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Abstract
Purpose – This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel
plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between
pressure gradient and velocity.
Design/methodology/approach – The numerical correlations origin from computational fluid
dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the
porous media are taken into account. More specifically, for a specific frequency and stack porosity, the
oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency
domain (Fast Fourier Transform analysis).
Findings – It emerges that the viscous component of pressure drop follows a quadratic trend with
respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes.
Furthermore, the non-linear coefficient b of the correlation ax þ bx2 (related to the Forchheimer
coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low
frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower
the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical
discontinuities are more pronounced.
Originality/value – The main novelty of this work is that, for the first time, non-linear losses of a
parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear
correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is
that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be
used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied
in the present work.
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NOMENCLATURE
Symbol Meaning Unit
a Linear coefficient of the correlation avþ bv2 Pa · s/m2

b Non-linear coefficient of the correlation avþ bv2 kg/m4

cF Forchheimer coefficient �
CVM Virtual Mass coefficient �
d Solid half-plate thickness or total derivative m
e Internal energy J/m3

f0 Fundamental frequency of pressure input Hz
fv Average Viscous function �
h Viscous function �
i Imaginary unity �
kf Fluid thermal conductivity W/m/K
Lstack Stack length m
Ltot Total length of the computational domain m
p Pressure Pa
t Time s
T Temperature K
v Velocity vector m/s
xs Stack position m
y0 Half of the fluid channel width m

Greek letters
a Thermal diffusion m2/s
dv Viscous penetration depth m
@ Partial derivative
u Phase shift between pressure gradient and velocity �
k Permeability m2

~k c Complex permeability m2

m Dynamic viscosity Pa · s
v Kinematic viscosity m2/s
j Fluid particle displacement m
p Dimensionless numbers group �
r Density kg/m3

t Time scale coefficient s
f Porosity�
v0 Angular frequency Hz
r(·) Gradient (Divergence)

Subscript
i Intrinsic
s Superficial
VM Virtual Mass
KE Kinetic Energy
1 First order variable
0 Mean-time variable

HFF
34,1

354



Abbreviation
CFD Computational Fluid Dynamics
DF Darcy-Forchheimer
REV Representative Elementary Volume
SPL Sound Pressure Level

1. Introduction
Oscillating flows in porous media are encountered in a broad range of real-life applications
including medicine (Keith Sharp et al., 2019), geophysics (Zhang et al., 2019), acoustics
(Horoshenkov, 2017) and thermoacoustics (Chen et al., 2021). In general, heat and fluid flow in
porous media can be studied either at the microscopic level, by directly solving the Navier
Stokes Equations (NSE) with an appropriate numerical model, by using analytical solutions,
or at the macroscopic scale (Massarotti et al., 2003). In the latter case, to reduce the prohibitive
computational costs, the NSE are averaged over a Representative Elementary Volume (REV)
and the additional variables require for a closure model. The Darcy–Forchheimer model
(Whitaker, 1986; Whitaker, 1996) is one of the most used closure models of the momentum
equation in the available literature. It consists of two source terms: a viscous linear term
(Darcy term, in which the permeability of the medium has to be specified) and a non-linear
form drag (Forchheimer term). Examples, in which the porous media approach has been
adopted to derive analytical or powerful numerical solutions, can be found in recent refs
(Bhatti and Powell, 2023; Bhatti and Öztop, 2022; Wakif et al., 2022; Rasool et al., 2023; Wakif,
2023; Elboughdiri et al., 2023a; Sharma et al., 2023; Zhang et al., 2023; Elboughdiri et al.,
2023b), thus demonstrating the importance of porous media in multiphysics problems such
as nano fluids, biodynamics and heat/mass transfer applications.

Such a model can only be applied when frequency tends to zero, as the oscillating inertial
contributions to the flow can be neglected. As frequency increases, the inertia-induced phase
shift between pressure gradient and velocity has to be taken into account. Such a phase shift
can be intrinsically considered in the frequency domain with a complex permeability,
introduced by Johnson et al. (1987). In the time domain, several attempts have been made to
adapt the Darcy steady-state model to oscillating flows. Within this framework, three
approaches can be found in the literature. The first approach is the so-called “VANS”
(volume average Navier Stokes), valid only for low frequencies and uses a time scale
coefficient in the unsteady term obtained by scaling the steady-state Darcy model (Zhu and
Manhart, 2016). The second, named virtual mass approach, extends the previous model by
considering an additional term dependent on porosity to consider the phase shift between
pressure gradient and velocity (Lowe et al., 2008). However, this coefficient is required to be
determined experimentally to close the model. Zhu et al. (2014) proposed a numerical
calculation, via direct numerical simulations, to determine the virtual mass coefficient by
scaling a kinetic energy equation. The third method is the one proposed by Di Meglio et al.
(2022) to analytically close this problem, without performing prior simulations at the
microscopic level, by linking the real and imaginary part of Johnson’s complex permeability
to the classical steady-state source term and the virtual mass correction, respectively.

Similar systematic studies of the Forchheimer term’s frequency dependence have not
been conducted, mainly due to the lack of analytical or semi-analytical solutions. However,
some attempts were made in the past, in acoustics, to consider non-linear propagation losses
in porous media. For example, Melling (Melling, 1973) theoretically characterised the non-
linear trend of the impedance (as the ratio between pressure gradient and velocity) of a
perforated plate stack by using stationary data. An analogous approach was used to
evaluate the effect of sudden contraction-expansions in oscillating flows (Clark et al., 2007).
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Both cases, based on a steady-state parametrization, did not consider the effect of frequency.
Wilson et al. (1988) instead introduced a Forchheimer-like correction factor for the complex
density and compared the numerical solutions of the non-linear wave equations with
available experimental data for porous media (foams) in terms of the acoustic impendence
against the Sound Pressure Level (SPL). In this acoustic framework, Wang et al. (2009)
successfully adopted a semi-empirical Forchheimer coefficient to better predict the sound
absorption coefficient against the SPL. Ge et al. (2012) carried out experiments on the non-
linear impedance of a mesh screen stack discovering that the resistance part of the
impedance (directly related to permeability and Forchheimer term) follows a non-linear
trend while the reactance (imaginary part of the impedance, directly related to the above-
mentioned virtual mass coefficient) stays linear also at high SPLs. Therefore, three
parameters were used to fully describe porous media flow in this case: static permeability,
virtual mass correction and Forchheimer term. Furthermore, they were found to be
independent of frequency, but dependent on porosity and stack length (due to tortuosity). In
the works of Liu (2005), the viscous and inertial pressure gradients were obtained
experimentally for a uniform cross-section stacks (square channels) and a mesh screen
regenerator. In both cases, the viscous pressure gradient is well-fitted by the Darcy–
Forchheimer law. In particular, the mesh-screen regenerator experienced higher non-linear
losses than the squared channels stack due to tortuous geometry. For a simple tortuous
geometry, such as a cylinder bank (or transversal pin array stack) in a previous
computational fluid dynamics (CFD) work (Di Meglio and Massarotti, 2022a), it has been
confirmed that non-linear losses are not negligible when Reynolds number (based on the pin
diameter andmaximum velocity) is higher than 1.

A significant knowledge gap exists in the available literature on an in-depth
characterisation of the Darcy–Forchheimer correlation in oscillatory flows, even for simple
porous media geometry such as the parallel plate stacks. Oscillatory flows through parallel
plate stacks have been only studied at the microscopic level. For instance, Jaworski et al.
(2009) carried out an experimental campaign to study the entrance effects, as well as the
vortex-shedding phenomena coming from the discontinuity between the free fluid region and
the stack zone (Shi et al., 2010). In the latter article, a classification of the fluid flow
microstructures using three dimensionless numbers was proposed (Jaworski et al., 2009).
Moreover, Shi et al. (2011) numerically calculated a correlation between the Strouhal and
Reynolds numbers. However, none of the above works express the non-linear Forchheimer
losses synthetically. The need of a DF-based macroscopic model is important for rapidly
designing systems and reducing the computational costs. An important practical application
where these flows occur is thermoacoustics. Here, the porous media is generally called stack,
and it is responsible for energy conversion between heat and acoustic power (and vice-versa).
The parallel plate stack is among the most efficient stacks, as testified by the numerous
articles in which this stack is used (Marx and Blanc-Benon, 2004; Liu et al., 2019; Ke et al.,
2010). To date, there are two main numerical tools available for studying thermoacoustics:
DeltaEC and the finite volume-based CFD. The first one is one-dimensional tool useful for
analysis/design in the frequency domain. Here, the Forchheimer term is not included but only
a correction factor is implemented through stationary data fitting (Clark et al., 2007). Among
CFD-based models, as highlighted in the results of a recent review article (Di Meglio and
Massarotti, 2022b), no case study is available that uses the Forchheimer term for this kind of
stacks. In this framework, the difference between the microscopic and macroscopic models
(with the only Darcy/linear term) in terms of pressure amplitude is not negligible (Di Meglio
andMassarotti, 2023).
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Based on the above observations, it can be concluded that a detailed study of the
oscillatory flows using a macroscopic analysis is not available. Thus, the present study aims
to:

� Develop an appropriate CFD model, including the stack and the surrounding
thermoacoustic device in which it is operated. This is an essential requirement to
fully characterise the non-linear behaviour of the porous media.

� Develop an appropriate post-processing procedure to analyse the viscous losses
(where velocity is phased in time with the pressure gradient across the stack)
separately from the oscillating inertial effects. This is done by analysing the results
in the frequency domain.

� Develop a numerical correlation between the pressure gradient (both components,
that one in phase and the other one delayed by 90° with velocity) and velocity to
obtain the Darcy–Forchheimer relationship in oscillatory flows. This is done by
varying the pressure amplitude. (The correlation are obtained using the CFTool
library in MATLAB.)

� Study the effects of varying the frequency of the boundary condition on the
Forchheimer term. This is done to have a clearer picture of the Forchheimer term
similar to what was done in the past for the Darcy term.

� Study the effect of the stack porosity on the Forchheimer coefficient. This is done to
identify the major sources of non-linearities in such stacks.

The results of this work show that the component of pressure drop in phase with velocity,
follows a quadratic trend with respect to velocity, as expected for a similar steady-state non-
linear porous media model. On the other hand, the inertial pressure gradient, the component
of the pressure drop 90° out of phase with velocity, continues to be linear also for higher
velocities in the stack. Furthermore, the dependence of the Forchheimer coefficient on the
frequency and porosity is highlighted for the first time. Finally, the analysis of local
correlations (inside and outside the stack) between pressure gradient and velocity confirms
that the main sources of nonlinearities are the geometrical discontinuities of the section area
at the ends of stacks and the finite length of the stack itself.

The subsequent sections of the article are organised as follows. In Section 2, the
governing equations both at the microscopic and macroscopic scales are presented by
reviewing the microscopic solution of the parallel plate stack in the frequency domain as
well as the concept of complex permeability. In Section 3, the numerical setup and the
postprocessing procedure of the data are explained, whereas in Section 4, the results are
presented and discussed. Finally, conclusions are drawn in Section 5.

2. Governing equations
2.1 Microscopic scale
At the microscopic scale, oscillating flows are governed by the unsteady and compressible
NSEs. They are reported here below, for a Newtonian fluid, in the conservative form,
suitable to be solved with a finite volume approach implemented in OpenFOAM
(Greenshields, 2015). The scope of application considered in this work is in the field of
thermoacoustic stack/heat exchangers. Their Mach number based on acoustic peak velocity
in the simulations is always less than 0.1 and compressibility effects could be neglected in
the momentum equation (2) as well as the viscous dissipation in energy equation [37].
However, in such kinds of problems, the propagation of disturbances at a finite speed of
sound requires considering compressibility effects both in the mass balance equation (1)
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(@r/@t) as well as the time derivative of pressure in the energy equation (3) (@r/@t). The
energy equation is written in terms of sensible enthalpy h (Greenshields, 2015). Pressure p,
density r and temperatureT are related by the ideal gas law:

@r

@t
þr � rvð Þ ¼ 0 (1)

@ rvð Þ
@t

þr � rvvð Þ ¼ �rpþ mr2v þr � m rv þrTvð Þ� �
� 2
3
r m r � vð Þ� �

(2)

@ rhð Þ
@t

þr � rvhð Þ þ @ rKð Þ
@t

þr � rvKð Þ � @p
@t

¼ r � arhð Þ (3)

where v, m, a are the velocity vector, dynamic viscosity and thermal diffusivity of the
medium, respectively.

2.2 Macroscopic scale
To reduce computational costs, a general domain composed of both free fluid and porous
media zones is introduced. This requires an additional pressure gradient source term in the
momentum equation to simulate the forces exchanged microscopically between the fluid
and solid matrix. Once a homogenous and periodic REV is identified in steady-state flows,
the Darcy–Forchheimer law can be derived by the volumetric average of the momentum
equation (VANS approach), as shown in (Vafai, 2005):

rhpii ¼ � m

k
þ cFffiffiffi

k
p rfjhvisj

� �
hvis (4)

where k is the permeability [m2], cF the dimensionless Forchheimer coefficient, f the
porosity of the porous medium. The notation hii,s refers to intrinsic (i) and superficial (s)
averaged quantities, respectively.

In oscillating flows, the vast majority of theoretical studies focus on the linear term
[first term in equation (4)]. Most of them aimed at extending the Darcy approximation of
equation (4), by introducing a time scale coefficient t in the unsteady term, as follows
(Zhu and Manhart, 2016):

� k

m
rhpii ¼ 1þ ffiffiffi

k
p

rfcF jhvisj
� �hvis þ t

@hvis
@t

(5)

According to the VANS approach (Zhu andManhart, 2016), such a time scale coefficient can
be derived by a scaling analysis, and it is equal to:

tVANS ¼ k

�f
(6)

This approach is consistent with the steady-state solution but fails at high-frequency. In the
virtual mass approach (Lowe et al., 2008), a correction factor to the previous formula is
added to take into account the unsteady effects:
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tVM ¼ k

�f
1þ CVM

1� f

f

� �
(7)

However, the virtual mass constant, CVM, has to be defined experimentally depending on the
frequency. Zhu et al. (2014) and Zhu andManhart (2016) proposed a numerical calculation of
the time coefficient t based on the scaling of the kinetic energy equation:

tKE ¼ k

�f

hv � vii
hviihvii

(8)

This approach has demonstrated the best agreement with analytical solutions, but it
requires prior numerical simulations at the pore scale to be practically implemented (Bhatti
and Öztop, 2022). According to the latest extension to the method, presented by Di Meglio
et al. (2022), the concept of the complex permeability ~kc, in terms of its real and imaginary
part, can be useful to separate the viscous effect, in which the pressure gradient is time-
phased with velocity, and the oscillating inertial effects in which the pressure gradient is 90°
out of phase with velocity by definition. The time-domain linear macroscopic governing
equation, limited to the porous media zone, is the following, as demonstrated in a previous
work (Di Meglio et al., 2022):

1
f
r

@hvis
@t

1þ 1
2
fd2v � J

1
~kc

	 
� �
¼ �rhpii � m � < 1

~kc

	 

hvis (9)

where dv ¼
ffiffiffiffiffiffiffiffiffiffiffi
2�=v

p
is the viscous penetration depth (v is the kinematic viscosity) and <(I)

represents the real (imaginary) part operator. The complex permeability for a parallel plate
stack is (Di Meglio et al., 2022):

~kc ¼ fd2v
1� fv
2i fv

; fv ¼
tanh 1þið Þy0

dv

h i
1þið Þy0
dv

(10)

where y0 is the half-channel height. The formula expressed in the equation (10), in terms of
both real and imaginary parts, will be used as an analytical reference to verify the linear
trend between pressure gradient and velocity in the stack.

3. Proposed method
3.1 Base reference: non-linear macroscopic model
Inspired by the non-linear Darcy–Forchheimer model for steady state [equation (4)], where
the non-linear term is proportional to jhvisjhvis, and by the theoretical approach used in by
Wilson et al. (1988), the general relation between macroscopic pressure gradient and
superficial velocity in oscillating flows can be written as follows (Wilson et al., 1988):

�rhpii ¼ aR þ bR
Lstack

jhvisj
� �

hvis þ
1
f
r

@hvis
@t

1þ aV þ bV
Lstack

jhvisj
� �

(11)

Equation (11) constitutes the analytical reference for the analysis carried out in this work. In
the cases of negligible non-linear contributions, the link between equation (11) and the linear
macroscopic momentum equation (9) is uniquely determined. The coefficients (aR, aV) are
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confirmed to be consistent with the formulation and analytical value presented in equations
(9) and (10), whereas the other coefficients (bR, bV) are investigated more deeply for the first
time (subscripts R and V stand for real and virtual, in analogy with the above-explained
concept of virtual mass). The choice of using the stack length Lstack, that will be discussed
more deeply in Sections 3 and 4, allows one to distinguish the linear viscous losses,
independent of the stack length, from the non-linear losses. As the latter are determined by
the stack discontinuities, they become more significant for smaller stacks. In the frequency
domain, equation (11) for each frequency can be split into two different equations: the
viscous pressure gradient in phase velocity [the first term of equation. (11)], and the inertial
pressure gradient, 90° out of phase with velocity [second part of equation (11)].

3.2 Problem setup
3.2.1 Geometry and mesh. The computational domain consists of a 2D pipe of length Ltot ¼
0.5m. At a horizontal distance xs¼ 0.1m the stack (Lstack¼ 30mm), composed of three fluid
channels whose width is 2 y0 ¼ 1mm and equally spaced by a gap depending on the
porosity, (f ¼ 0.5, 0.6, 0.7, 0.8) is placed, as shown in Figure 1 (Jaworski et al., 2009; Chen
et al., 2020). The computational domain and mesh are pictured in Figure 1. The mesh is
made of three sub-meshes: a quadrilateral mesh inside the stack, a triangular mesh in the
“transition zones” just outside the stack ends and a mapped mesh far away from these
regions. The size of the smallest elements in the stack and transitions zones has been chosen
according to the thinnest viscous penetration depth dv at 350Hz.

3.2.2 Boundary and initial conditions. As a boundary condition, a sinusoidal input
pressure has been implemented on the left-hand side of the computational domain as follows:

p tð Þ ¼ p1sin v0tð Þ þ p0 (12)

where p1 and v0 ¼ 2pf0 are the pressure input and angular frequency and whose values are
specified in Table 1 for all parametric simulations carried out in this work. The reference
pressure p0 has been fixed to 10

5 Pa. The opposite side, on the right-hand side, adiabatic wall
boundary conditions are applied. A no slip and isothermal at 300K boundary condition is
considered on the stack walls. Cyclic boundary conditions (periodic) are constrained on the

Figure 1.
Domain and
computational mesh
of the CFD
simulations
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upper and lower surfaces of the domain to mimic the transversal periodicity of the system,
as only three solid plates and fluid channels are simulated in this work. A previous literature
work demonstrated that three plates are the best compromise between accuracy and
computational efforts of the simulations (Jaworski et al., 2009; Chen et al., 2020). Regarding
the initial conditions, zero velocity, pressure and uniform temperature are used. A coarser
mesh is used initially until the volumetric average velocity over the stack and the pressure
drop calculated become periodic. Then, these results are used as initial conditions for the
simulations using the finest mesh.

3.2.3 Numerical solver. The governing equations presented in the previous section
are solved within the open-source environment OpenFOAM, by using the so-called
application “buoyantPimpleFoam” an unsteady and compressible thermal and fluid
flow solver. A second-order discretization scheme has been used for the convection and
diffusion terms, whereas a first-order implicit scheme has been used for time
discretization (Table 2).

The right-hand side boundary has been assumed to be a solid wall. The stack walls are
assumed to be isothermal so that the energy equation in the solid stack plate can be
neglected (Di Meglio et al., 2021; Swift, 1988). Finally, periodic boundary conditions have
been applied at the top and bottom boundary surfaces.

No turbulence model has been implemented because the highest Reynolds number based on
the viscous penetration depth is always less than 500. This is a well-known and accepted
critical Reynolds number value considered in the available literature for oscillating flows (Ohmi
and Iguchi, 1982) when y0 > dv (high-frequency limit). For y0 < dv, the reference critical
Reynolds number is about 2,300 at steady state (Swift, 2003). On the other hand, other
experimental results show that some transitional turbulent effect arises even at lower Reynolds
(Jaworski et al., 2009). In this work, a laminarmodel has been considered.

3.3 Post-processing procedure
Velocity and pressure are sampled at every time step of Dt ¼ 10�5 s and for at least 10
acoustic periods to guarantee that the maximum frequency capturable is higher than the

Table 1.
Boundary conditions

Boundary Momentum equation Energy equation

Left surface Oscillating pressure (equation (12)) Adiabatic
Right surface Wall Adiabatic
Stack walls No-slip Isothermal
Lateral surfaces Periodicity Periodicity

Source: Table by authors

Table 2.
Summary of the
numerical cases

simulated with CFD

CASE f0 [Hz] f p1[Pa]

1–7 10 0.5 100, 500, 1000, 2000, 5000, 10,000, 20,000
8–35 50 0.5, 0.6, 0.7, 0.8 280, 560, 1,125, 2250, 4500, 9,000, 18,000
36–42 100 0.5 100, 500, 1,000, 2000, 3,000, 4,000, 5,000
43–54 200 0.5 10, 100, 500, 1,000, 1,500, 1,800, 2,000
55–63 350 0.5 100, 200, 400, 1,000, 2,000, 4,000, 8,000

Source: Table by authors
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input frequency f0 and a good frequency resolution. The post-processing sampling intervals
do not correspond to the time steps used in the simulation, which are lower and adaptive
such that the Courant number is less than 0.1. The numerical data are post-processed as
follows. At the global level, the surface average of the pressure at the left and right ends of
the stack are extracted (Figure 1), as well as the volumetric average of the velocity over the
stack. The Fast Fourier Transform of these quantities are performed to isolate the
fundamental frequency v0, used in the inlet boundary condition. The pressure gradient is
calculated as the difference between the right and left surface average pressure divided by
the total length of the stack. The velocity can be assumed to be at zero-phase without
harming the generality of the procedure, because only the relative phase shift between
pressure gradient and velocity, indicated as u in Figure 2, matters. Therefore, the pressure
drop can be decomposed along the velocity but opposite direction, that represents viscous
pressure drop and in a vertical component, as illustrated in Figure 2.

From a mathematical perspective:

Dpviscous ¼ jDpj � cos uð Þ
Dpinertial ¼ jDpj � sin uð Þ

(
(13)

For each frequency and porosity, both viscous and inertial pressure drops are correlated to
the velocity at the fundamental frequency in the “CFTool” package provided by MATLAB
to search the coefficients a and b of the following analytical expression:

rpviscous;inertial jx ¼ aR;Vv1 þ bR;V
Lstack

v21 (14)

3.4 Dimensionless analysis
Performing a dimensionless analysis of the problem discussed in this study becomes
essential in order to minimise the variables influencing the pressure drop. This, in turn,
reduces the number of numerical simulations needed to accurately replicate the phenomena.

The pressure gradient can be written as a function of the following dimensional
variables:

rp ¼ rp v; �; y0; d; Lstack;vð Þ (15)

Figure 2.
Phasor diagram:
pressure gradient
(viscous and inertial)
and velocity in the
frequency domain
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where d is the half-thickness of the plate between stack passages. According to the
Buckingham theorem (Misic et al., 2010), the dimensionless version of the equation (15) can be
expressed as a function of the number of the independent variables (6) minus the number of the
fundamental units involved in the specific problem (length, mass, time):

rp* ¼ rp* p1;p2;p3ð Þ (16)

wherepi are the three dimensionless numbers.
The first dimensionless quantity is the Reynolds number, based on the superficial

velocity as velocity scale and y0 as length scale. The second dimensionless number
must consider the frequency v and several choices have been adopted previously
in the available literature such as the ratio y0/dv, or the fluid particle displacement
jjj ¼ jvsj/(v0Lstack). However, the first one does not allow considering the effect of the
stack length. The second instead does not fit the post-processing procedure due to the
simultaneous dependence on the velocity and frequency. To overcome these problems,
the ratio between j and Re has been chosen. The last dimensionless parameter is the
porosity, as a combination of y0 and d:

p1 : Re ¼ vy0
�

p2 :
j

Re
¼ 2

dv
y0

� �2 y0
Lstack

p3 : f ¼ y0
y0 þ d

8>>>>>>>><
>>>>>>>>:

(17)

The pressure gradient is made non-dimensional using the factor 12 r0u
2=y0 :

4. Results and discussion
4.1 Verification and validation
The reliability of the numerical model is assessed via mesh sensitivity analysis for
verification, then via comparison with experimental data for the validation phase. The mesh
sensitivity analysis is performed using relevant physical quantities for the present work, the
volumetric velocity over the stack and the viscous pressure drop Dpviscous, derived as
explained in the previous Section 3.3, for the highest frequency (350Hz) and Reynolds
number in the stack (corresponding to p1 ¼ 10,000 Pa) investigated in this work. Six
different meshes have been used. Results illustrate both parameters are independent of the
mesh size when the number of finite volumes is approximately 150,000, as shown in
Figure 3.

Furthermore, a validation step has been carried out to ensure that numerical models can
reproduce the reality by comparing the CFD results with experimental data taken from the
available literature for oscillating flows. More specifically, the experimental setup described
by Berson et al. (2008) has been reproduced numerically, being very similar the numerical
setup built in this article. For two different input pressures (500Pa, 2,000Pa), the
instantaneous numerical velocity profiles along the section at x¼ 0.2227 m are compared to
the experimental data for eight frames within an acoustic period. Figure 4 shows the
comparison of velocity profiles along with experimental error bars. As seen, a good
agreement between experimental and simulation data is observed, especially at the middle
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of the channel. Minor deviations close to the walls could be attributed to asymmetry induced
by experimental settings.

4.2 Viscous and inertial pressure drop against velocity
The viscous and inertial pressure drop, calculated according to the equation (13) and
evaluated at the fundamental frequency (350 Hz), are plotted against the volumetric

Figure 3.
Mesh sensitivity
analysis for case p1¼
10,000Pa, f0¼
350Hz,f¼ 0.5

Figure 4.
Validation against
experimental data by
Berson et al. (2008)
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average velocity in Figure 5. The solid line shown in Figure 5 represents the numerical
fit characterised by an R2 value above 0.9992. In addition to this, the prediction bounds
(with a confidence interval of 95%) are also included to assess the quality of the curve
fitting.

Overall, the viscous pressure drop follows a parabolic trend. However, the non-linear
contribution is negligible as the velocity approaches zero. In Figure 5, the slope of the solid
line represents the real part of the inverse of the complex permeability [equation (10)]. As
seen in Figure 5(b), the inertial pressure drop is linear also at the highest velocities. Here, the
slope of the curve is the imaginary part of the inverse of the complex permeability. This first
finding is in agreement with what has been found in previous work focusing on a
transversal pin array stack (Di Meglio and Massarotti, 2022a) or in other experimental
works (Liu, 2005). As a result, in the equation (11) the virtual mass coefficient comes from
only the linear contribution (bV � 0), while the non-linearities contributes to the viscous
component of pressure drop (bR= 0).

vs ! 0; aR ! m � < 1
~kc

	 

; aV ! m � = 1

~kc

	 

(18)

This result is valid for all frequencies investigated. The curves fitted by the numerical data in
terms of dimensionless pressure gradient (named friction factor) against the Reynolds number
are shown in Figure 6. At low Reynolds numbers, the higher the frequency, the larger the
friction factor. This is valid up to a Reynolds number approximately equal to 300, where the
trend is inverted. The lowest frequency curve is characterised by the highest friction factor
value as the non-linear contribution b starts to have an influence.

4.3 Permeability and Forchheimer coefficients versus frequency
The linear viscous losses have a well-known behaviour with frequency, the a-coefficient
increases with frequency, as analytically predictable from equation (10). Once the

Figure 5.
Viscous (a) and

inertial (b) pressure
gradient at f0¼
350Hz,f¼ 0.5
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a-coefficient is constrained to its asymptotic linear value, an effective analysis of the
behaviour of the b-coefficient with frequency can be performed. Both trends are pictured
in Figure 7.

The b-coefficient can be made dimensionless to obtain a Forchheimer term cF resembling
that of the steady-state correlations [equation (4)], using the density and the square root of
permeability as length scale. Although this has been done using the analytical permeability
for each frequency, the curves confirm the dependence of the b-coefficient on the frequency
(Figure 8).

As mentioned in Section 3.4, p2 can better explain the physics behind the trend pictured
in Figure 9. For p2 ! 0, the Forchheimer coefficient tends ideally to zero. This is due to the
fluid particle displacement being much smaller than the stack length for a finite Reynolds
number. Furthermore, non-linearities caused by geometrical discontinuities are negligible
compared to the viscous linear losses due to solid and impermeable walls of the fluid
channel. This condition can also be obtained at high frequencies (small particle
displacement) or large stack lengths. On the other hand, at low frequency (or stack length,
p2 !1), the fluid particle displacement can be comparable or higher than the stack length
and non-linearities are more pronounced. CFD data can be fitted by an exponential law
passing through the origin and reaching a saturation value, as shown in Figure 9.

4.4 Forchheimer coefficients versus porosity
At 50Hz, four different porosities, from 0.5 to 0.8, are investigated. As for dimensionless
frequency, the permeability has a linear and analytical closure with respect to porosity
[equation (10)]. The trend of the Forchheimer coefficient against frequency, pictured in
Figure 10, depicts that the lower the porosity the higher the non-linear losses but with a non-
linear trend. This is expected because the velocity gradients at low porosities are more
significant than those experienced at high porosity. Furthermore, such a finding is in

Figure 6.
Dimensionless
viscous pressure
gradient at different
frequencies plotted
against the Reynolds
number
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qualitative agreement with the dependence of the concentrated pressure drop caused by
sudden contraction/expansion for steady-state flows on the porosity. The CFD-data are
fitted with accuracy by a rational law passing through the point of coordinate (f¼ 1, cF¼ 0)
with a single constant c as shown in Figure 10.

A summary of the correlations found in this work is provided in Table 3, where the
structure of the fitting law and the numerical coefficients are reported for both the viscous
and oscillating inertial components of the pressure drop.

Figure 8.
Forchheimer

coefficient (expected
value in black and

upper/lower bounds
with a confidence
interval of 95% in

blue)

Figure 7.
a-coefficient and b-

coefficient for viscous
pressure gradient
against frequency
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Figure 9.
Forchheimer
coefficient vs the
second dimensionless
numberp2 involving
both stack length and
frequency

Figure 10.
Forchheimer
coefficient against
porosity at f0¼ 50Hz
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4.5 Analysis of the proposed approach
All the above results and the consequent correlations have been obtained according to the
procedure described in Section 3.3 by calculating the pressure gradient as the pressure
difference (decomposed along the average velocity and evaluated at the fundamental
frequency) between the ends of the stack divided by the stack length. The velocity has been
calculated as a volumetric average over the stack. This method is straightforward, and it is
generally adopted not only in numerical simulations (at least in steady-state flows) but also
in experiments, and it allows capturing non-linear losses. In porous and porous-like media
with no tortuosity, the non-linearity arises from the transition between regions, which is
captured in the proposed method. This is clarified in Figure 11, where three types of
pressure drop line graphs are plotted against the superficial velocity. The first one in blue
(Procedure i, Figure 11) represents the above-described procedure, i.e. by calculating the
pressure drop as the difference between the pressure at the stack ends, considering all non-
linear losses including the end effects:

Dpi ¼ jpleft � prightj (19)

The second type is presented by evaluating the local pressure gradient at the middle of the
stack multiplied by the length of the stack (red line in Figure 11, Procedure ii) as follows:

Dpii ¼
 dpdx jmiddle

 � Lstack (20)

Even though the trend of the pressure drop against velocity is still clearly non-linear, the
numerical values are significantly smaller than those in the previous curve as the end effects
are not considered. Finally, the linear Darcy pressure drop is shown as a reference by the
yellow line in Figure 11 (Procedure iii) and calculated by using the analytical real part of the
inverse of permeability:

Dpiii ¼ m � < 1
kc

	 

vs � Lstack (21)

This is also pictured in Figure 11 to understand how much a simple linear Darcy model can
underestimate the total pressure drop in oscillating porous media flows. For the highest

Table 3.
Summary of the main

numerical
correlations

Pressure gradient Velocity (p1) Frequency (p2 Porosity (p3)

dp
dx

� �
viscous

aRxþ bRx
2

aR Pa
s
m2

	 

; bR

kg
m4

	 
 aR ¼ m < 1

y20
~kc

" #
aR ¼ m < 1

y20
~kc

" #

bR � y0
r0

¼ 0:028 1� 1268p2ð Þ bR � y0
r0

¼ 0:025 1� p3ð Þ
p3

dp
dx

� �
inertial

aVx aV ¼ m = 1

y20
~kc

" #
aV ¼ m = 1

y20
~kc

" #

bV¼ 0 bV¼ 0

Source: Table by authors
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velocity, the percentage difference between the adopted approach (i) and the linear reference
(iii), that represents the current approach tomodel this kind of stacks, is approximately 300%.

Furthermore, looking at the distribution of the viscous pressure along the stack (f ¼
50Hz, f ¼ 0.6) pictured in Figure 12, for the highest pressure amplitude, the pressure drop
at the stack/free fluid discontinuities is comparable to that obtained inside the stack. This
would be underestimated not only with a purely Darcy model but also by evaluating the
pressure gradient at the middle of the stack. However, if the microstructure of the stack is
modelled with a single porous box, the local peaks at the discontinuities between the porous
and free fluid regions are not locally reproduced at the macroscopic level but are equally
distributed along the stack length.

While the component of pressure in phase of velocity is characterised by an abrupt
pressure drop at the stack region, for velocity is not the same, as shown in Figure 13. The
“effective” velocity (Darcy velocity dived by the porosity) is plotted for three different
pressure amplitudes. From the velocity in Figure 13 and pressure in Figure 12, the
acoustic power density (i.e. the mechanical power flux) can be plotted. In the frequency
domain, this is equal to the product of pressure, velocity amplitudes and their phase shift
u (Swift, 1988).

W ¼
ð
T
p tð Þu tð Þdt ¼ 1

2
jp1jju1jcos uð Þ ¼ 1

2
p1;viscu1 (22)

From an energy balance perspective, the acoustic power at the left surface (x ¼ 0) shown in
Figure 14 represents the net energy entering into the system, even though both pressure and

Figure 11.
Pressure drop against
velocity for f0¼ 50Hz
andf¼ 0.6
according to the three
procedures described
above
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velocity are oscillating with a zero-time average value. This energy budget is converted by
the stack into heat that in turn is released to the environment at the temperature level
imposed by the boundary condition. The temperature contours (Figure 15) as well as the
velocity field (Figures 15 and 16) in the stack region illustrate the phenomena. Both fields are
averaged over last five acoustic periods of the simulations. It is apparent that temperature is
approximately constant, while some local entrance/exit effects are visible in the time
average of velocity vector field. Pairs of counter-rotating vortices are formed both before the
stack (in the purely free fluid zone) and inside the stack, as shown in Figure 16.

5. Conclusions
While modelling steady-state flows through porous media has a solid understanding in the
literature, oscillatory flow works focus mostly on purely linear Darcy losses, and the
equivalent non-linear Forchheimer effects in general porous media model have not been
studied with a similar and in-depth systematic approach. To address this gap, this work
investigates the presence of non-linear Forchheimer effects in a porous media made of
parallel plate channels inserted in a resonator tube. The specific objective of this article is to
provide numerical correlations between pressure gradient and velocity and characterise the
Forchheimer term against frequency and porosity. Data are obtained by performing
parametric CFD simulations at the microscopic level for various frequency or porosity
values.

Figure 12.
1D distribution of the
viscous pressure at

the fundamental
frequency 50Hz,

f¼ 0.6
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The instantaneous velocity distribution along a fluid channel between the parallel solid plates
is validated against experimental data for two different pressure amplitudes. The results of the
parametric simulations against the Reynolds number show that the viscous of pressure drop
experiences a parabolic trend as in stationary flows. On the other hand, the out-of-phase
component of pressure drop remains linear even at higher velocity regimes. For velocity
tending to zero, the relationship between pressure-drop and velocity is in perfect agreement
with the Darcy law extended to oscillatory flows. While the linear coefficient of the parabolic
law has a well-known frequency-dependent pattern, the present work highlights, for the first
time, the dependence of the Forchheimer term on the frequency. More specifically, CFD data
show that the b-coefficient increases for lower frequencies, tending to an asymptotic value. This
can be interpreted as the consequence of increased fluid displacement thus increasing the
viscous contribution, while oscillating inertial contributions are dominant at high frequencies.
Furthermore, sensitivity analysis by varying the porosity quantitatively demonstrates that the
origin of non-linearities for this type of stack having no tortuosity is the geometrical
discontinuity at the stack ends: the lower the porosity, the larger the Forchheimer coefficient.
Moreover, a local analysis of the correlation between pressure gradient and velocity has shown
that the non-linear Forchheimer effects are also visible locally at themiddle of the stack.

The study highlights the requirement to account for turbulent onset at the transition into
and out of the porous region. While the Reynolds number inside the channel has been
always lower than the most accepted definition of the critical Reynolds number in the
available literature for oscillating flows, the study could be extended by the use of an

Figure 13.
1D distribution of the
velocity at the
fundamental
frequency 50Hz,
f¼ 0.6
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appropriate turbulence model to provide further insight into the three-dimensional
turbulence structures that arise.

The findings of this study, in addition to a better understanding of oscillatory flows in
porous media theory, can be exploited to improve the design tools of thermoacoustic stacks
and heat exchangers, especially at high amplitude regimes where non-linear losses must be
considered. More specifically, future applications maybe:

� Generalise the results for uniform cross-section stacks, having a uniform cross section in
the oscillating flow direction, such as the circular pore and longitudinal pin array stacks.

� Implement the correlations obtained in this work in linear-based proprietary codes/
software such as DeltaEC for higher fidelity results (in the frequency domain).

� Implement the same (macroscopic) correlations in CFD-based simulations to reduce
the computational costs of a full microscopic approach.

Figure 15.
Time average

temperature field

Figure 14.
1D distribution of
acoustic power the
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frequency 50Hz,
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Parallel plate

373



References
Berson, A., Michard, M. and Blanc-Benon, P. (2008), “Measurement of acoustic velocity in the stack of a

thermoacoustic refrigerator using particle image velocimetry”, Heat and Mass Transfer, Vol. 44
No. 8, pp. 1015-1023, doi: 10.1007/s00231-007-0316-x.

Bhatti, M.M. and Powell, E. (2023), “Thermal analysis and entropy generation of magnetic eyring-
powell nano fluid with viscous dissipation in a wavy asymmetric channel”, International Journal
of Numerical Methods for Heat and Fluid Flow, Vol. 33 No. 5, pp. 1609-1636, doi: 10.1108/HFF-07-
2022-0420.

Bhatti, M.M. and Öztop, H.F. (2022), “Study of the magnetized hybrid nanofluid flow through a flat
elastic surface with applications in solar energy”, pp. 1-22.

Chen, G., Tang, L. and Mace, B.R. (2020), “Bistability and triggering in a thermoacoustic engine: a
numerical study”, International Journal of Heat and Mass Transfer, Vol. 157, p. 119951,
doi: 10.1016/j.ijheatmasstransfer.2020.119951.

Chen, G., Tang, L., Mace, B. and Yu, Z. (2021), “Multi-physics coupling in thermoacoustic devices: a
review”, Renewable and Sustainable Energy Reviews, Vol. 146, doi: 10.1016/j.rser.2021.111170.

Clark, J.P., Ward, W.C. and Swift, G.W. (2007), “Design environment for low-amplitude thermoacoustic
energy conversion (DeltaEC)”, The Journal of the Acoustical Society of America, Vol. 122
No. 5_Supplement, p. 3014, doi: 10.1121/1.2942768.

Di Meglio, A. and Massarotti, N. (2023), “Application of the porous media approach to a standing wave
thermoacoustic engine for CFD simulations application of the porous media approach to a
standing wave thermoacoustic engine for CFD simulations”, doi: 10.1088/1742-6596/2509/1/
012005.

Di Meglio, A. and Massarotti, N. (2022b), “CFD modeling of thermoacoustic energy conversion: a
review”, Energies, Vol. 15 No. 10.

Figure 16.
Time average
velocity field

HFF
34,1

374

http://dx.doi.org/10.1007/s00231-007-0316-x
http://dx.doi.org/10.1108/HFF-07-2022-0420
http://dx.doi.org/10.1108/HFF-07-2022-0420
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119951
http://dx.doi.org/10.1016/j.rser.2021.111170
http://dx.doi.org/10.1121/1.2942768
http://dx.doi.org/10.1088/1742-6596/2509/1/012005
http://dx.doi.org/10.1088/1742-6596/2509/1/012005


Di Meglio, A. andMassarotti, N. (2022a), “Numerical investigation of viscous losses in a transversal pin
array stack in oscillatory flows”, doi: 10.1615/TFEC2022.fnd.041148.

Di Meglio, A., Di Giulio, E., Dragonetti, R. and Massarotti, N. (2022), “A novel model for macroscopic
simulation of oscillating heat and fluid flow in porous media”, International Journal of Thermal
Sciences, Vol. 181, p. 107758, doi: 10.1016/j.ijthermalsci.2022.107758.

Di Meglio, A., Di Giulio, E., Dragonetti, R. and Massarotti, N. (2021), “Analysis of heat capacity ratio on
porous media in oscillating flow”, International Journal of Heat and Mass Transfer, Vol. 179,
doi: 10.1016/j.ijheatmasstransfer.2021.121724.

Elboughdiri, N., Reddy, C.S., Alshehri, A., Eldin, S.M., Muhammad, T. and Wakif, A. (2023b), “Case
studies in thermal engineering a passive control approach for simulating thermally enhanced
Jeffery nanofluid flows nearby a sucked impermeable surface subjected to Buoyancy and
Lorentz forces”, Case Studies in Thermal Engineering, Vol. 47, p. 103106, doi: 10.1016/j.
csite.2023.103106.

Elboughdiri, N., Ghernaout, D., Muhammad, T., Alshehri, A., Sadat, R., Ali, M.R. andWakif, A. (2023a),
“Case studies in thermal engineering towards a novel EMHD dissipative stagnation point flow
model for radiating copper-based ethylene glycol nanofluids: an unsteady two-dimensional
homogeneous second-grade flow case study”, Case Studies in Thermal Engineering, Vol. 45,
p. 102914, doi: 10.1016/j.csite.2023.102914.

Ge, H., Fan, L., Xiao, S.Y., Tao, S., Qiu,M.C., Zhang, S.Y. and Zhang, H. (2012), “Nonlinear acoustic impedance of
thermoacoustic stack”, Journal ofApplied Physics, Vol. 112No. 6, doi: 10.1063/1.4752761.

Greenshields, C.J. (2015),OpenFOAMUser Guide, OpenFOAMFoundation, London, version 3.1.

Horoshenkov, K.V. (2017), “A review of acoustical methods for porous material characterisation”, The
International Journal of Acoustics and Vibration, Vol. 22 No. 1, pp. 92-103, doi: 10.20855/
ijav.2017.22.1455.

Jaworski, A.J., Mao, X., Mao, X. and Yu, Z. (2009), “Entrance effects in the channels of the parallel plate
stack in oscillatory flow conditions”, Experimental Thermal and Fluid Science, Vol. 33 No. 3,
pp. 495-502, doi: 10.1016/j.expthermflusci.2008.11.003.

Johnson, D.L., Koplik, J. and Dashen, R. (1987), “Theory of dynamic permeability and tortuosity in fluid
saturated porous media”, Journal of Fluid Mechanics, Vol. 176 No. 1, pp. 379-402, doi: 10.1017/
S0022112087000727.

Ke, H.B., Liu, Y.W., He, Y.L., Wang, Y. and Huang, J. (2010), “Numerical simulation and parameter
optimization of thermo-acoustic refrigerator driven at large amplitude”, Cryogenics (Guildf),
Vol. 50 No. 1, pp. 28-35, doi: 10.1016/j.cryogenics.2009.10.005.

Keith Sharp, M., Carare, R.O. and Martin, B.A. (2019), “Dispersion in porous media in oscillatory flow between
flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the Central
nervous system”,Fluids andBarriers of the CNS, Vol. 16No. 1, pp. 1-17, doi: 10.1186/s12987-019-0132-y.

Liu, J. (2005), “Characterization of porous material used for thermoacoustic device”, Penn State
University.

Liu, L., Yang, P. and Liu, Y. (2019), “Comprehensive performance improvement of standing wave
thermoacoustic engine with converging stack: Thermodynamic analysis and optimization”, Applied
Thermal Engineering, Vol. 160, p. 114096, doi: 10.1016/j.applthermaleng.2019.114096.

Lowe, R.J., Shavit, U., Falter, J.L., Koseff, J.R. and Monismith, S.G. (2008), “Modeling flow in coral
communities with and without waves: a synthesis of porous media and canopy flow approaches”,
Limnology and Oceanography, Vol. 53 No. 6, pp. 2668-2680, doi: 10.4319/lo.2008.53.6.2668.

Marx, D. and Blanc-Benon, P. (2004), “Numerical simulation of stack-heat exchangers coupling in a
thermoacoustic refrigerator”,AIAA Journal, Vol. 42 No. 7, pp. 1338-1347, available at: https://arc.
aiaa.org/doi/10.2514/1.4342

Massarotti, N., Nithiarasu, P. and Carotenuto, A. (2003), “Microscopic and macroscopic approach for
natural convection in enclosures filled with fluid saturated porous medium”, International

Parallel plate

375

http://dx.doi.org/10.1615/TFEC2022.fnd.041148
http://dx.doi.org/10.1016/j.ijthermalsci.2022.107758
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121724
http://dx.doi.org/10.1016/j.csite.2023.103106
http://dx.doi.org/10.1016/j.csite.2023.103106
http://dx.doi.org/10.1016/j.csite.2023.102914
http://dx.doi.org/10.1063/1.4752761
http://dx.doi.org/10.20855/ijav.2017.22.1455
http://dx.doi.org/10.20855/ijav.2017.22.1455
http://dx.doi.org/10.1016/j.expthermflusci.2008.11.003
http://dx.doi.org/10.1017/S0022112087000727
http://dx.doi.org/10.1017/S0022112087000727
http://dx.doi.org/10.1016/j.cryogenics.2009.10.005
http://dx.doi.org/10.1186/s12987-019-0132-y
http://dx.doi.org/10.1016/j.applthermaleng.2019.114096
http://dx.doi.org/10.4319/lo.2008.53.6.2668
https://arc.aiaa.org/doi/10.2514/1.4342
https://arc.aiaa.org/doi/10.2514/1.4342


Journal of Numerical Methods for Heat and Fluid Flow, Vol. 13 No. 7, pp. 862-886, doi: 10.1108/
09615530310502073.

Melling, T.H. (1973), “The acoustic impendance of perforates at medium and high sound pressure
levels”, Journal of Sound and Vibration, Vol. 29 No. 1, pp. 1-65, doi: 10.1016/S0022-460X(73)
80125-7.

Misic, T., Najdanovic-Lukic, M. and Nesic, L. (2010), “Dimensional analysis in physics and the
Buckingham theorem”, European Journal of Physics, Vol. 31 No. 4, pp. 893-906, available at:
https://iopscience.iop.org/article/10.1088/0143-0807/31/4/019

Ohmi, M. and Iguchi, M. (1982), “Critical Reynolds number in an oscillating pipe flow”, Bulletin of
JSME, Vol. 25 No. 200, pp. 165-172, doi: 10.1299/jsme1958.25.165.

Rasool, G., Wakif, A., Wang, X., Shafiq, A. and Chamkha, A.J. (2023), “Numerical passive control of
alumina nanoparticles in purely aquatic medium featuring EMHD driven non-Darcian nanofluid
flow over convective Riga surface”, Alexandria Engineering Journal, Vol. 68, pp. 747-762,
doi: 10.1016/j.aej.2022.12.032.

Sharma, J., Ahammad, N.A., Wakif, A., Ali, N., Dong, J. and Weera, W. (2023), “Solutal effects on
thermal sensitivity of Casson nanofluids with comparative investigations on Newtonian (water)
and non-Newtonian (blood) base liquids”, Alexandria Engineering Journal, Vol. 71, pp. 387-400,
doi: 10.1016/j.aej.2023.03.062.

Shi, L., Yu, Z. and Jaworski, A.J. (2011), “Investigation into the Strouhal numbers associated with
vortex shedding from parallel-plate thermoacoustic stacks in oscillatory flow conditions”,
European Journal of Mechanics - B/Fluids, Vol. 30 No. 2, pp. 206-217, doi: 10.1016/j.
euromechflu.2010.10.005.

Shi, L., Yu, Z. and Jaworski, A.J. (2010), “Vortex shedding flow patterns and their transitions in
oscillatory flows past parallel-plate thermoacoustic stacks”, Experimental Thermal and Fluid
Science, Vol. 34 No. 7, pp. 954-965, doi: 10.1016/j.expthermflusci.2010.02.012.

Swift, G.W. (1988), “Thermoacoustic engines”, The Journal of the Acoustical Society of America, Vol. 84
No. 4, pp. 1145-1180, doi: 10.1121/1.396617.

Swift, G.W. (2003),Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators,
Springer, Cham.

Vafai, K. (2005),Handbook of PorousMedia, 2nd ed. CRC Press, Boca Raton, FL.
Wakif, A. (2023), “Numerical inspection of two-dimensional MHD mixed bioconvective flows of

radiating Maxwell nanofluids nearby a convectively heated vertical surface”, available at: www.
frontiersin.org/articles/10.3389/fphy.2022.988275/full

Wakif, A., Abderrahmane, A. and Guedri, K. (2022), “Importance of exponentially falling variability in
heat generation on chemically reactive von K�arm�an nano fluid flows subjected to a radial
magnetic field and controlled locally by zero mass flux and convective heating conditions: a
differential quadrature analysis”, pp. 1-17, doi: 10.3389/fphy.2022.988275.

Wang, X., Peng, F. and Chang, B. (2009), “Sound absorption of porous metals at high sound pressure
levels”, The Journal of the Acoustical Society of America, Vol. 126 No. 2, pp. EL55-EL61,
doi: 10.1121/1.3162828.

Whitaker, S. (1986), “Flow in porous media I: a theoretical derivation of Darcy’s law”, Transport in
PorousMedia, Vol. 1 No. 1, pp. 3-25, doi: 10.1007/BF01036523.

Whitaker, S. (1996), “The Forchheimer equation: a theoretical development”, Transport in Porous
Media, Vol. 25 No. 1, pp. 27-61, doi: 10.1007/BF00141261.

Wilson, D.K., Mcintosh, J.D. and Lambert, R.F. (1988), “Forchheimer-type nonlinearities for high-
intensity of pure tones in air-saturated porous media”, Journal of the Acoustical Society of
America, Vol. 84.

Zhang, K., Ali, N., Alshehri, M., Alkarni, S., Wakif, A. and Eldin, S.M. (2023), “Case studies in thermal
engineering water thermal enhancement in a porous medium via a suspension of hybrid

HFF
34,1

376

http://dx.doi.org/10.1108/09615530310502073
http://dx.doi.org/10.1108/09615530310502073
http://dx.doi.org/10.1016/S0022-460X(73)80125-7
http://dx.doi.org/10.1016/S0022-460X(73)80125-7
https://iopscience.iop.org/article/10.1088/0143-0807/31/4/019
http://dx.doi.org/10.1299/jsme1958.25.165
http://dx.doi.org/10.1016/j.aej.2022.12.032
http://dx.doi.org/10.1016/j.aej.2023.03.062
http://dx.doi.org/10.1016/j.euromechflu.2010.10.005
http://dx.doi.org/10.1016/j.euromechflu.2010.10.005
http://dx.doi.org/10.1016/j.expthermflusci.2010.02.012
http://dx.doi.org/10.1121/1.396617
http://www.frontiersin.org/articles/10.3389/fphy.2022.988275/full
http://www.frontiersin.org/articles/10.3389/fphy.2022.988275/full
http://dx.doi.org/10.3389/fphy.2022.988275
http://dx.doi.org/10.1121/1.3162828
http://dx.doi.org/10.1007/BF01036523
http://dx.doi.org/10.1007/BF00141261


nanoparticles: MHD mixed convective Falkner ‘ S-Skan flow case study”, Case Studies in
Thermal Engineering, Vol. 47, p. 103062, doi: 10.1016/j.csite.2023.103062.

Zhang, L., Ba, J., Carcione, J.M. and Sun, W. (2019), “Modeling wave propagation in cracked porous
media with penny-shaped inclusions”, GEOPHYSICS, Vol. 84 No. 4, pp. WA141-WA151,
available at: https://library.seg.org/doi/10.1190/geo2018-0487.1

Zhu, T. and Manhart, M. (2016), “Oscillatory Darcy flow in porous media”, Transport in Porous Media,
Vol. 111 No. 2, pp. 521-539, doi: 10.1007/s11242-015-0609-3.

Zhu, T., Waluga, C., Wohlmuth, B. and Manhart, M. (2014), “A study of the time constant in unsteady
porous media flow using direct numerical simulation”, Transport in Porous Media, Vol. 104
No. 1, pp. 161-179, doi: 10.1007/s11242-014-0326-3.

Corresponding author
Armando Di Meglio can be contacted at: armando.dimeglio001@studenti.uniparthenope.it

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Parallel plate

377

http://dx.doi.org/10.1016/j.csite.2023.103062
https://library.seg.org/doi/10.1190/geo2018-0487.1
http://dx.doi.org/10.1007/s11242-015-0609-3
http://dx.doi.org/10.1007/s11242-014-0326-3
mailto:armando.dimeglio001@studenti.uniparthenope.it

	Analysis of non-linear losses inaparallel plate thermoacousticstack
	NOMENCLATURE
	Greek letters
	Subscript
	Abbreviation

	1. Introduction
	2. Governing equations
	2.1 Microscopic scale
	2.2 Macroscopic scale

	3. Proposed method
	3.1 Base reference: non-linear macroscopic model
	3.2 Problem setup
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	3.3 Post-processing procedure
	3.4 Dimensionless analysis

	4. Results and discussion
	4.1 Verification and validation
	4.2 Viscous and inertial pressure drop against velocity
	4.3 Permeability and Forchheimer coefficients versus frequency
	4.4 Forchheimer coefficients versus porosity
	4.5 Analysis of the proposed approach

	5. Conclusions
	References


