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Abstract

Purpose — The paper proposes an efficient and insightful approach for solving neutral delay differential
equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to use a very small time
step when high frequencies are present. High-frequency signals abound in communication circuits when
modulated signals are involved.

Design/methodology/approach — The method involves an asymptotic expansion of the solution and
each term in the expansion can be determined either from NDDE without oscillatory inputs or recursive
equations. Such an approach leads to an efficient algorithm with a performance that improves as the input
frequency increases.

Findings — An example shall indicate the salient features of the method. Its improved performance shall be
shown when the input frequency increases. The example is chosen as it is similar to that in literature
concerned with partial element equivalent circuit (PEEC) circuits (Bellen et al., 1999). Its structure shall also be
shown to enable insights into the behaviour of the system governed by the differential equation.

Originality/value — The method is novel in its application to NDDE as arises in engineering applications
such as those involving PEEC circuits. In addition, the focus of the method is on a technique suitable for high-
frequency signals.

Keywords Numerical analysis, Circuit analysis

Paper type Research paper

1. Introduction
The paper addresses the simulation of neutral delay differential equations (NDDE) subject to
a high-frequency input, as addressed in Ait el bhira et @l (2022). NDDE are important in
many engineering applications, for example, partial element equivalent circuit (PEEC)
circuits in electromagnetic compatibility analysis (Ferranti ef al, 2011, 2017), coupled
oscillatory systems with non-instant connections (Kyrychko and Hogan, 2010), control
problems (Gentile et al., 2023), neutral delayed neural networks (Chao-Jung Cheng et al., 2006),
population growth models (Hui and Jibin, 2001), circuit analysis (Liao, 2016) and many more.
High-frequency inputs arise, for example, in modulated signals and high-frequency noise.
Several methods exist for the numerical solution of NNDE. Bellen et al. (1999) examine
the use of continuous Runge-Kutta methods with linear interpolation. They give a theorem
stating that a Runge-Kutta method of uniform global error p used in conjunction with a
direct-evaluation scheme has a uniform global order p. They also indicate that the Lobatto
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[II-C method with linear interpolation is suitable and give conditions concerning its stability.
Wang et al. (2009) show that Runge-Kutta methods based on the backward Euler method
and used in conjunction with linear interpolation are contractive and asymptotically stable.
Maleki and Davari (2021) present adaptive collocation methods and examine the
convergence properties of the method. Recently, Mohammad and Trounev (2022) proposed
the use of Euler wavelets for numerical solution of NNDEs. The authors of Ferranti et al.
(2017) use stochastic collocation to assess parameter variability in PEEC circuits.

The focus of this contribution is on a method appropriate when high-frequency signals
are present. High-frequency inputs necessitate the use of very small time steps in traditional
solvers, and hence, the solution of such equations is computationally expensive. To address
this, the paper shall first describe the proposed numerical method that involves an
asymptotic expansion. An asymptotic expansion was used for ordinary delay differential
equations (not NDDE) in the work by the authors of Condon et al. (2012). The paper shall
consider NDDE and then examine the stability of the method. The value of the proposed
method is that its accuracy increases with increasing input frequency. This is important in
modern engineering applications where frequencies of operation are ever increasing, for
example, Gad et al. (2022) and Achar (2011). The method also structures the solution such
that important aspects and properties of the system considered can be readily observed.

2. Asymptotic analysis
When equations governing, for example, PEEC circuits are written taking into account
retarded mutual coupling and inclusive of non-linear lumped elements, the form is as follows:

0=rF(x@),2@),x(t —7),2t—17) +tu(wt), 0=t=T, 2.1)
with the initial condition:
x(t) = ¢(t), —7=t<0.

(x(t), u(w, t)) : R — R",  >> 1. In general, fis a non-linear function. However, in many
applications, the nonlinearity is weak, and this shall be assumed in the present work. As in
works such as Liu et al. (2017), small signal analysis is the primary concern, and as such a
linear approximation about an equilibrium point is deemed sufficient. In addition, to make it
easier to link this work to that by Ait el bhira et al (2022) and Condon et al. (2012), the
linearised equation shall be written as:

Y(O) = As) 4+ Bt — )+ Xt -1+ > apf)e™, 0=t=T, @2

m=—00

where A, Band Care n x n constant matrices. 7" is the time of simulation or time range of interest.
Let:

x(t) = polt) + Z%@(w, ), o>>1,
r=1

O, (1, w) = Z by () r>1.
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COMPEL Henceforth, the summation for 7 shall be from —oo to oo unless otherwise indicated.

43.1 The analysis proceeds by substituting the expansion for x(¢) into equation (2.2):
)

0 (0) + Y imby i 3L [t S e sthee]
m r=1 m m
M+3- 25 by,mmem}

Po(f - T) + ZJZ br,m(t - T)elw(;m_mq—)]
r=1 m

16 4

+B

+C

r=1 m

+ Zam(t)ei“'mt.

m

oo
1 . (w(mi—
+ZIJZ imby1 (1 — 7)€ mt—m1)
r= m

. . =1 / .
Po’(f _ T) + ; IMblym(l‘ _ T)elw(mz‘—mr) + Z JZ br,m (t _ T)elw(mtfmr)

(2.4)

Two kinds of scales are identified, powers of w and frequency terms of the form e'“” for
distinct . Firstly, the powers of w are separated and then the frequencies. This results in
delay differential equations and recursive relations for each magnitude scale r. The » = 0

layer corresponds to the case ﬁ Note that when bl,m(t)ei“”m

two terms. In one of these, b1 ,,,(f)im we!
7 =10 layer.
Consider 7 = 0. One collects the O(1) terms in w:

b0+ imby (D)™ = Apo(t) + Bpo(t — 7) + Cpy (¢ — 7)

+CY " imby u(t — r)elelmt=mn
m

+ Z ap(t)eiont,
Next one separates frequencies.
Form =0:
Do/ (t) = Apo(t) + Bpo(t — 1) + Cpo’ (£ — 7) + ao (1),
po(t) = ¢(8), tel-70).
Form # 0:
bl,m(t) = Cl;.n (t) + Cbl‘m(t — T)eiimm—.
im

Now proceed to the » = 1 layer:

is differentiated, the result has
, the w cancels with the . resulting in a term in the

(2.6)

2.7)
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s |:Z bLml(t _ T)eiwmte—ima)r + Z imbzm(t _ T)eiwmte—imwr )
m m

Form =0:

1o’ () = Ab1o(t) + Bbio(t — 7) + Chi g/ (t — 1),
blﬁo(t) = 0, te [—’T, 0),
b10(0) = —Z b15(0).

s#£0
Form # 0:

1 . , » ,
b2,m(t) = % {Ablm(t) + Bbl,m(t - T)eﬂ;an + Cblm (t - T)e et — bl.m (t)}

+ Chyp(t — 7)™, (2.10)
Proceeding on to the next layer:
boo' (t) = Abao(t) + Bbao(t — 7) + Cbog (¢t — 1),
boo(t) =0, te[-10),
b20(0) = —Z b2.5(0).

s#0

@11)

For the th layer:
Z br,m/(t)eiwm[ + Z iMb,;+1Jn(l‘)eia””t
m m
= AZ br,m(t)eiwmt
i . (2.12)
+BZ br,m(t _ T)em(mtfmﬂ
m

LC {Z by,m/(f B T)eim(mtfmn-) + Z b,y (t — T)eiw(mt—m )|
m m

The general expressions for the equations for b,.,,(f) are as follows:
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br.Ol(t) = Abr,O(t) + Bbr,O(t - T) + Cbr,()/(t - T):
br,O(t) = 07 le [_7'7 0)7

©13)
br,O(O) = 72 brs(o)
s#0
br+l,m(t) = % {Abrm(t) + Bbr,m(t - T)e_im“” - br,m/(t)
©.14)

+ Cbr,m/(t - T)e—imwr
+1mChy syt — De7 T} m £ 0.

It is important to note that there is no high-frequency input in the NDDE for each
layer 7.

3. Stability

Each 7 level involves a delay differential equation and recursive relations. Note that the form
of the delay differential equation in each layer is identical. The stability of the complete
numerical method is governed by the stability of each 7. Following Liu ef al (2019) and Wei
et al. (2008), the delay differential equation (2.2) shall be asymptotically stable if the roots of
the characteristic equation have negative real parts and marginally stable if the roots have a
zero real part. The characteristic equation is:

det(Al — A — Be ™™ — CAe ") = 0. 3.1

The delay differential equation for the 7th layer, equation (2.13), is of the same form and so
the same conditions for stability apply.

Now, consider equation (2.7). If ,,(?) is bounded, the recursive equation for b ,,,(t) shall be
stable if the absolute value of the roots of det(Al — Ce™""“") are less than 1. It follows then
that b1 ,,(#) shall be bounded. Now, by ,,,() = 0 for ¢ < 0. So if @,,(f) = 0 at ¢ = 0, then by ,,(t)
shall be continuous at ¢ = 0. However, if a,,() or higher-order derivatives of a,,(f) are
discontinuous at ¢ = 0, the same derivatives of 0, ,,(f) shall be discontinuous at # = 0. The
first derivative of by,,(f{ — 7) will have a jump at 7 unless b1,,(/) is at least ¢! at 0. This
impacts the recursive equation for bs,,(#), equation (2.10). The behaviour of bs,,(f) at { = 7
depends on the behaviour of by,,(#). In particular, b,,,(7) depends on the degree of
smoothness of by ,,,(?) at ¢ = 0. Note also that the equation shall again be stable if the absolute
value of the roots of def(Al — Ce™""“") are less than 1.

A similar analysis continues for 7 > 2.

4. Example
The example that is considered, similar to that in Bellen et al (1999) where it is
representative of a small-scale PEEC circuit, is as follows:

K(t) = Ax(t) + Bx(t — 1) + O (t — 1) + u(w, 1), 4.1)



-6 1 3
A=13 -8 0
1 3 -6
1 0 -3
B=]-025 —-025 -1
-025 -1.0 O
-1 5 1
C= L 10 0 2
~ 100
-2 10 5

x(t) = [sin(t), sin(2¢),sin(3)],
T=1

te[-10).

The input is:
u(w,t) = [sin(¢)sin(wt),0,0].

The first step is to determine a reference model. A finite difference solution is obtained with
a very small time step when there is no oscillatory input to form a reference model for the
case when there is no oscillatory input. The finite difference method that is used is as
follows:

dy(t) _ y(t) —y(t —h) ’ 4.2)

dt h

The equation is then solved with a larger time step and the root mean square error is
computed as follows:

N

(yrefi - yi)z
D A

N, is the number of samples in the timespan of the simulation. ¥,,ris the reference model and
y1is the result with the larger time step.

The larger time step is accepted if the error is at an acceptable level. This is the required
step length for delay differential equations at each level » that have no input. A reference
solution is then determined for each value of w. Using the same larger time step as selected
earlier, the finite difference method with the oscillatory input and the asymptotic model with
7 = 2 stages are implemented and the error is computed. Table 1 shows the error associated
with the finite difference method. Table 1 also shows the error associated with the
asymptotic method. It can be observed that the error initially falls with increasing w.
However, the error then stagnates. The reason for this is that the significant error arises
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Table 1.

A comparison of the
root mean square
errors in the various
methods

from the time step chosen for the determination of po(?). If the error associated with the po(t) is
removed by using the accurate po(t) term, the increase in accuracy of the asymptotic method
with frequency is clearly more evident as seen in the third column in Table 1. In addition,
note that the error reduces as O(!~?) as expected with 7 = 2 terms [see equation (2.3)] when
there is no error in the numerical method for the delay differential equations in each layer 7.
In general, the po(t) could be pre-computed, as this does not change with a change in input
frequency. For this example, the time of simulation is 10's, the reference time step is 5 x 10~ ’s
and the time step used for the two methods is 1 x 10~s. Note, any method suitable for
solving NDDE could be used for the differential equations in each layer in the asymptotic
method, as there is no high-frequency input for these equations. The important point is that
the accuracy of the proposed method increases with increasing frequency without needing a
corresponding reduction in the time step size when the frequency of the input increases.

From a stability viewpoint, some of the right-most zeros of the determinant in equation (3.1)
are —0.6918 * 2.18881,—1.9632 + 4.8762i, —1.3853 and —2.0247. As these have negative real
parts, they indicate that the equation is asymptotically stable.

Stability can also be investigated using the method presented in Wei et al. (2008).
Consider:

d(z) = det {1 - c%lj =det[(1 —i2)] — C(1 +i2)]. (4.4)

Let fiz) and g(z) be the real and imaginary parts of d(z).
Consider:

D(y,2) = det[(y] — A)(1 — i) — yC(1 +iz) — B(1 + i2)]. (4.5)

Let F(y, z) and G(y, z) be the real and imaginary parts of D(y, z).

Then if £(z) and g(z) (equation 4.4) have no common real roots, if ReAl( — O YA +B)] < 0
and if (y, z) and G(y, 2) in equation (4.5) have no common real roots (¥,2),z € R,y € R — {0},
the differential equation (2.2) is delay-independent stable [Theorem 2 (Wei et al., 2008)].

For the given system, all three of these conditions hold true confirming the stability of the
equation for each level 7.

The magnitudes of the eigenvalues of C are 0.0195, 0.0781 and 0.0986, again indicating
that the difference equation (2.7) is asymptotically stable once a,,(f) is bounded. a,,(0) = 0,
and so b1,,(t) are continuous at ¢t = 0. However, by,,'(f) are discontinuous at ¢ = 0. This
results in discontinuous b2,,(#), see equation (2.10). Figures 1 and 2 show a plot of |51 1(?)| and
|021(®)] to illustrate this.

A second feature of the method is the structure of the solution. In the proposed method,
the solution with a constant input corresponds to the py(f) term. Figure 3 shows a plot of the

1) Finite difference method Asymptotic model Asymptotic model with accurate po(7)
20 262 %107 0.0025 0.0025

100 295x107* 154 x 107 200x107°

200 298 x 107 153 x 107 272 %107

400 3.02x 107 153 x 1074 393 x 1077

Source: Author’s own work
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Dol term, and its oscillation frequency gives an indication of the dominant natural
frequencies of the system. For example, an estimate of the dominant frequency is 2.2. This is
in line with the frequency of the right-most zero, which is a complex number
—0.6918 = 2.1888i. As regards p,,(t), 7 > 0, these account for the input oscillation terms.
These lie on the po(f) envelope. As the frequency increases, the number of # layers required
for a particular level of accuracy reduces. Hence, the number of » layers can be selected
based on the accuracy and efficiency requirements.
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Figure 3.

A plot of po(t)
showing its variation
with time

time s
Source: Author’s own work

5. Conclusion

The paper addresses the simulation of NDDE subject to a high-frequency input. An
asymptotic method is presented and its stability has been studied. An example is given to
illustrate the salient features of the method. For a fixed level of computation, its accuracy
increases with increasing frequency. The differential equations in each layer no longer have
a time step governed by a high-frequency input. Furthermore, the structure of the
asymptotic expansion is such that its form gives insights into the intrinsic behaviour of the
system and the response of the system to high-frequency inputs. Possible future work
includes extension to non-linear equations and exploration of the effect of the strength of the
nonlinearity on accuracy, efficiency and its impact on stability.
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