), therefore we use the term optimal first order
approximation (OFOA). When we replace the measurement vector y by an extended
measurement vector ~y that includes the squared measurement values (we thus virtually
double the number of measurements):

~y ¼ y1; :::; yn; y
2
1; :::; y

2
n

� �T
(10)

and replace CεY and CYY by Ce ~Y and C ~Y ~Y accordingly, we obtain what we call optimal
second order approximation (OSOA). Therefore, these algorithms are specific/extended
implementations of a Bayesian linear minimum mean square estimator meeting real
time constraints. Figure 2 illustrates the assumed prior probability distribution of the
permittivity by means of a sample, the expected value and the covariance between a
selected reconstruction element and all other reconstruction elements. We found that
the choice of the prior distribution is not too critical with respect to the performance of
the algorithm.
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Figure 2.
(a) Illustration of a
sample drawn from
the prior probability
distribution of the

permittivity
distribution e.

Between one to three
rods (here: 3) with

random, homogeneous
permittivity are

randomly placed and
mapped onto a

simulation model
(here: 2D Finite
Element Model);

(b) distribution of the
average permittivity
as obtained with the
described sampling

strategy. The
expected value for the
corresponding prior
distribution is fairly

homogenous over the
entire region of

interest. (c) Illustration
of the obtained

covariance of the
permittivities as

obtained with the
described prior

distribution
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III. Artifacts and artifact reduction
An example for a reconstruction result for an actual measurement in a traditional ECT
configuration is shown in Figure 3. Although the reconstruction is very fast as it requires
only a matrix-vector multiplication and thus fulfills the one millisecond requirement, the
quality of the reconstruction compares well with other approaches (Zangl et al., 2007).

However, in the given example we observe a ghost image in the upper right part of
the region of interest, which can lead to an incorrect object location.

In case that we apply a hypothesis test to detect an object with the hypotheses:

H 0 : Object is present

H 1 : No object is present:
(11)

which corresponds to:

H 0 : ei ¼ 1 8iAR

H 1 : (iAR9ei41 (12)

where R represents the set of indices of elements within the region of interest, we might
detect an object in the upper right part that is actually not present. Consequently,
applying the Neyman-Person theorem to maximize the detection rate at a given false
alarm rate will lead to a rather high threshold and small objects or objects with low
permittivity will not be detectable.

As already mentioned the overall reconstruction performance of fast constrained
BMMSE can be quite good. However, this comes with the drawback that artifacts may
occur in regions with low permittivity due to the strongly non-linear influence of the
material on the measurements.

In order to reduce the artifacts, we apply the Box-Cox transform Box and Cox (1964)
given by:

e lð Þ
i ¼

eli �1
l la0

log ei l¼ 0

(
(13)

on our permittivity data that we obtain by means of Monte-Carlo sampling from the
prior distribution. The parameter is λ is the transformation parameter and allows

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

Figure 3.
Comparison of true
distribution and
reconstruction
results using OSOA
Zangl et al. (2007).
The reconstruction
time is below 200 μs
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realizing different non-linear mappings. Negative values of λ lead to an inverse
proportionality whereas positive values to a direct proportionality. Based on our
transformed samples we use a grid search approach to find the optimal value for λ by
minimizing:

l ¼ arg min
~lAℜ

E WYþB�e
~l

n o� �
(14)

where el means that the Box-Cox transform is applied to every element of the vector ε
as given in (13). We obtained an optimal value of λ¼ 0.7 for a setup and a prior
distribution as described above.

Figure 4 shows the benefit of the Box-Cox transform based on simulated data. With
the transform the mean square error in regions where no object is present is significantly
reduced by about 50 percent. Consequently, the hypothesis test according to (12) achieves
a significantly better separation using a lower threshold for the permittivity value and
thus allows to detect smaller objects or objects with lower permittivity.

IV. Experimental setup and experimental results
In the previous examples we showed configuration according to the classical ECT setup,
because it allows to compare the proposed algorithm with well investigated state of the
art methods. However, in this section we want to demonstrate that the algorithm also
works with limited observation angles and can be applied to object detection problems.

Figure 5 shows a photograph of our experimental setup and an example object. As
object a stick with a diameter of ds¼ 20 mm made of Ertalon with a relative permittivity
of εr,ertalon¼ 3.9 is used for the experiment. The sensor front end consists of seven
electrodes on a planar surface that are connected to an evaluation circuitry by means of
coaxial cables. The circuitry generates an AC excitation signals and applies it in sequence
to the seven electrodes. The receiver electrodes use low impedance measurement and
thus measure the displacement current using I/Q demodulation. The frequency of the
excitation signal can be adjusted and was set to 1 MHz in the given example.

Figure 6 shows a sample as obtained during determination of the first two moments
of the prior distributions. In this case we use a 3D forward model and calculate g using
a commercial solver (COMSOL).

Figure 7 shows the reconstruction result for measurements obtained with the
geometry shown in Figure 5. The region of interest is the cross section above the sensor
and here we use 101× 101 reconstruction elements over 160 mm× 50 mm. As long as
objects are not too far from the electrodes, the obtained results are comparable to
results for classical ECT.

V. Conclusion
We demonstrate that with the optimal choice of the Box-Cox transformation a
reduction of the mean square error in low permittivity regions and thus the artifacts of
approximately 50 percent can be achieved while the total mean square error is also
reduced. The computational cost of the transformation is only linear in the number of
reconstruction elements and number of measurements such that the overall computation
time still remains low enough for use in real-time applications. As object detection may
directly work on transformed permittivity values, the non-linear Box-Cox transform may
not be needed in the real-time reconstruction but only in finding the reconstruction
algorithm. We demonstrate that the algorithm even allows to reconstruct images with
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Figure. 4.
(a) Original
distribution;
(b) reconstruction
result using OSOA;
(c) reconstruction
result using Box-Cox
transform. The mean
square error in
regions where no
object is present is
reduced by about
50 percent
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Measurement hardware

Electrodes Stick

Notes: In contrast to classical ECT, the electrode array does not

enclose the region of interest but is instead mounted on a surface.

Thus, we obtain only measurements from a quite limited observation

angle. Consequently, with increasing distance from the electrodes, the

accuracy of the reconstruction decreases Schlegl et al. (2013)

Figure 5.
Setup of the ECT
system for object

detection
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Figure 6.
Finite element model
of a sample from the
prior distribution for

the measurement
setup according to
Figure 5. Here, we

use a full 3D
forward model to
consider leakage
effects Zangl and

Neumayer (2009) but
we reconstruct the

cross section as
a 2D image
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electrode arrays that do not enclose the region of interest and thus only allow a very
limited observation angle. This is in particular useful for object detection, e.g. in robot
collision avoidance.

Note
1. Please note that we use ε and ê for both, random vector and realization of true and

estimated permittivity distributions in order to avoid confusion by using additional
symbols for the permittivity.
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