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Abstract
Purpose – This study aims to examine the role of an overall model fit assessment in the context of partial
least squares path modeling (PLS-PM). In doing so, it will explain when it is important to assess the overall
model fit and provides ways of assessing the fit of composite models. Moreover, it will resolve major concerns
about model fit assessment that have been raised in the literature on PLS-PM.
Design/methodology/approach – This paper explains when and how to assess the fit of PLS path
models. Furthermore, it discusses the concerns raised in the PLS-PM literature about the overall model fit
assessment and provides concise guidelines on assessing the overall fit of composite models.
Findings – This study explains that the model fit assessment is as important for composite models as it is
for common factor models. To assess the overall fit of composite models, researchers can use a statistical test
and several fit indices known through structural equationmodeling (SEM) with latent variables.
Research limitations/implications – Researchers who use PLS-PM to assess composite models that
aim to understand the mechanism of an underlying population and draw statistical inferences should take the
concept of the overall model fit seriously.
Practical implications – To facilitate the overall fit assessment of composite models, this study presents
a two-step procedure adopted from the literature on SEMwith latent variables.
Originality/value – This paper clarifies that the necessity to assess model fit is not a question of which
estimator will be used (PLS-PM, maximum likelihood, etc). but of the purpose of statistical modeling. Whereas,
themodel fit assessment is paramount in explanatorymodeling, it is not imperative in predictivemodeling.
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1. Introduction
Over the past decade, composite models have drawn increasing interest in the context of
structural equation modeling (SEM). The composite model is regarded as a viable
alternative to the common factor model as a means to operationalize and relate abstract
concepts from marketing and other disciplines (Sarstedt et al., 2016; Henseler, 2021).
Different from the common factor model, the composite model expresses abstract concepts
by emergent variables, i.e. composites of observed variables, instead of latent variables [1].
To interrelate emergent variables, two different models have been suggested. First, a model
where emergent variables freely correlate (Schuberth et al., 2018). Second, a model where
emergent variables are embedded in a structural model (Dijkstra, 2017).

Arguably, the most widespread estimator for composite models is partial least squares
path modeling (PLS-PM; Wold, 1982). Its statistical properties are well studied (Dijkstra,
1985), and its use is appreciated by researchers across various fields, including marketing
(Hair et al., 2012). PLS-PM can be used for various types of research (Henseler, 2018), and
various enhancements have been developed over the past decade (Khan et al., 2019).
Moreover, PLS-PM has been implemented in various statistical software packages,
including commercial software such as ADANCO (Henseler and Dijkstra, 2017) or
SmartPLS (Ringle et al., 2015) and open-source packages such as cSEM (Rademaker and
Schuberth, 2020).

In SEM with latent variables, the overall model fit assessment is considered to be a
crucial step (Kline, 2015). This assessment investigates whether the specified model is
consistent with the data collected by exploiting constraints imposed on the observed
variables’ model-implied variance–covariance matrix, in line with the maxim that, “[i]f a
model is consistent with reality, then the data should be consistent with the model” (Bollen,
1989, p. 68). The overall model fit can be assessed in two nonexclusive ways, namely, tests
for the overall model fit and fit indices (Schermelleh-Engel et al., 2003). While the former are
based on statistical inference, the latter are usually descriptive and quantify the misfit on a
continuous scale.

Currently, the literature on PLS-PM takes divergent stands on the overall fit assessment.
While proponents mainly follow the reasoning known from SEM with latent variables
(Henseler et al., 2016; Henseler, 2017; Benitez et al., 2020), critics, dating back to Lohmöller
(1989), have raised several concerns about the model fit assessment, which circle around the
following six arguments:

� PLS-PM is focused on estimating causal–predictive relationships (Hair et al., 2020).
� Assessing the model fit by means of a distance function is not useful in the context

of PLS-PM (Hair et al., 2017, 2019a).
� Fit indices based on the common factor model are not appropriate to assess a model

estimated by PLS-PM (Lohmöller, 1989, p. 54).
� Thresholds for fit indices have not been proposed for composite models (Hair et al., 2019b).
� It is unclear whether the fit should be assessed based on the estimated model or on a

model with a saturated structural model (Hair et al., 2019b).
� Small misspecifications are not reliably detected by the bootstrap-based test for the

overall model fit (Hair et al., 2020).

Apparently, it is not clear when the overall fit of composite models needs to be assessed, and
if so, how it should be assessed, thereby giving rise to confusion.

In light of this situation, our paper contributes to the PLS-PM literature in five ways. First, we
clarify in which research situations the overall fit assessment of composite models estimated by
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PLS-PM is paramount. Second, we provide an overview of the available means of assessing the
overall fit of composite models estimated by PLS-PM, i.e. a bootstrap-based test and various fit
indices. Third, we address the concerns about model fit assessment raised in the PLS-PM
literature. Fourth, by means of a Monte Carlo simulation, we demonstrate the finite-sample
behavior of the bootstrap-based test for the overall model fit in combination with various fit
measures and show that it is able to detect misspecified composite models. Fifth, we provide
concise guidelines on how to assess the overall fit of composite models. Overall, we answer the
questions of when and how to assess the fit of composite models estimated by PLS-PM and show
that the raised concerns aremainly unfounded.

2. A formal definition of the composite model
The composite model is a model that is consistently estimated by PLS-PM (Dijkstra,
2017) [2]. It comprises several emergent variables, and each emergent variable h j is
completely determined by a unique block of Kj observed variables, h j ¼ w>

j xj, where the
vector wj contains the weights of block j and the vector xj contains the Kj observed
variables of block j. It is assumed that all observed variables are standardized and that
each observed variable is connected to only one emergent variable.

In the composite model studied in the context of confirmatory composite analysis (CCA;
Schuberth et al., 2018; Henseler and Schuberth, 2020, Hubona et al., 2021), the emergent
variables are typically allowed to freely correlate [3]. Hence, the emergent variables’
variance–covariance matrix U is unconstrained. The model-implied variance–covariance
matrix of the observed variables R(h), where the vector h comprises the model parameters,
can be expressed as a partitioned matrix:

R hð Þ ¼

R11 R12 . . . R1J

R22 . . . R2J

. .
. ..

.

RJJ

0
BBBB@

1
CCCCA: (1)

The variances and covariances of the observed variables of block j are captured in the intra-
block variance–covariance matrix Rjj. Typically, all observed variables of one block freely
correlate. The covariances between the observed variables of blocks j and l are captured in
the inter-block covariance matrix Rjl, with j = l. In contrast to the intra-block variance–
covariance matrices, the inter-block covariance matrices contain constraints, namely, that
the emergent variables carry all information between the blocks of observed variables:

Rjl ¼ f jlRjjwjw>
l Rll ¼ f jlkjk

>
l ; (2)

where the scalar f jl equals the covariance between the emergent variables h j and h l. The
covariances between the emergent variable h j and its respective observed variables xj are
captured in the vector kj=Rjjwj. The latter are often labeled composite loadings.

Additionally, the emergent variables g can be embedded in a structural model (Dijkstra,
2017). Therefore, we distinguish between exogenous emergent variables (gexo) and
endogenous emergent variables (gendo). The former contains emergent variables that are not
explained by other emergent variables in the structural model. Equation (3) provides a
formal representation of a linear structural model containing emergent variables:
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gendo ¼ Cgexo þ Bgendo þ f (3)

The matrices C and B capture the respective coefficients of the exogenous and endogenous
emergent variables. The error terms of each structural equation are captured in the vector f
and are assumed to have a mean of zero. For simplicity, it is assumed that they are mutually
uncorrelated and uncorrelated with the exogenous emergent variables gexo. Consequently,
the variance–covariance matrix of the emergent variablesU has the following structure:

U ¼ cov gexoð Þ cov gexoð Þ I � Bð Þ�1
C

� �>
I � Bð Þ�1

Ccov gexoð Þ I � Bð Þ�1
C

� �>
þ I � Bð Þ�1

cov fð Þ I � Bð Þ�1
� �>

0
B@

1
CA
(4)

The identity matrix I is of the same dimension as the coefficient matrix B, and it is assumed
that I�B is nonsingular.

The calculation of the model-implied variance–covariance matrix of the observed
variables R(h), where the emergent variables are embedded in a structural model, is similar
to that in the case in which the emergent variables are allowed to freely correlate, i.e. the
variance–covariance structure has the same form as shown in Equation (1). However,
the covariance f jl between the emergent variables h j and h l needs to be replaced by the
corresponding element of the variance–covariance matrix of the emergent variables as
implied by the structural model shown in Equation (4).

3.When to assess the overall fit of composite models
The type of research question (Leek and Peng, 2015; Henseler, 2018), and thus the purpose of
the research, determines the type of statistical modeling. In general, two types of statistical
modeling, which appear under various names, are differentiated (Hand, 2019), namely,
explanatory and predictive modeling (Shmueli, 2010). Both types of modeling are concerned
with the analysis of data. However, they differ in their purpose and treat data differently.

The purpose of predictive modeling is to provide accurate predictions. The statistical
model is used to generate these predictions (Shmueli, 2010). The data at hand are typically
split, and one part of the data is used to train the model, while the other part is used to
validate the model. Often, the statistical model is treated as a black box (Breiman, 2001),
harking back to the remark that, “[i]f a model is created to make this prediction, it should not
be constrained by the requirement of interpretability” (Kuhn and Johnson, 2013, p. 4).
Consequently, a predictive model does not need to be based on a proper theory but can be
driven by data. In contrast, explanatory modeling aims at understanding the mechanisms
and processes underlying the data at hand, the so-called data-generating process or
population. Explanatory models are typically based on a researcher’s theory and are often
“simpler” than predictive models, because this facilitates their interpretation (James et al.,
2013, Chapter 2.1.1). The data at hand are used for model estimation and testing (causal)
hypotheses.

The type of statistical modeling determines how a model is validated. In predictive modeling,
model validation focuses on the predictive power of a model, i.e. its ability to accurately predict
new/unknown data. In contrast, in explanatory modeling, model validation investigates whether
the specified model adequately describes the processes and mechanisms in question (Shmueli,
2010). Therefore, the adequacy of the specified model is of utmost importance because a wrongly
specified model likely leads to wrong conclusions. Although in empirical research the line
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between predictive and explanatory modeling often may be blurred (e.g. various models from
marketing research can be used for predictive purposes, see Leeflang and Wittink, 2000), there
are instances where following the rules of explanatory modeling leads to suboptimal solutions in
the sense of predictivemodeling and vice versa (Ebbes et al., 2011).

SEM is typically regarded as an approach to explanatory modeling (Bollen, 1989; Kline,
2015). Structural equation models are specified in accordance with a theory and estimated to
test this theory (Hayduk et al., 2007). To estimate the model parameters, consistent
estimators are preferred because a researcher wants to be sure that for a large sample size
and a correctly specified model, the estimates are close to the population values with a high
probability. This fact is also recognized in the marketing literature: “If the model has a
descriptive or normative purpose, consistent estimates are key” (Ebbes et al., 2011, p. 1121).
This also highlights the problem of PLS-PM’s inconsistency for reflective and causal–
formative measurement models comprising latent variables (Dijkstra, 1985).

A crucial step of model validation in SEM is the overall model fit assessment, which
means investigating how well the model explains the data (Kline, 2015, p. 120). If the model
is an acceptable representation of reality, the data should be consistent with the model and
thus with a researcher’s theory from which the model is derived. To investigate the overall
fit of a model, it is typically examined whether the constraints imposed by the model, which
are reflected in the model-implied variance–covariance matrix of the observed variables, are
consistent with the collected data, i.e. the sample variance–covariance matrix. It is
emphasized that, “if SEM is used, then model fit testing and assessment is paramount,
indeed crucial, and cannot be fudged for the sake of ‘convenience’ or simple intellectual
laziness on the part of the investigator” (Barrett, 2007, p. 823). Against this background, the
importance of model fit assessment does not depend on a particular estimator. However,
different estimators allow for different ways of assessing an estimated model.

The composite model estimated by PLS-PM serves the same purpose as the model known
from SEMwith latent variables, that is, it represents a researcher’s theory. However, they differ in
how abstract concepts are represented. While in latent variable models, abstract concepts are
represented by latent variables, in composite models, abstract concepts are represented by
emergent variables. If composite models are applied in the realm of explanatory modeling,
assessing their overall model fit is of the same importance as in SEM with latent variables
because it provides an important opportunity to empirically validate a researcher’s theory.

While the concept of model fit is well elaborated for structural models containing latent
variables that are estimated by maximum likelihood (ML) or related estimators (Hu and
Bentler, 1999; Hayduk, 2014), in the context of composite models estimated by PLS-PM, the
literature studying the overall model fit assessment is scarce. Hence, in the following section,
we adopt methods of the overall model fit assessment from the literature on SEMwith latent
variables and explain how they can be used to assess the overall fit of composite models
estimated by PLS-PM.

4.Ways to assess the overall fit of composite models
In the literature on SEM with latent variables, various methods of assessing the overall
model fit have been proposed. They can be broadly categorized into statistical tests and fit
indices. Arguably, the most famous test for the overall model fit is the x 2 test (Jöreskog,
1969). It is based on the asymptotic properties of the fitting function that is minimized by the
ML estimator. Since in the context of PLS-PM, no such parametric test has been derived, a
nonparametric bootstrap-based alternative was proposed (Dijkstra and Henseler, 2015a;
Dijkstra, 2017). Typically, statistical tests for the overall model fit assess the exact model fit,
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i.e. the null hypothesis that the specified model is able to exactly reproduce all the variances
and covariances among the observed variables in the population.

Although the statistical testing framework is theoretically appealing, testing the exact
overall model fit has been criticized as highly unrealistic. The basis of this concern is
rooted in Box’s (1976) famous remark that “all models are wrong,” which implies that the
null hypothesis of a perfect fit is always wrong and whether the null hypothesis is
rejected is only a matter of sample size. Following this reasoning, the exact model fit is
typically not of actual interest to researchers who study a certain phenomenon by means
of a model, which is a deliberate approximation of reality (Bentler and Bonett, 1980;
Steiger and Lind, 1980).

Against this background, researchers in the early 1980s started popularizing fit indices
as an alternative and supplement to the exact model fit testing (Bentler and Bonett, 1980;
Jöreskog and Sörbom, 1982). These indices can be roughly categorized into absolute and
relative fit indices (McDonald and Ho, 2002). While absolute fit indices measure the
correspondence between the specified model and the data along a continuum to gauge how
well the model fits (Mulaik et al., 1989), relative fit indices compare the specified model to a
reference model to assess the relative increase in model fit (Bentler, 1990). Consequently, fit
assessment through fit indices becomes an assessment of approximate and comparative fit
and is of a descriptive, instead of an inferential, nature.

The construction of some of the fit indices, such as the root mean square error of
approximation (RMSEA; Steiger and Lind, 1980) and the non-normed fit index (NNFI;
Bentler and Bonett, 1980), are directly related to the asymptotic distribution of the x 2 test
statistic, which is derived from the ML estimator. Since such a test statistic with analogous
properties has not been derived for PLS-PM, these fit indices are not considered in the
following of the paper; instead, we focus on fit indices not tied to a specific estimator, i.e. the
root mean square residual (RMR; Jöreskog and Sörbom, 1982), the standardized root mean
square residual (SRMR; Bentler, 1995), the normed fit index (NFI; Bentler and Bonett, 1980)
and the goodness-of-fit index (GFI; Jöreskog and Sörbom, 1993) and show that they are
suitable for assessing composite models.

4.1 Bootstrap-based test for the exact overall model fit
A bootstrap-based test was suggested in the context of composite models to assess the null
hypothesis of exact model fit, H0: R(h) = R (Dijkstra, 2017). To draw conclusions about the
null hypothesis, the discrepancy between the sample variance–covariance matrix S and the
estimated model-implied counterpart R ĥ

� �
of the observed variables is considered. To

measure the discrepancy between these two matrices, several fitting functions

F S;R ĥ
� �� �� �

have been proposed, such as the fitting function of the ML estimator (FML;
Jöreskog, 1970b). Moreover, in the context of PLS-PM and composite models, the geodesic
distance (dG), the squared Euclidean distance and the SRMR have been proposed (Dijkstra,
2017; Schuberth et al., 2018). All these fitting functions have one factor in common, which is
that they are equal to zero if the model perfectly fits the data and larger than zero otherwise.
However, as suggested by Bollen and Stine (1992), other fit measures such as the NFI can
also be used in combination with the bootstrap-based test.

To obtain the reference distribution of a distance function under the null hypothesis, the
bootstrap-based test relies on the transformed data set:

X * ¼ XS�1
2R ĥ
� �1

2
; (5)
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where the matrixX contains the original data set, and S and R ĥ
� �

are the sample variance–
covariance matrix and the estimated variance–covariance matrix implied by the composite
model, respectively. The transformation of the original data setX is necessary to mimic a
situation where the null hypothesis is true, i.e. the model perfectly fits the data at hand.

For monotonically increasing fit measures such as the previously presented fitting
functions, the null hypothesis is rejected for a given significance level a if the value of the fit
measure based on the original sample exceeds the (1 � a)% quantile of the reference
distribution. In contrast, for monotonically decreasing fit measures, the null hypothesis is
rejected if the value of the fit measure based on the original sample is below the a%quantile
of the reference distribution. In such situations, a researcher has found empirical evidence
against the specified model and, following Jöreskog (1969), can conclude that more
information can be extracted from the data than is captured by the specified model.

4.2 The (standardized) root mean square residual
The RMR is an absolute fit index proposed by Jöreskog and Sörbom (1982). The residuals
are given as the elements of the matrix S � R ĥ

� �
. Consequently, the RMR shows the root

mean square deviation of the sample variance–covariance matrix S from its estimated
model-implied counterpartR ĥ

� �
:

RMR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
K K þ 1ð Þ

XK
i¼1

Xi
j¼1

sij � s ĥ
� �

ij

� �2vuut ; (6)

where sij and s ĥ
� �

ij are the elements from the i-th row and the j-th column of the sample
variance–covariance matrix and the estimated model-implied variance–covariance matrix,
respectively. A disadvantage of the RMR is that its values depend on not only the misfit of
the model but also the size of the (co-)variances of the observed variables. Consequently,
interpreting the values without taking the scales of the observed variables into account is
hardly possible.

To overcome this problem, the SRMR was introduced (Bentler, 1995), which scales the
residuals by the standard deviations of the respective observed variables:

SRMR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

K K þ 1ð Þ
XK
i¼1

Xi
j¼1

sij � s ĥ
� �

ij

siisjj

 !2
vuuut : (7)

Consequently, the SRMR can be roughly interpreted as the average of the absolute value of
residual correlations (Pavlov et al., 2021). Since in PLS-PM the observed variables are
typically standardized before the analysis, the SRMR equals the RMR.

The RMR and the SRMR are conceptually meaningful for the assessment of composite
models. However, the variances and covariances implied by the composite model must be
applied. In this case, both the RMR and the SRMR show desirable properties for composite
models. For perfectly fitting composite models, i.e. R ĥ

� �
¼ S, both indices show a value of

zero. Similarly, for increasing deviations between the empirical and the model-implied
variance–covariance matrix, both indices increase, i.e. the larger the misfit, the larger are the
values of the (S)RMR. Moreover, if PLS-PM using Mode B is used to estimate the composite
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model, the values of the (S)RMR converge in probability to zero if the model is correctly
specified.

4.3 The normed fit index
The NFI is a relative fit index that was originally proposed by Bentler and Bonett (1980). It
measures the increase in fit relative to the fit of a null model. Although in general various
null models are conceivable, in this paper, we focus on the independence model as the null
model, which assumes that all observed variables are uncorrelated, i.e. that the model-
implied variance–covariance matrix of the observed variables equals the diagonal matrix
(Bentler and Bonett, 1980, p. 596). Formally, the NFI is defined as follows (Bentler, 1990):

NFI ¼ F0 � Fp

F0 ; (8)

where F0 and Fp are the values of the fitting function for the proposed model and the null
model, respectively.

The principle of the NFI can be directly applied to composite models. The NFI represents the
improvement in fit of the specifiedmodel against the null model as a proportion of the null model,
i.e. the relative fit. If the specified composite model fits the data perfectly, i.e. R ĥ

� �
¼ S, the

distance function Fp is equal to zero, and the NFI equals one. In contrast, if the specified model
shows the same fit as the null model, the NFI takes a value of 0. The null model typically
produces a worse fit than that of the originally specified model because it contains more
parameter constraints. Therefore, the NFI ranges from zero to one.

Originally, theML fitting function was proposed to measure the discrepancy between the
sample and the model-implied variance–covariance matrix of the observed variables. In fact,
the use of any fitting function that equals zero in the case of perfect fit and is monotonously
increasing for increasing misfit is conceivable. This is the case for the discrepancy measures
proposed in the context of PLS-PM, i.e. the geodesic distance, the squared Euclidean
distance and the SRMR.

4.4 Goodness-of-fit index
The GFI is also a relative fit index (Jöreskog and Sörbom, 1993). It appears to be inspired by
the coefficient of determination known from regression analysis and “measures the relative
amount of variances and covariances in the empirical covariance matrix S that is predicted
by the model-implied covariance matrix R ĥ

� �
” (Schermelleh-Engel et al., 2003, p. 42). The

exact definition of the GFI depends on the fitting function used (Mulaik et al., 1989). Only
recently has the GFI been proposed in the context of composite models (Cho et al., 2020),
when it was defined bymeans of the unweighted least squares fitting function:

GFI ¼ 1� tr S � R ĥ
� �� �2� �

tr S2ð Þ ; (9)

where tr denotes the trace operator, and R ĥ
� �

and S indicate the estimated variance–
covariance matrix implied by the composite model and the empirical counterpart,
respectively. Consequently, the GFI equals 1 if the composite model perfectly fits the data
set, i.e. whenR ĥ

� �
¼ S, and values below 1 indicate a misfit.
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5. Concerns about the overall model fit assessment in the context of PLS-PM
In the context of PLS-PM, several concerns regarding the overall model fit assessment have
been raised. The following subsections discuss these concerns and provide a conclusion.

5.1 Concern 1: PLS-PM is focused on estimating causal–predictive relationships; hence,
model fit assessment is of little value
The literature argues that PLS-PM was developed as an approach to causal–predictive
modeling (Wold, 1982), and consequently, model fit assessment is of little value (Hair et al.,
2020).

Unfortunately, neither Wold (1982), the founder of PLS-PM, nor the literature that refers
to his work provides a clear definition of causal–predictive modeling. Hence, it can have
different meanings. First, and following Hair et al. (2019a) and recent literature that aims at
demystifying the role of causal–predictive modeling (Chin et al., 2020), causal–predictive
modeling could be a middle way between explanatory and predictive modeling that strives
to achieve the goals of both explanatory and predictive modeling. Although this idea is
striking, it can hardly be achieved, as “the ‘wrong’model can sometimes predict better than
the correct one” (Shmueli, 2010, p. 293), and explanatory power does not imply predictive
power (Forster and Sober, 1994). Against this background, it is not clear why model fit
assessment should be disregarded following this understanding of causal–predictive
modeling. Second, causal–predictive modeling can mean that researchers make use of
explanatory models to make predictions, i.e. model-based predictions. Compared to
approaches known from predictive modeling, such as artificial neural networks (Haykin,
2009), this approach has the advantage of knowing how the predictions were made because
explanatory models are usually “simple” to ensure their interpretability. On the other hand,
it is likely that this approach is inferior to predictive models which are not tied to an
explanatory model. Since this approach is based on an explanatory model, it is not clear why
researchers should not rely on common principles of explanatory modeling, such as the
overall model fit assessment in the context of SEM, to discard wrongly specified models.
Similarly, Lohmöller (1989, p. 73) notes that “the predictive purpose should not jeopardize a
structural-causal interpretation of the relation.” It is well known that correctly specified
models may exhibit high out-of-sample predictive accuracy, but reversing the argument is a
logical fallacy (Saylors and Trafimow, 2020). In fact, several studies have shown that
researchers relying on the measurement evaluation steps of PLS-SEM, which replace the
overall model fit assessment with predictive measures, miss an important opportunity to
detect wrongly specified models (McIntosh et al., 2014; Schuberth, 2020). Hence, replacing
the overall model fit assessment with predictive measures is not recommended for
researchers conducting explanatory modeling, regardless of whether predictions are
subsequently made.

Conclusion: Since causal–predictive modeling is not clearly defined in the PLS-PM
literature, researchers should not use it as a justification to omit the step of the overall model
fit assessment when they are working (at least partially) in the realm of explanatory
modeling, i.e. testing theories and drawing statistical inferences.

5.2 Concern 2: Assessing the model fit by means of distance measures makes no sense in the
context of PLS-PM because PLS-PM does not minimize these distances
The PLS-PM literature is concerned about the overall model fit assessment by means of
distance functions that measure the discrepancy between the estimated model-implied and
the sample variance–covariance matrix of the observed variables (Hair et al., 2019b). Similar
concerns have been raised about the bootstrap-based test for the overall model fit, which is
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based on a distance function and “should be considered with extreme caution” (Hair et al.,
2019a, p. 31). These concerns are rooted in the fact that PLS-PM does not minimize such a
distance function, in contrast to theML estimator, to obtain the parameter estimates.

In fact, PLS-PM does not minimize a distance function to obtain the parameter estimates
but iteratively estimates several regressions by ordinary least squares. However, as shown
by Dijkstra (2017), PLS-PM produces consistent estimates for the composite model like the
ML estimator does for common factor models (Jöreskog, 1970b). Moreover, both the ML
estimator and PLS-PM are Fisher consistent for common factor and composite models,
respectively, and are asymptotically normal (Dijkstra, 2010). Consequently, PLS-PM shows
similar statistical properties for composite models as the ML estimator shows for common
factor models, although they obtain their estimates differently.

To assess the overall model fit by means of a distance function, it is reasonable to assume
a consistent estimator because it produces a consistently estimated model-implied variance–
covariance matrix. Otherwise, a distance function would indicate a model misfit even when
the sample size converges to infinity, which is of course not desirable. The way in which the
estimates are produced plays only a minor role as long as they are consistent. In contrast,
the specified model is of much greater importance because an estimator loses its statistical
properties, such as consistency, if applied to the wrong model. Hence, it is not clear why
model fit assessment by means of a distance function should only function for models that
have been estimated by an estimator that minimizes that distance function. The SEM
literature has already provided examples of model fit assessment by means of a distance
function in cases where an estimator was used that does not minimize such a distance
function (Devlieger et al., 2019). Similarly, the SRMR, which can be regarded as a type of
distance function, is often considered to assess common factor models that have been
estimated by ML; the ML estimator does not minimize the SRMR. This provides additional
support against the claim that the overall model fit assessment by means of a distance
function makes no sense if the estimator does not minimize this distance function.

In general, quantifying the misfit between the estimated model-implied and sample
variance–covariance matrix can be done by any function that accepts these two matrices as
input. However, for interpretational purposes, it is desirable that these functions have some
particular properties. First, they should be equal to zero if the two matrices are identical, i.e.
zero should indicate a perfect fit. Second, they should monotonically increase with an
increasing difference between the two matrices. Meeting these requirements, a larger value
of the distance function indicates a larger misfit of the model. It is noted that the ML fitting
function, the SRMR, the squared Euclidean distance and the geodesic distance function meet
these requirements. However, at this stage, the threshold values up to which the discrepancy
in themodel fit is regarded as acceptable remain unclear (see Subsection 5.4).

To assess the exact model fit via statistical significance testing, one needs to have the
(asymptotic) distribution of the distance function under the null hypothesis, i.e. that the model-
implied variance–covariance matrix based on the population parameters equals the population
variance–covariance matrix of the observed variables H0 : R ĥ

� �
¼ R

� �
. This distribution

depends on several aspects, such as the distance function used and the distributions of the
estimated model-implied and the sample variance–covariance matrix. For example, it is well
known that the number of observationsminus one times theML fitting function based on theML
estimates givenmultivariate normally distributed observed variables asymptotically follows a x 2

distribution under the null hypothesis of exact fit (Jöreskog, 1970a). In contrast, for distance
functions based on PLS-PM estimates, such a distribution is generally not known.

To overcome the distributional assumptions, a bootstrap-based test was developed that
can be used to assess the null hypothesis of exact fit (Beran and Srivastava, 1985, and
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Section 4.1). Although this test was first proposed to assess structural equation models
containing latent variables (Bollen and Stine, 1992), it can be applied in the same way to
assess structural models containing emergent variables (Dijkstra, 2017). It does not require
an estimator that minimizes a specific distance but rather a consistently estimated model-
implied variance–covariance matrix (Beran and Srivastava, 1985) given by an estimator that
produces consistent parameter estimates [4]. This is the case for PLS-PM using Mode B if
applied to estimate composite models (Dijkstra, 2017).

Conclusion: Distance functions and the bootstrap-based test can be used to assess the
overall fit of composite models, even though PLS-PM does not minimize such a distance
function.

5.3 Concern 3: Fit indices that are based on the common factor model are not appropriate to
assess a model estimated by PLS-PM
The PLS-PM literature became concerned quite early about the use of fit indices based on a
common factor model to assess models estimated by PLS-PM (Lohmöller, 1989, p. 54).

It is generally not appropriate to estimate common factor models by PLS-PM because it
produces inconsistent estimates for this type of model (Dijkstra, 1985). Consequently,
evaluating the fit of a common factor model estimated by PLS-PM is not recommended
because even for a correctly specified model and a sample that converges to infinity, fit
indices would indicate a misfit. Researchers who want to apply PLS-PM to estimate
common factor models should instead use consistent partial least squares and its
enhancements (Dijkstra and Henseler, 2015a,b; Rademaker et al., 2019), which provide
consistent estimates for common factor models.

Typically, fit indices are based on the model-implied variance–covariance matrix, which
captures the constraints imposed by the underlying model. As shown in Section 2, not only
the common factor model but also the composite model impose such constraints. These
constraints can be exploited in fit indices to assess the overall fit of composite models.
Obviously, it is important to apply the variance–covariance matrix implied by the composite
model (see also Section 4).

Conclusion: The fit of the composite model can be assessed by fit indices proposed in the
context of SEM with latent variables if the variance–covariance matrix implied by the
common factor model is replaced by the one implied by the composite model.

5.4 Concern 4: Thresholds for fit indices have not been proposed for composite models
The PLS-PM literature reveals concerns about the fact that no threshold values for fit
indices have been proposed for composite models (Hair et al., 2019a). As a consequence, it is
difficult for researchers applying PLS-PM to judge the absolute and relative fit of their
models.

The SEM literature has suggested various threshold values for fit indices that can be
applied to judge common factor models (Hu and Bentler, 1999), while in the context of
composite models, only a single study proposes such thresholds (Cho et al., 2020). Although
we think that fit indices are helpful to quantify the degree of model misfit, we are skeptical
about comparing the value of a fit index to a threshold value derived from simulation
studies to decide whether the model fit is acceptable. As highlighted in the SEM literature,
this approach is problematic in several ways: First, it is very difficult, if not even impossible,
to generalize such thresholds beyond the simulation design because the distribution of fit
indices is influenced by factors other than the degree of misspecification that fit indices
attempt to quantify (Yuan, 2005). Consequently, deriving and proposing threshold values is
of little benefit for applied researchers, whose research setting likely differs from the design
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of the simulation study. Second, deriving threshold values through a simulation is based on
a flawed logic because the degree of misfit that is still regarded as acceptable is determined
by the simulation designer in advance (Marsh et al., 2004). Hence, it falls to the subjective
judgment of the simulation designer to determine which model fits are acceptable or
unacceptable. Third, deriving threshold values for fit indices under the hypothesis of exact
fit contradicts the logic underlying absolute fit indices. Although SEM literature began to
embed fit indices in a testing framework (Bollen and Stine, 1992), absolute fit indices were
originally introduced to overcome the issue of exact fit. Hence, determining threshold values
as quantiles of the distribution of a fit index under perfect fit contradicts the very concept of
approximate fit. In fact, it was shown in the context of SEM with latent variables that the
conventional x 2 test outperforms the index-plus-threshold-value decision strategy in
distinguishing correctly from incorrectly specified models (Marsh et al., 2004).

Conclusion: The use of fit indices is a controversial topic in the literature on SEM with
latent variables. The concerns can generally be transferred to the composite model. While
opponents call for abandoning the use of fit indices (Barrett, 2007), there are also more
optimistic voices that regard fit indices as useful tools to assess the overall model fit. For
example, fit indices can be beneficial in situations where the sample size is large and the test
for exact fit rejects the null hypothesis, although it is only trivially false (Bentler, 2007).
Hence, we take a more liberal stand and recommend reporting fit indices along with the
results of the test for exact model fit, because they can provide additional information.
However, we recommend against the common practice of comparing fit indices to threshold
values derived by simulation studies to judge whether the fit of a composite model is
acceptable because this approach suffers from logical inconsistency (Marsh et al., 2004).

5.5 Concern 5: PLS-PM is used in case of small sample sizes for which small misspecification
is not reliably detected by the bootstrap-based test
The literature argues that PLS-PM is often used in case of sample sizes for which the
bootstrap-based test shows only low statistical power, i.e. misspecification often remains
undetected (Hair et al., 2020). Hence, its use is of only little value in the context of PLS-PM.

It is well known that the power of a statistical test decreases with decreasing sample size
as the sampling uncertainty increases (Cohen, 1988, Chapter 1). Hence, this behavior is not
an idiosyncrasy of the bootstrap-based test but applies to all statistical significance tests.

Small sample sizes are particularly concerning in the context of explanatorymodeling, and the
importance of sufficiently large sample sizes has already been highlighted in the context of SEM
(Kline, 2015) and marketing research (Sawyer and Ball, 1981). Hence, researchers using PLS-PM
who are working in the realm of explanatory modeling are advised to collect a sufficient amount
of data before conducting their analysis. As recognized by Rigdon (2016, p. 600), one could say
that “PLS path modeling will produce parameter estimates even when [the] sample size is very
small, but reviewers and editors can be expected to question the value of those estimates, beyond
simple data description.”

To address this issue, researchers using SEMwith latent variables are usually advised to
investigate a priori whether the size of the collected sample is sufficiently large to ensure
that the statistical test being used has sufficient power, e.g. by conducting Monte Carlo
simulations (Wolf et al., 2013). The same approach is also recommended in the context of
PLS-PM (Aguirre-Urreta and Rönkkö, 2015). In principle, similar guidelines can be followed
to assess the statistical power of the bootstrap-based test of the overall fit of composite
models. However, such guidelines have not yet been elaborated.

Conclusion: Like all statistical significance tests, the power of the bootstrap-based test for
the overall model fit depends on the sample size. If analysts deem the statistical power too
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low, they should collect more data. To not test a model is the worst option: It corresponds to
a statistical power of zero.

5.6 Concern 6: It is not clear whether fit should be assessed based on the estimated model or
a model with a saturated structural model
The PLS-PM literature raises concerns about which model should actually be assessed, i.e.
the estimatedmodel or the model with a saturated structural model (Hair et al., 2019b).

Recent PLS-PM guidelines for explanatory modeling recommend first assessing the
composite model with a saturated structural model and subsequently assessing the originally
specified model (Henseler et al., 2016; Benitez et al., 2020); see Section 7 for a more elaborate
presentation. The idea of this approach is rooted in the two-step procedure that has been
proposed in the context of SEM with latent variables (Anderson and Gerbing, 1988). Among
applied researchers, this approach is regarded as beneficial because it allows us to localize the
source of misfit, i.e. whether the composition of the emergent variables (first step) or the complete
model (second step) is problematic. Ultimately, it is the originally specified model that represents
a researcher’s theory, and therefore, itsfit is what needs to be assessed.

Conclusion: Analysts should assess the fit of their originally specified model. Assessing
the fit of a model with a saturated structural model can serve as a useful intermediate step in
model fit assessment to localize potential sources of misfit.

6. Monte Carlo simulation
An important and still open question is the efficacy of the bootstrap-based test for the overall fit
and the various fit measures presented, i.e. the geodesic distance, the SRMR, the NFI and the GFI.
To answer this question, we conduct a Monte Carlo simulation. Since the comparison of fit
indices to derived threshold values has been strongly criticized in the SEM literature (Marsh et al.,
2004), we deliberately do not aim at deriving any threshold values for these fit measures but
instead investigate their finite-sample performance in combination with the bootstrap-based test
for the exact overall model fit. In particular, we examine the type I error rate and the statistical
power of the bootstrap-based test.

We consider three scenarios comprising three different population models. Each
population model consists of three emergent variables. The three scenarios, including their
population models, parameters and variance-covariance matrices, are displayed in Figure 1.
Since the bootstrap-based test was recently evaluated with regard to wrongly specified
relationships between observed variables and emergent variables (Schuberth et al., 2018), we
exclusively focus on misspecifications in the structural model. Therefore, in all population
models, only the structural model differs across the scenarios, whereas the weights and the
intra-block correlation matrices are kept constant.

Scenario 1 is considered to assess the test’s type I error rate. In this scenario, the
estimated model matches the population model, and thus, the estimated model is correctly
specified. As shown in Figure 1, the SRMR and the geodesic distance are equal to zero if they
are calculated for the estimated model based on the population variance–covariance matrix.
Similarly, the NFI and GFI show a value of 1. For this scenario, we expect that the bootstrap-
based test produces rejection rates close to the predefined significance level.

Scenarios 2 and 3 serve to assess the statistical power of the bootstrap-based test. In
Scenario 2, the estimated model does not match the population model, i.e. the estimated
model is misspecified. As seen in Figure 1, in the population model of Scenario 2, there is a
direct effect between the emergent variables h 1 and h 3 that is omitted in the estimated
model. Consequently, the SRMR and the geodesic distance show values larger than 0 for the
estimated model based on the population variance–covariance matrix. Similarly, the NFI
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Figure 1.
Monte Carlo

simulation design
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and GFI values are 0.86 and 0.97, respectively, in this scenario. Therefore, we expect that the
bootstrap-based test for the overall model fit produces rejection rates above the predefined
significance level.

In the population model of Scenario 3, the role of the emergent variables h 1 and h 2 in
the structural model is switched in comparison to that in the estimated model.
Consequently, the estimated model is misspecified. As shown in Figure 1, the SRMR and
the geodesic distance are 0.11 and 0.08, respectively, and highlight a misfit of the
estimated model based on the population variance–covariance matrix. Similarly, the GFI
and NFI values are smaller than 1. Against this background, we expect that the
bootstrap-based test produces rejection rates above the predefined significance level.

It is noteworthy that the different fit measures assess the two misspecifications
differently. As shown in Figure 1, the SRMR, the NFI and the GFI indicate a worse model fit
for the model in Scenario 3, whereas the geodesic distance indicates a worse fit for the model
in Scenario 2. We expect that this will also be reflected in the test’s rejection rates.

To study the finite-sample behavior of the bootstrap-based test, we vary the sample size
from 50, 100, 250, 500, and 1,000 to 2,000 observations per sample. Moreover, we consider
two significance levels, namely, 1% and 5%. As is common, for larger sample sizes, we
expect an increase in the statistical test’s power when the estimated model is indeed
misspecified. Similarly, we expect higher statistical power in the case of a higher
significance level.

The complete simulation was conducted in the statistical programming environment R
(R Core Team, 2020). For each condition, 1,000 samples were drawn from a multivariate
normal distribution with mean zero and the variance–covariance matrix of the respective
scenario using the mvrnorm function of the MASS package (Venables and Ripley, 2002). To
estimate the specified model by PLS-PM, the csem function of the cSEM package was used
(Rademaker and Schuberth, 2020). For the inner weighting, the factorial weighting scheme
was used, and for the estimation of the weights, Mode B was applied. As a stopping
criterion, the absolute change in the weights was considered. If the largest absolute
difference was smaller than 10� 5, the algorithm would stop. Furthermore, the maximum
number of iterations was set to 1,000. To run the bootstrap-based test for the overall model
fit, the testOMF function of the cSEM package was used. Although we did not face any
convergence issues for the initial PLS-PM estimations, we replaced estimations that may not
have converged during the bootstrap to ensure that all bootstrap-based tests are based on
499 valid bootstrap runs.

Figure 2 illustrates the results of our simulation. For Scenario 1, i.e. the scenario in which
the estimated model is correctly specified, the test produces rejection rates slightly below the
predefined significance level for small sample sizes, i.e. n # 100, regardless of the assumed
significance level and the fit measure used. However, for an increasing sample size, the
produced rejection rates converge toward the assumed significance level.

Considering Scenarios 2 and 3, i.e. in the case of model misspecification, the rejection
rates are below the recommended threshold of 80% (Cohen, 1988) for very small sample
sizes, i.e. n = 50, regardless of the fit measure used. However, in line with our
expectations, the produced rejection rates increase for an increasing sample size, and for
sample sizes larger than 100 observations, the produced rejection rates were above 80%.
Moreover, the rejection rates are higher for the larger significance levels, confirming our
expectations. Comparing the performance of the fit measures across Scenarios 2 and 3,
the results are largely in line with our expectations. The bootstrap-based test in
combination with the geodesic distance rejects the model in Scenario 2 more often than
the model in Scenario 3, while the test based on the SRMR and the GFI detect the
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misspecification of Scenario 3 more reliably. Considering the bootstrap-based test in
combination with the NFI, the results are not that clear, i.e. in some conditions, it rejects
the model from Scenario 2 more often, while in other conditions, it rejects the model from
Scenario 3 more often. We would have expected it to reject the model from Scenario 3
more often.

To conclude, the bootstrap-based test for the overall model fit in combination with the
presented fit measures is able to detect model misspecification and produces rejection
rates close to the predefined significance levels when the estimated model is correctly
specified. However, a sufficient sample size is required to achieve satisfactory statistical
power. For all considered fit measures, the bootstrap-based test behaved as expected, i.e.
the rejection rates increased for an increasing sample size and/or larger significance
levels when the estimated model was misspecified. However, the sensitivity of the studied
fit measures for model misspecification differs with regard to the kind of
misspecification. The geodesic distance indicates a larger misfit for the model in Scenario
2 than for the model in Scenario 3, while the SRMR and GFI show the opposite. For the
NFI, the picture is not that clear.

Figure 2.
Rejection rates for

Scenarios 1, 2, and 3
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7. Guidelines on the assessment of the overall fit of composite models
Figure 3 depicts our guidelines to assess the overall fit of composite models estimated by
PLS-PM. To eventually assess the overall fit of composite models including a structural
model, we recommend a two-step procedure known from current guidelines on the use of
PLS-PM in confirmatory and explanatory research (Benitez et al., 2020). In the first step, a
CCA is conducted, while in the second step, the fit of the originally specified model is
assessed. This way of model fit assessment is recommended, as it is a logical necessity that
the abstract concepts be properly operationalized before the analysis of the structural model
is performed (Anderson and Gerbing, 1982). To illustrate the approach, we focus on a
researcher who derived from her theory the model displayed in Figure 4.

In the first step, a CCA is conducted, i.e. a model in which the emergent variables freely
correlate is estimated, and its overall fit is assessed. Typically, the originally specified model
is nested in this model, i.e. the originally specified model contains more restrictions on the
parameters than the model with freely correlated emergent variables. Figure 5 displays
the model for our researcher from the first step. This model exhibits the same fit as the
originally specified model from Figure 4 with a saturated structural model.

An unsatisfactory fit in the first step indicates that the operationalization of the abstract
concepts as emergent variables should be reconsidered, as the emergent variables do
not convey all the information between the observed variables from two different blocks.
Consequently, there are problems in the composition of at least one emergent variable. In
contrast, if the fit of the model in the first step is satisfactory, the researcher can continue
with the second step.

In the second step, the originally specified model (the model from Figure 4) is estimated
and assessed. If the model does not show an acceptable fit, likely the structural model is
misspecified. For our fictitious researcher, this can mean that the emergent variable h 2 does
not fully meditate the effect of h 1 on h 3.

The advantage of the two-step approach in comparison to a one-step approach is that a
researcher can better localize the source of misfit. In case misfit is detected, regardless in
which step, the researcher is advised to inspect its source. For example, a researcher can
follow guidelines known from the SEM literature (Kline, 2015) and investigate the residuals.
Moreover, in reporting the model fit assessment results, we recommend providing the
outcomes of the criteria mentioned in Section 4.

8. Discussion
The overall model fit assessment in the context of SEM is crucial if SEM is applied for
explanatory modeling. Its importance is widely acknowledged in the SEM literature, although
not without controversies, e.g. the discourse in the special issue of the journal Personality and
Individual Differences (Vernon and Eysenck, 2007). In contrast, for composite models estimated
by PLS-PM, it is less clear when and how to assess the overall model fit. To address these issues,
we explain that the overall fit assessment of composite models is of utmost importance if
composite models are studied in the context of explanatory modeling. Thus, the role of the
overall fit assessment is unaffected by the way that abstract concepts are modeled, i.e. as latent
or emergent variables. Moreover, we present a bootstrap-based test and four fit indices and show
that they are all suitable for assessing the overall fit of composite models estimated by PLS-PM.

The PLS-PM literature has raised several concerns about model fit assessment and its
applicability when PLS-PM is used for model estimation (Lohmöller, 1989; Hair et al., 2017,
2019b,a, 2020). The present study discusses these concerns and shows that most of them are
unfounded. The current understanding of causal–predictive modeling does not warrant
omission of the overall model fit assessment if researchers use the composite model and

EJM
57,6

1694



Figure 3.
Guidelines on

assessing the overall
fit of composite

models

Model fit
assessment

1695



PLS-PM for theory testing. If PLS-PM is used in the context of explanatory modeling, the
overall model fit assessment is a pivotal step. Moreover, the use of the overall model fit
criteria that are based on the model-implied variance–covariance matrix is appropriate to
assess composite models even though these criteria were first developed for common factor
models. However, the variance–covariance matrix implied by the composite model must be
applied. Similarly, composite models estimated by PLS-PM can be assessed by means of
distance functions even though PLS-PM does not minimize such a function to obtain the
parameter estimates. The bootstrap-based test for the overall model fit can be used to assess
the exact fit of a composite model. As shown by our simulation, it is able to detect
misspecified models estimated by PLS-PM in finite samples and it can also be used in
combination with fit indices such as the NFI and the GFI. Although its statistical power
might be insufficiently low owing to small sample sizes, this is no reason to abandon the
bootstrap-based test. However, it is important that researchers are aware of that risk.
Finally, fit indices can quantify the approximate and relative fit of composite models,

Figure 4.
Originally specified
composite model

Figure 5.
CCAmodel from the
first step
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although it is not recommended to judge the fit of a model based on threshold values derived
from simulation studies.

To support researchers applying PLS-PM in the overall fit assessment of their
composite models, the current study provides concise guidelines, i.e. a two-step
assessment procedure. While in the first step, a CCA is conducted, in the second step, the
originally specified model is assessed. This approach helps researchers better localize the
source of misfit. For each step, we recommend reporting the results of the bootstrap-
based test and the values of the SRMR, the NFI and the GFI. It is emphasized that
researchers who act in the realm of explanatory modeling should take model fit
assessment seriously, otherwise they will miss an important opportunity for model
validation. Guidelines on PLS-PM for explanatory research that discourage the
assessment of model fit resemble cooking recipes that suggest a visual and haptic
inspection but at the same time discourage tasting the meal.

Our study is limited to the bootstrap-based test for the overall model fit and fit indices
that have been proposed to assess the overall fit of composite models. In general, other ways
have been suggested to assess composite models, including prediction tests, prediction
metrics, tests for rank restrictions on submatrices and the exploitation of differences
between different estimators (Dijkstra, 2017; Shmueli et al., 2019; Liengaard et al., 2020).
However, none of these should replace the overall model fit assessment in the context of
explanatory modeling. Moreover, we limit our focus on the (S)RMR, the NFI and the GFI, as
the principles of these fit indices are not tied to the asymptotic properties of a specific
estimator. Although we have shown that in principle, the NFI and the GFI can detect
misspecified composite models, the SEM literature has shown that they are affected by the
sample size and model complexity (Hu and Bentler, 1998, 1999; Sharma et al., 2005).
Therefore, alternatives such as the NNFI (Bentler and Bonett, 1980) have been proposed. In
this regard, we recommend investigating whether the principles underlying the NNFI, and
similarly the RMSEA, also apply to composite models estimated by PLS-PM. Furthermore,
our simulation study showed that the fit measures assess misspecifications differently.
Therefore, future research should identify situations in which a specific fit measure is
preferred.

Similarly, our proposed guidelines are limited to linear and recursive models estimated
by PLS-PM. The limitation to PLS-PM is in no way mandatory, and other estimators that
produce consistent estimates for composite models are valid alternatives. Moreover, in
empirical research, scientists encounter situations where models are non-recursive, e.g. the
models contain feedback loops (Dijkstra, 2017). It is noted that the presented guidelines can
still be applied for this type of model. Additionally, non-recursive models often provide the
opportunity to exploit the involved overidentification restriction through statistical tests
such as the Sargan–Hansen test (Sargan, 1958) to investigate whether the postulated
assumptions required for identification hold.

In SEM, the issue of equivalent models is well known in the literature (Raykov and
Penev, 1999) and often encountered in empirical research (MacCallum et al., 1993).
Equivalent models exhibit identical levels of model fit, i.e. they all produce the same model-
implied variance–covariance matrix even when the model parameter estimates differ
(Raykov and Penev, 1999). Consequently, the overall model fit assessment cannot help
identify the correct model among all equivalent models. It is obvious that the issue of
equivalent models is not specific to latent variable models but also applies to composite
models. Hence, to validate a model, a researcher needs to argue why his/her model should
not be rejected in favor of an equivalent model (Kline, 2015).
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Notes

1. The notion of an emergent variable is used to emphasize that the composite conveys all the
information between its antecedents and its consequences and that it is on the same level as a
latent variable. Moreover, emergent variables composed of latent variables, emergent variables,
or a mixture of both are conceivable (Van Riel et al., 2017; Schuberth et al., 2020). However, in this
article, we focus on emergent variables made up of observed variables.

2. Only recently, it was shown that a special type of composite model in which the emergent
variables are composed of correlation weights can be consistently estimated by PLS-PM Mode A
(Cho and Choi, 2020). This type of composite model is a special case of the composite model
presented by Dijkstra (2017) and Schuberth et al. (2018) and can also be consistently estimated by
PLS-PMMode B.

3. It is emphasized that we do not refer to the measurement evaluation steps known from PLS-SEM,
which have also been recently dubbed as confirmatory composite analysis (Hair et al., 2020). For
a comparison of the two, we refer to Schuberth (2020).

4. In addition, the bootstrap-based test for overall model fit is based on commonly made
assumptions such as independent and identically distributed (i.i.d.) observed variables (Beran
and Srivastava, 1985).
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