
Eco-efficiency measurement and
improvement of Chinese industry
using a new closest target method

Beibei Xiong
University of Science and Technology of China, Hefei, China

Yongli Li
Northeastern University, Shenyang, China

Ernesto D.R. Santibanez Gonzalez
Universidad de Talca, Talca, Chile, and

Malin Song
Collaborative Innovation Center for Ecological Economics and Management,

Anhui University of Finance and Economics, Anhui, China

Abstract
Purpose – The purpose of this paper is to measure Chinese industries’ eco-efficiency during 2006-2013. The
Chinese industry attained rapid achievement in recent decades, but meanwhile, overconsumption of energy and
environmental pollution have become serious problems. To solve these problems, many research studies used the
data envelopment analysis (DEA) tomeasure theChinese industry’s eco-efficiency.However, because the target set
by theseworks isusually the furthest one for aprovince tobeefficient, itmayhardlybeacceptedbyanyprovince.
Design/methodology/approach – This paper builds a new “closest target method” based on an additive
DEA model considering the undesirable outputs. This method is a mixed-integer programming problem
which can measure the ecological efficiency of provinces and more importantly guide the province to perform
efficiently with minimum effort.
Findings – The results show that the eco-efficiency of Chinese provinces increased at the average level, but
the deviations remained at a larger value. Compared to the “furthest” target methods, the targets by the
approach proposed by this study are more acceptable for a province to improve its performance on both
economy and environment counts.
Originality/value – This study is the first attempt to introduce the closest targets concept to measure the
eco-efficiency and set the target for each provincial industry in China.
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Paper type Research paper

1. Introduction
Since China began the “Reform and Opening” policy in 1978, China’s economy has
experienced significant development. China’s gross domestic product (GDP) grew from
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RMB 365.02bn in 1978 to more than RMB 63tn in 2014. Since 2010, it has maintained the title
of being the second largest economy in the world, following the USA (Zhang and Da, 2015).
Meanwhile, its industrial GDP increased from RMB 160.29bn in 1978 to RMB 22812.29bn in
2014. However, rapid industrialization and inefficient environmental supervision have
resulted in many environmental issues, such as depletion of energy resource, degradation of
environment and environmental pollution (Han et al., 2015; Zhe et al., 2016). In the past,
owing to China’s weak environmental regulations, some developed countries transferred
their pollution-intensive enterprises to China. In recent years, the Chinese Government has
increasingly shown concerns in these environmental problems. Many environmental
regulations have been published to promote clean production technologies and to reduce
pollutions so as to create sustainable development of the economy and environment (Li and
Lin, 2016).

However, because of missing professional evaluation of ecological efficiency (i.e. eco-
efficiency) and scientific environmental targets for efficiency improvement, industries
in China still show the tendency of high energy consumption and thus give rise to a
high pollution industry. Therefore, it is urgent to measure the ecological efficiency and
set the benchmark for industries. Ecological efficiency can comprehensively reflects the
operational situation of an industry because it considers both economic factors and
environmental factors in the efficiency evaluation system, which is also called
environmental efficiency (Song et al., 2012; Fang et al., 2013). In this paper, data
envelopment analysis (DEA) approach with the closest target approach have been
applied to measure the eco-efficiency and set environmental targets for the industry’s
performance improvement.

DEA, as a non-parametric programming technique, has become increasingly
popular in evaluating the performance efficiency of a set of homogenous decision-
making units (DMUs) (An et al., 2016; Li and Lin, 2016). So far, it has been widely
applied in evaluating the eco-efficiency (Färe et al., 1989; Tone, 2004; Leleu, 2013; Zhou
et al., 2012). Song et al. (2012) reviewed the DEA models for eco-efficiency when
considering a system as a “black box”. In that review, eco-efficiency evaluation
methods are classified into three categories according to their ways for addressing the
undesirable outputs. In fact, several other methods should be added now. One is slacks-
based measure (SBM) approach, which deals with undesirable outputs through its
slacks (Tone, 2004). This method can simultaneously measure the inefficiencies in both
inputs and outputs. It breaks through the traditional method of radial measure of
efficiency improvement, but meanwhile, it is not suitable for the output-orientation case
or input-orientation case where the main target is to produce the maximum outputs or
consume the minimum inputs. Another one is weak disposability assumption which is
based on Färe et al. (1989), and undesirable outputs are treated in their original forms
under this assumption. Several works have been developed in this direction (Leleu,
2013; Zhou et al., 2012; Miao et al., 2016). Another group of approaches treats pollution
as a free disposable input (Hailu and Veeman, 2001; An et al., 2017). Each method has its
own strengths and weaknesses. All of these can be used to address the undesirable
outputs as long as they reflect the meaningful economic trade-offs among undesirable
outputs, desirable outputs and inputs, that is, one cannot reduce undesirable outputs
for free (Liu et al., 2010). Whether one should assume a strong disposability or a weakly
disposability in a DEA model will be much dependent on the nature of the applications
that it handles.

However, the previous studies almost set the “furthest” target for a DMU to reach
the ecological efficient while measuring the eco-efficiency (one exception is An et al.,
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2015), especially no work exists in a network system framework. Thus, the benchmark
(target) may not be easily acceptable by the DMU. Recently, some developments focus
on finding the “closest” target so that the DMU under evaluation can achieve efficiency
with the “least” effort. The idea behind the closest targets is that the closer targets
suggest directions of improvement for inputs and outputs of the inefficient units that
may lead them to be efficient with less effort. There are two ways for finding the closest
targets. One is minimizing the selected distance. Frei and Harker (1999) gave the closest
targets by minimizing the Euclidean distance or weighted Euclidean distance to the
efficient frontier; for more extensions in this direction, see Baek and Lee (2009),
Amirteimoori and Kordrostami (2010), Aparicio and Pastor (2014a). Gonzalez and
Alvarez (2001) gained the relative targets by minimizing the sum of input contractions
required to reach the frontier of the technology. Portela et al. (2004) applied directional
distance function approach to determine the targets for the DMUs. Jahanshahloo et al.
(2012) conducted a DEA method to obtain the minimum distance of DMUs to the
frontier by ||�||1. Briec and Lemaire (1999), and Briec and Leleu (2003) used Hölder
distance functions to obtain the evaluated DMU’ minimum distance to the frontier.
Ando et al. (2012) pointed out that the least distance measures based on Hölder’s norms
meet neither weak nor strong monotonicity on the strongly efficient frontier and they
provided a method to guarantee that the function is a weak monotonicity. To realize the
strong monotonicity, Aparicio and Pastor (2014b) provided a solution for output-
oriented models based on an extended production possibility set which is strongly
monotonic; Fukuyama et al. (2014) used the least distance p-norm inefficiency measures
that satisfy strong monotonicity over the strongly efficient frontier to obtain the targets
for the DMUs. The other category is minimizing (or maximizing) the efficiency
measure. Silva et al. (2003) maximized the BRWZ measure proposed by Brockett et al.
(1997) to obtain the closest targets. Aparicio et al. (2007) and Aparicio and Pastor (2013)
proposed several mathematical programming problems to find the closest targets
where the efficiency measure (such as range-adjusted measured, Russell measure, SBM)
was chosen as a criterion of similarity. These programming problems can be easily
solved and it can guarantee the evaluated DMU to reach the closest projection point on
the Pareto-efficient frontier.

To fully measure the inefficiency and set the closest target for a DMU to be efficient, in
this paper, we propose a new closest target method for obtaining the eco-efficiency and the
closest target of the evaluated DMU. In the following section, we will briefly introduce the
previous closest target method and several traditional models. Then, in Section 3, our
method, based a two-stage network structure system is proposed. In Section 4, the closest
target method is applied to 30 Chinese provinces for eco-efficiency measurement and
efficiency improvement. Section 5 concludes with a summary of the findings, and some
suggestions for extensions.

2. Traditional additive model and the closest target
In this section, we first introduce SBM based on the additive DEA model, and then show
Aparicio et al.’s (2007) approach which finds the closest targets. As two representative
approaches in DEA for measuring efficiency and finding the closest targets, these two
approaches have been largely studied and extended.

Considering that we have n DMUs, and each DMUj (j = 1,. . ., n) usesm inputs to produce
s outputs which are denoted by (Xj, Yj), j = 1,. . ., n. It is assumed that Xj = (x1j,. . ., xmj) ≥ 0,
Xj = 0, j = 1,. . ., n, and Yj = (y1j,. . ., ysj) ≥ 0, Yj = 0, j = 1,. . ., n. The additive DEA model
under variable returns to scale is shown as follows:
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max
1
m

Xm
i¼1

s�i0
xi0

þ 1
s

Xs
r¼1

s�r0
yr0

s:t:
Xn
j¼1

l jxij þ s�i0 ¼ xi0;

Xn
j¼1

l jyrj � sþr0 ¼ yr0;

Xn
j¼1

l j ¼ 1;

l j; s�i0 ; s
þ
r0 � 0; j ¼ 1; . . . ; n; i ¼ 1; . . . ;m; r ¼ 1; . . . ; s:

(1)

where l j stands for unknown variable (often referred to as “structural” or “intensity”
variables) for connecting the input and output vectors by a convex combination. Denote

l *
j ; s

�*
i0 ; sþ*

r0

� �
be an optimal solution of the additive DEA Model (1). When the optimal

value for DMU0 is equal to zero, then the DMU0 is efficient; otherwise, DMU0 is
inefficient. It should be noted that this model is different from the SBM model whose

objective function is: min 1� 1
m

Xm
i¼1

s�i0
xi0

 !.
1� 1

s

Xs
r¼1

s�r0
yr0

 !
(Tone, 2001).

Definition 1.The production possibility set is:

T ¼ x; yð Þjx �
Xn
j¼1

l jxij; y#
Xn
j¼1

l jyij;
Xn
j¼1

l j ¼ 1; l j � 0

( )

By Definition 1, we can character the efficient frontier of the PPS, @(T), which consists of the
non-dominated points ofT, as:

@ Tð Þ ¼ X;Yð Þ 2 T jX 0
#X;Y

0 � Y ) X
0
;Y

0� �
¼ X;Yð Þ

n o
(2)

or:

@ Tð Þ ¼ X;Yð Þ j � vX þ uY þ uo ¼ 0;�Xj þ uYj þ uo# 0;
�

j ¼ 1; . . . ; n; v > 0m; u > 0s; g (3)

in a multiplier formwith input and output weights (Ruiz et al., 2014).
Denote the set of efficient points in the PPS by E. The following theorem from Aparicio

et al. (2007) provides a useful characterization of @(T), which will be used in the formulation
of our cost-minimizing target setting model:
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Theorem 1:

@ Tð Þ5 X;Yð Þ 2 Rmþs
þ

����

X5
X
j2E

l jXj;Y5
X
j2E

l jYj;
X
j2E

l j51;

�vXj þ uYj þ uo þ dj50; j 2 E

v > 1m; u > 1s

dj#Mbj; j 2 E

l j#M 1� bj
� �

; j 2 E

dj; l j � 0; bj 2 0; 1f g; j 2 E; uo 2 R

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

whereM is a big positive quantity.
Proof.The proof is similar with Aparicio et al. (2007). We omit it here.
Theorem 1 shows that the points on a Pareto-efficient face of the technology, which

dominate the evaluated unit (Xo, Yo), can be expressed as a combination of extreme efficient
units lying on the same efficient face of the production possibility set. More importantly, the
set of infeasible points in which the minimum distance to the Pareto-efficient frontier is
attained can be represented by a set of linear constraints. Then, by applying Aparicio et al.’s
(2007) mADD model on the additive measure, we can find the closest target for inefficient
DMUo.

3. New closest target method for a systemwith undesirable outputs
Assume that n DMUs will be evaluated. Each of them uses inputs to produce desirable
outputs while generating undesirable outputs. The notations are given as follows. xij is the
ith input of the production system j, yrj is the rth desirable output and zpj is the pth
undesirable output of the production system j. Taking an industry system as an example,
labors, capital stocks and the energy consumption are used to produce the GDP while
producing industrial wastes. Then, we give the definition of production possibility set about
the above structure system.

Definition 2. The production possibility set for the production system is defined as
follows:

Teco ¼ x; y; zð Þjx �
Xn
j¼1

xijl j; y#
Xn
j¼1

yrjl j; z �
Xn
j¼1

zpjl j;
Xn
j¼1

l j ¼ 1

( )

where l j stands for unknown variables (often referred to as “structural” or “intensity”
variables) for connecting the input and output vectors by a convex combination.Xn

j51
l j51 ensures the production possibility set is under the variable returns to scale.

In Definition 2, undesirable outputs are treated as inputs, which is similar to the way of
Liu and Sharp (1999). The efficient DMUs always wish to minimize desirable inputs and
undesirable outputs, and to maximize desirable outputs and undesirable inputs. As Liu et al.
(2010) pointed out, if one only wishes to investigate operational efficiency from this point of
view, there is no need to distinguish between inputs and outputs, but only minimum and
maximum.

According to the closest target method, the following additive DEA model considering
the undesirable outputs is first used to find the efficient DMUs:
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max
1

mþ p

Xm
i¼1

s�i0
xi0

þ
Xq
p¼1

s��
p0

zi0

 !
þ 1

s

Xs
r¼1

sþr0
yr0

s:t:
Xn
j¼1

l jxij þ s�i0 ¼ xi0; i ¼ 1; . . . ;m;

Xn
j¼1

l jyrj � sþr0 ¼ yr0; r ¼ 1; . . . ; s;

Xn
j¼1

l jzpj þ s��
p0 ¼ zp0; p ¼ 1; . . . ; q;

Xn
j¼1

l j ¼ 1;

l j; s
�
i0; s

þ
r0; s

��
p0 � 0; j ¼ 1; . . . ; n; i ¼ 1; . . . ;m; r ¼ 1; . . . ; s; p ¼ 1; . . . ; q:

(4)

where s�i0, s
�
r0 and s��

p0 are the slacks of the ith input, the rth desirable output and the pth

undesirable output of DMU0, respectively. Assume l *
j ; s

�*
i0 ; sþ*

r0 ; s
��*
p0

� �
is an optimal

solution of the additiveModel (4). Then, similar to the work of Chen et al. (2012), based on the
results of the additive Model (4), we use the SBM as the classical eco-efficiency for DMU0,
which can then be computed throughModel (5).

r e ¼ 1� 1
mþ p

Xm
i¼1

s�*
i0

xi0
þ
Xq
p¼1

s��*
p0

zi0

0
@

1
A

0
@

1
A
,

1þ 1
s

Xs
r¼1

sþ*
r0

yr0

 !
(5)

When the optimal value of Model (4) is equal to zero, DMU0 is classical ecological efficient,
otherwise, it is classical ecological inefficient. It is clear that classical ecological efficiency of a
DMU calculated from Models (4) and (5) is based on the furthest targets (maximum input
and output slacks) for the DMU to be efficient.

Denote the set of all classical ecological efficient points in the PPS Teco by Set H. By
Definition 2, we can similarly character the efficient frontier of the PPS, @(Teco), which
consists of the non-dominated points, as:

@ Tecoð Þ ¼ f X;Y ; Zð Þ 2 PjX 0
#X;Y

0 � Y ; Z
0
#Z ) X

0
;Y

0
; Z

0� �
¼ X;Y ; Zð Þg (6)

or:

@ Tecoð Þ ¼ f X;Y ; Zð Þj � vX þ uY � pZ þ u0 ¼ 0;�vXj þ uYj � pZj þ u0# 0;

j ¼ 1; . . . ; n; v > 0m; u > 0s;p > 0qg (7)

in multiplier formwith input and output weights.
Different from Model (4), based on the set H, we built the following closest target model

to measuring the eco-efficiency of each DMU and meanwhile find the closet target for it to be
efficient:
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Min
1

mþ p

Xm
i¼1

s�i0
xi0

þ
Xq
p¼1

s��
p0

zi0

 !
þ 1

s

Xs
r¼1

s�r0
yr0

8:0ð Þ

s:t:
X
j2H

l jxij þ s�i0 ¼ xi0; i ¼ 1; . . . ;m; 8:1ð Þ

X
j2H

l jyrj � sþr0 ¼ yr0; r ¼ 1; . . . ; s; 8:2ð Þ

X
j2H

l jzpj þ s��
p0 ¼ zp0; p ¼ 1; . . . ; q; 8:3ð Þ

X
j2H

l j ¼ 1; 8:4ð Þ

�
Xm
i¼1

vixij �
Xq
p¼1

p pzij þ
Xs
r¼1

uiyrj þ u0 þ dj ¼ 0; j 2 H ; 8:5ð Þ

dj#Mbj; j 2 H ; 8:6ð Þ
l j#M 1� bj

� �
; j 2 H ; 8:7ð Þ

bj 2 f0; 1g; dj � 0; l j � 0; j 2 H ; 8:8ð Þ
s�i0 ; s

þ
r0; s

��
p0 � 0; i ¼ 1; . . . ;m; r ¼ 1; . . . ; s; p ¼ 1; . . . ; q: 8:9ð Þ

(8)

s�i0 , s
�
r0 and s��

p0 are the slacks of the ith input, the rth desirable output and the pth
undesirable output of DMU0, respectively. M is a big enough positive quantity.
Constraints (8.1)-(8.4) are used to calculate the slacks to the linear combination of
extreme efficient units and dominate DMU0. Constraint (8.5) are constraints
corresponding to the multiplier formulation of the additive DEA model but only
considering the restrictions for the efficient DMUs in set H, which ensure that we
consider all the hyperplanes such that all the possible points in Teco lie on or below
these hyperplanes. Constraints (8.6)-(8.8) are the key conditions that determine which
DMU is actively a peer for the evaluation of DMU0. If l j > 0, then bj = 0 and dj = 0.
Thus, if DMUj participates actively as a peer, then it necessarily belongs to the
hyperplane �

Xm

i¼1
vixij �

Xq

p¼1
p pzij þ

Xs

r¼1
uiyrj þ u0 þ dj ¼ 0. If l j = 0, then dj ≥ 0,

which indicates DMUj, is not a peer for evaluating DMU0.
Considering the constraints of Model (4) and Model (8), the following theorem can be

easily derived. We state without proof Theorem 2.
Theorem 2. The optimal value of Model (8) must not be larger than that of Model (4).
Denote ðl *

j ; s
�*
i0 ; sþ*

r0 ; s
��*
p0 ; v*i ;p

*
p; u

*
i ; u

*
0; d

*
j ; b

*
j Þ be an optimal solution of the closest

target Model (8). Then, the closest target for DMU0 is:

x_i0 ¼ xi0 � s�*
i0 ; y_r0 ¼ yr0 þ sþ*

r0 ; u
_

p0 ¼ up0 þ s��*
p0

� �
(9)

for i = 1,. . ., m and r = 1,. . ., s, where s�*
io and sþ*

ro are optimal solutions to mixed-integer
linear programming [Model (8)]. The eco-efficiency for DMU0 based on the closest target can
be obtained by computing the following formula:
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r eco ¼ 1� 1
mþ p

Xm
i¼1

s�*
i0

xi0
þ
Xq
p¼1

s��*
p0

ui0

0
@

1
A

0
@

1
A
,

1þ 1
s

Xs
r¼1

sþ*
r0

yr0

 !
(10)

It should be noted that DMU0 is ecological efficient if and only if all slacks s�*
i0 , sþ*

r0 , s
��*
p0 in

Model (8) are zero, that is, r eco= 1.
Theorem 3. If a DMU is classical ecological efficient, the DMU must be an ecological

efficient.
Proof. According to the definition of classical ecological efficient, an optimal slacks

(s�*
i0 , sþ*

r0 , s
��*
p0 ) in Model (4) for a classical ecological efficient DMU must be zero. From the

constraints of Model (4) and Model (8), we can find slacks (s�*
i0 ¼ 0, sþ*

r0 ¼ 0, s��*
p0 ¼ 0) for

the classical ecological efficient DMU in Model (4) which maximize the slacks and must be a
feasible solution of Model (8) which aims to minimize the slacks. As the constraints of
s�*
i0 � 0, sþ*

r0 � 0 and s��*
p0 � 0, the optimal slacks in Model (8) must be equal to zero too.

Thus, the DMUmust be ecological efficient.

4. Application to the Chinese provincial industry
In this section, the eco-efficiency of industrial production systems with the closest targets of
30 provinces or municipalities in China are investigated, excluding Tibet because many data
are missing there.

4.1 Data and variables’ selection
Based on the existing literature (Bian and Yang, 2010; Shi et al., 2010; Goto et al., 2014; Wu
et al., 2015), the following input and output variables are selected. Inputs in the industrial
system are labors, capital stocks and energy consumption. “Labors (LAB)” refers to the
average number of employees per year as per statistics. As there are no capital stocks (CS)
statistics about industry in China, changes in fixed capital investment can closely convey
changes in capital stock assuming a constant depreciation rate as Shi et al. (2010) suggested.
The amount of fixed capital investment is used to represent the amount of capital stocks,
which is commonly used by some authors (Ng and Chang, 2003; Shi et al., 2010; Bian and
Yang, 2010; Wu et al., 2015). “Energy consumption (EC)” refers to the amount of standard
coals consumed by the province or municipality (Bian and Yang, 2010). According to
Chinese reports, energy consumptions in an industry accounts for about 70 per cent of the
total energy consumptions (www.china-esi.com/pat/60893.html). “Industrial GDP (IGDP)” is
commonly selected as a desirable output for efficiency measurement of industry (Wu et al.,
2013). “Industrial solid wastes (ISW)”, “industrial waste water (IWW)” and “industrial waste
gas (IWG)” are selected as the undesired outputs (Wu et al., 2015). “Industrial solid wastes”
refer to the total amount of solid wastes that were produced including hazardous waste,
smelting slag, fly ash, slag, coal gangue, tailings, radioactive waste and other waste;
“industrial waste water” refer to the total volume of waste water discharged in industry;
“industrial waste gases” refer to the total amount of industrial waste gas emission which
include sulphur dioxide, nitrogen oxides, smoke and dust and others. All data were collected
from the China Statistical Yearbook, China Environment Yearbook covering the years of
2007-2014[1]. The units of LAB, CS, ISW, IWW, IWG and IGDP are 1,000 persons, RMB 1bn,
10,000 tons of standard coals, 10,000 tons, 10,000 tons, 10,000 tons, RMB 1bn. The
descriptive statistics and the test of the variables are shown in Table I.

To save the space, we show the trend of mean and standard deviation of these variables
in Figures 1 and 2, instead of their descriptive analysis for each year. It can be seen from
Figure 1 that the mean values of labor force, capital and industrial energy consumption
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increased year by year, which means that each province increased its industrial
investments. Industrial GDP increased gradually which reflects the development of the
industrial economy. The figures also show that industrial solid wastes and industrial waste
gas gradually increased, while the industrial waste water decreased in these years. Figure 2
illustrates the standard deviations (i.e. SD) of all the seven variables. The deviation of these
variables except industrial waste water all increased. The results from Figures 1 and 2

Table I.
Descriptive statistics
and test of inputs
and outputs during
2006-2013

Mean SD 1 2 3 4 5 6 7

1.LAB 2099.8 1740.1 1
2.CS 3637.25 3266.36 0.70** 1
3.EC 8712.01 27229.3 0.77** 0.82** 1
4.ISW 8085.97 7422.51 0.22** 0.55** 0.64** 1
5.IWW 77589.4 65955.6 0.77** 0.63** 0.70** 0.20** 1
6.IWG 16905.1 13247.1 0.54** 0.77** 0.85** 0.83** 0.53** 1
7.IGD 6144.7 5631.88 0.9** 0.85** 0.88** 0.36** 0.77** 0.69** 1

Notes: **Shows significance at the 0.05 level; **shows significance at the 0.01 level

Figure 1.
Mean value of these
variables in
2006-2013

Figure 2.
Standard deviation
value of these
variables in
2006-2013
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imply that the increasing investments in industry stimulated the development of industry.
Meanwhile, the industrial solid waste and industrial waste gas increased. It was interesting
that the industrial waste water decreased in these years which may be caused by the
government’s policy on the treatment of waste water.

Furthermore, to analyze the trends of provinces’ eco-efficiencies from a larger-scale
viewpoint, we divide the 30 provinces into three regions based on geographical
characteristics, natural conditions, resource structures, economic development and similarity
of social structures (Li and Lin, 2015). This division is common in China, and each region
possesses greater technological heterogeneity caused by the geographical barriers associated
with the spread of technology (Oh, 2010). The detailed division is shown in Table II.

4.2. Empirical analysis
Considering each province in each year as a DMU, the classical ecological efficiency of each
province can be derived by usingModel (4) andModel (5), as shown in Table III.

E, C and W in parentheses of the first column refer to the eastern, central and western
regions, respectively. The provinces in a certain year having the efficiency of 1 are efficient
which are signed in bold. It can be found that the number of efficient provinces in 2011 and
2012 are the maximum, followed by 2010, while there are only two efficient provinces in 2006
and 2007. Besides the efficient provinces, we can find that most inefficient provinces
performed well in 2010, 2011, 2012 and 2013. Moreover, the average efficiency of these
provinces had gradually increased during 2006 to 2013, which indicates that China had made
some achievement on improving the environment. To clearly see the difference, the average
efficient value of 30 provinces in each year is calculated and shown in the last row of Table IV.

It can be seen from Tables III and IV that the classical eco-efficiency of Chinese industries
has become better in these years. Dividing these provinces into three regions by Table II, the
classical ecological efficiencies of these three regions are given in Table IV. It can be seen
that Eastern China’s industries performed the best, followed by Central China’s industries,
andWestern China’s industries performed the worst in recent years. This is because Eastern
China is more attractive than other regions to skilled laborers and qualified enterprises.
Many skilled laborers in Central and Western China go to Eastern China for work.
Moreover, with regard to the development of transportation in China, the disadvantage of
location for Central and Western China, especially Western China, is increasingly obvious.
Based on these results, we suggest that the Chinese Government should focus on the
increasing differences among regions and take measures to address them.

In details, Central China’s industry and Western China’s industry performed similarly in
2007 to 2009, but after 2009, Central China’s industries improved more greatly thanWestern
China’s industry. These results indicate that the location has a big influence on the classical
ecological efficiency. Furthermore, the classical ecological efficient provinces are determined
in Table IV which will be used in Model (8) for forming the efficient setH so as to obtain the
closest target and eco-efficiency for each province, which are shown in Table V.

Table II.
Three administrative

regions

Region Administrative regions

Eastern China Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu
Zhejiang, Fujian, Shandong, Guangdong, Hainan

Central China Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan
Western China Sichuan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu

Qinghai, Ningxia, Xinjiang, Guangxi, Inner Mongolia
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From Table V, we can see that the average ecological efficiency of these provinces’ industries
based on closet target method is larger than the average classical ecological efficiency.
Briefly, ecological efficiency hereafter all refer to the ecological efficiency based on the closet
target method without special explanation. From other points, the results indicated that the
ecologically inefficient provinces can use the closest target method that requires fewer efforts
than the classical method. From these results, we can also find that the performance in 2010,
2011 and 2012 is much better than that in other years. By using our model, the closest targets
for each province achieving efficiency can be obtained. Analogously, we show the eco-
efficiency of three regions in Table VI.

Compared to the classical ecological efficiency, we find that the ecological efficiency
based on the closest target method was steadier and the difference among three regions was

Table III.
Classical ecological
efficiencies of
province

2006 2007 2008 2009 2010 2011 2012 2013

Beijing (E) 0.9678 0.8864 1.0000 0.9989 1.0000 1.0000 1.0000 1.0000
Tianjin (E) 0.6528 0.7148 0.9937 0.9631 1.0000 0.8059 1.0000 1.0000
Hebei (E) 0.4553 0.5573 0.9838 0.7167 1.0000 1.0000 0.8982 1.0000
Shanxi (C) 0.3298 0.3516 0.4236 0.3639 0.4802 0.6628 0.4976 0.4514
Inner Mongolia (W) 0.3007 0.3874 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Liaoning (E) 0.3430 0.3851 0.5431 0.6569 0.9651 1.0000 1.0000 0.9136
Jilin (C) 0.3736 0.4533 0.5934 0.6966 1.0000 1.0000 1.0000 0.9873
Heilongjiang (C) 0.6100 0.5856 0.5523 0.4285 0.6535 0.8530 0.7461 0.6879
Shanghai (E) 0.9184 0.8546 1.0000 0.9490 1.0000 1.0000 0.9967 1.0000
Jiangsu (E) 0.7394 0.8388 1.0000 1.0000 1.0000 1.0000 1.0000 0.9820
Zhejiang (E) 0.5988 0.6599 0.7500 0.7492 0.8392 0.9341 0.9619 0.9864
Anhui (C) 0.3571 0.3834 0.4724 0.5135 0.7543 0.9140 0.9748 0.8319
Fujian (E) 0.7022 0.6596 0.6590 0.6449 0.7556 0.8488 0.8849 0.9696
Jiangxi (C) 0.4533 0.4945 0.5170 0.5882 0.8621 0.9117 0.9495 0.9914
Shandong (E) 0.4838 0.5765 0.7835 0.8397 0.9340 0.9167 0.9159 0.9482
Henan (C) 0.4271 0.4993 0.6996 0.7032 0.9125 0.8694 0.8594 0.7769
Hubei (C) 0.4260 0.3876 0.4636 0.5061 0.6056 0.5988 0.7925 0.6637
Hunan (C) 0.4609 0.4151 0.4933 0.4935 0.6375 0.7513 0.8732 0.8985
Guangdong (E) 0.9775 0.9927 0.9986 0.9308 0.9927 1.0000 1.0000 1.0000
Guangxi (E) 0.3750 0.4285 0.4887 0.4776 0.7466 1.0000 1.0000 0.8293
Hainan (E) 1.0000 1.0000 1.0000 0.8641 1.0000 1.0000 1.0000 0.9376
Chongqing (W) 0.3453 0.3453 0.3795 0.4931 0.6203 0.5399 0.5854 0.6992
Sichuan (W) 0.3715 0.3345 0.3948 0.4379 0.6032 0.7466 0.8372 0.9603
Guizhou (W) 0.3955 0.4463 0.4846 0.4181 0.4223 0.3432 0.3676 0.4437
Yunnan (W) 0.3589 0.3400 0.3662 0.3427 0.4216 0.3802 0.3910 0.4025
Shaanxi (W) 0.4686 0.4137 0.4856 0.4861 0.6981 0.8794 1.0000 0.8284
Gansu (W) 0.3834 0.3794 0.3773 0.3504 0.4610 0.3887 0.3595 0.3356
Qinghai (W) 1.0000 1.0000 1.0000 1.0000 1.0000 0.6601 0.6585 0.8759
Ningxia (W) 0.4077 0.4651 0.5512 0.4632 0.4308 0.6023 0.4784 0.4282
Xinjiang (W) 0.4438 0.4774 0.6730 0.4576 0.6776 0.6666 0.3809 0.3379
Average 0.5376 0.5571 0.6709 0.6511 0.7825 0.8091 0.8136 0.8056

Table IV.
Classical ecological
efficiencies of three
regions

2006 2007 2008 2009 2010 2011 2012 2013

Eastern 0.6845 0.7128 0.8500 0.8159 0.9361 0.9588 0.9715 0.9639
Central 0.4297 0.4463 0.5269 0.5367 0.7382 0.8201 0.8366 0.7861
Western 0.4475 0.4589 0.5712 0.5449 0.6335 0.6207 0.6058 0.6312
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smaller. The results indicated that the closest target for each province to be efficient was
steadied. Thus, the targets were more easily accepted by the province because they put
similar efforts in each year for improving performance. However, we can clearly see that the
average efficiencies had increasingly improved in these years.

Because the analysis of target setting for all eight years is similar, here, we only show the
closest targets of the provinces in 2008 for illustrating our approach. It should be noted that
the results in other years can be also obtained byModel (8).

The provinces in bold were all ecologically efficient. They included: Beijing, Inner
Mongolia, Shanghai, Jiangsu, Hainan and Qinghai. These provinces did not need
improvement. It can be found that more than half of these are well-developed, such as,

Table V.
Ecological

efficiencies based on
the closest target

method

2006 2007 2008 2009 2010 2011 2012 2013

Beijing (E) 0.9678 0.9495 1.0000 0.9989 1.0000 1.0000 1.0000 1.0000
Tianjin (E) 0.9774 1.0000 1.0000 0.9988 1.0000 0.9603 1.0000 1.0000
Hebei (E) 0.6171 1.0000 0.7039 0.9276 1.0000 1.0000 0.8982 1.0000
Shanxi (C) 0.6625 0.7223 0.8003 0.8047 0.6232 0.8167 0.8469 0.6720
Inner Mongolia (W) 0.7108 0.8442 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Liaoning (E) 0.5880 1.0000 0.9171 0.9105 0.9651 1.0000 1.0000 0.9175
Jilin (C) 0.8033 0.8553 0.8943 0.9165 1.0000 1.0000 1.0000 0.9873
Heilongjiang (C) 0.7987 0.8512 0.9235 0.9360 0.9858 0.9735 0.9406 0.6879
Shanghai (E) 0.9533 0.9770 1.0000 0.9882 1.0000 1.0000 0.9787 1.0000
Jiangsu (E) 0.8965 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Zhejiang (E) 0.8094 1.0000 0.8631 0.8401 0.8756 1.0000 1.0000 1.0000
Anhui (C) 0.7878 0.8307 0.8897 0.8738 0.9339 0.9140 0.9748 0.8319
Fujian (E) 0.7575 1.0000 0.8218 0.8259 0.8637 0.8662 0.8849 0.9696
Jiangxi (C) 0.7238 0.7569 0.7622 0.7558 0.8621 0.9117 0.9495 0.9914
Shandong (E) 0.8963 1.0000 0.9676 0.9607 0.9340 0.9167 0.9159 1.0000
Henan (C) 0.8393 1.0000 0.9609 0.7978 0.9678 0.9612 0.9613 0.8605
Hubei (C) 0.7640 1.0000 0.8483 0.8829 0.7803 0.9406 0.9608 0.9448
Hunan (C) 0.7520 1.0000 0.8530 0.7345 0.9332 0.9817 0.9693 0.9824
Guangdong (E) 1.0000 1.0000 0.9986 0.9369 0.9927 1.0000 1.0000 1.0000
Guangxi (E) 0.7780 0.7963 0.8558 0.8605 0.8953 1.0000 1.0000 0.9443
Hainan (E) 1.0000 1.0000 1.0000 0.9635 1.0000 1.0000 1.0000 0.9376
Chongqing (W) 0.7007 0.7510 0.8049 0.8340 0.9587 1.0000 0.9952 0.9575
Sichuan (W) 0.7103 1.0000 0.7974 0.8187 0.9354 0.9880 0.9767 0.9603
Guizhou (W) 0.6537 0.6773 0.7843 0.7586 0.7604 0.8108 0.8545 0.7158
Yunnan (W) 0.7351 0.7461 0.7859 0.7808 0.8551 0.8096 0.8194 0.8534
Shaanxi (W) 0.7834 0.8108 0.9087 0.9471 1.0000 1.0000 1.0000 0.8829
Gansu (W) 0.7942 0.8548 0.8874 0.8593 0.8970 0.8785 0.8437 0.3901
Qinghai (W) 1.0000 1.0000 1.0000 1.0000 1.0000 0.8289 0.8036 0.8759
Ningxia (W) 0.6982 0.7515 0.7862 0.7557 0.6728 0.7574 0.8110 0.8151
Xinjiang (W) 0.8873 0.9047 0.9513 0.8780 0.9604 0.9412 0.8876 0.6469
Average 0.8015 0.9027 0.8922 0.8849 0.9218 0.9419 0.9424 0.8942

Table VI.
Ecological

efficiencies of three
regions

2006 2007 2008 2009 2010 2011 2012 2013

Eastern 0.8534 0.9769 0.9273 0.9343 0.9605 0.9786 0.9731 0.9808
Central 0.7664 0.8771 0.8665 0.8378 0.8858 0.9374 0.9504 0.8698
Western 0.7674 0.8340 0.8706 0.8632 0.9040 0.9014 0.8992 0.8098
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Beijing, Inner Mongolia, Shanghai and Jiangsu. They did well in economic development.
Hainan and Qinghai are tourist provinces. They did well in environmental protection.
Except these areas, to be ecological efficient, other provinces need to reduce their inputs
(labors, capital stocks and energy consumption) or decrease their undesirable outputs
(industrial solid wastes, ISW; industrial waste water, IWW; industrial waste gas, IWG) or
increase their industrial GDP. Taking Hebei as an example, it should decrease the
number of labors to 1,309.4 units (about 34.05 per cent reduction), maintain the capital
stocks at 4,735.25 units, reduce the energy consumption to 17,631.02 units (about 27.51
per cent reduction), industrial solid wastes to 17,426.37 units (about 11.85 per cent
reduction), industrial waste water to 39,344.55 units (about 67.53 per cent reduction),
industrial waste gas to 23,766.7 units (about 36.72 per cent reduction) while maintaining
the industrial GDP at 7,967.62 units. Other provinces can use similar ways to improve
their eco-efficiency to be efficient. It should be noted that with our approach, we can not
only decide the benchmark for the evaluated provinces to be efficient with the least
efforts but also determine the eco-efficiencies of the provinces. Thus, our approach is
attractive for guiding the local governments to develop related economic and environmental
policies. For example, if the aspect of energy consumption is weak, the governments should
publish some policies to stimulate the firms to use high technology to increase the utilization
ratio of energy and save energy consumption in real production.

Table VII.
The targets based on
our method

Labors Capital EC ISW IWW IWG IGDP

Beijing (E) 1402.4 386.05 6327 1157 8367 4316 2198.49
Tianjin (E) 941.2 1506.8 5364 1479 20433 6005 3533.86
Hebei (E) 1309.4 4735.25 17631.02 17426.4 39344.55 23766.7 7967.62
Shanxi (C) 1398.7 1868.89 9754.55 8644.8 41150 19348.4 3919.80
Inner Mongolia (W) 797.7 2863.11 14100 10622 29167 20190 3798.6
Liaoning (E) 1837.9 4833.11 14595.04 15841 83073 34966.4 6735.74
Jilin (C) 795.4 2733.89 6217.28 3415 26080 6155 2686.98
Heilongjiang (C) 1719.2 1514.08 8968.13 4472 25256.5 7796 3927.58
Shanghai (E) 1597.1 1427.69 10207 2347 41871 10436 5784.99
Jiangsu (E) 3719.6 8342.44 22232 7724 259999 25245 15068.98
Zhejiang (E) 3239 4267.02 14883.42 3785 96414.7 17633 10359.77
Anhui (C) 853.5 2960.14 8325 7569 48982.1 15749 3487.53
Fujian (E) 1856 2035.03 8254 5371 38485.2 9150 4755.45
Jiangxi (C) 811.4 2545.97 5383 3024.57 34848.7 7456 2766.93
Shandong (E) 4877.8 7854.87 24630.25 12988 176977 33505 16102.19
Henan (C) 2672.5 5422.37 16871.56 9557 133144 20264 9546.08
Hubei (C) 1605.9 2352.25 9978.00 5014 46487.5 11558 4330.20
Hunan (C) 1644.4 2268.60 9424.39 4520 42051.6 9249 4280.16
Guangdong (E) 4980.3 3902.74 20886.60 4287.8 119989.1 20510 17254.04
Guangxi (E) 959.4 1541.62 6497 5417 27755 11643 2627.39
Hainan (E) 149.6 119.49 1135 220 5991 1345 321.18
Chongqing (W) 765.3 1390.36 4599 2311 29512 7351 2036.40
Sichuan (W) 1739.5 2879.31 11407.21 9237 38305.9 12997 4922.84
Guizhou (W) 376.1 794.79 4701.65 3240.5 11695 6842 1242.56
Yunnan (W) 553 1306.62 5516.08 3989.01 32600.1 8316 2056.95
Shaanxi (W) 1205 1679.40 7417 6121 28538.4 9706 3293.95
Gansu (W) 395.3 806.23 4083.81 3141.42 16405 5685 1221.66
Qinghai (W) 146.8 297.21 2279 1337 7098 3237 442.85
Ningxia (W) 185.5 398.59 2150.51 1143 11913 3159.15 490.14
Xinjiang (W) 625.8 1142.18 5004.15 2438 22875 6154 1790.7
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5. Conclusions
Many previous works have been conducted on the ecological efficiency evaluation of the
Chinese industry; meanwhile, the benchmarks for the Chinese industry are determined, such
as Bian and Yang (2010) and Chen and Jia (2017). But the benchmarks by these methods are
usually set by the furthest targets for each Chinese industry to achieve efficiency. In this
paper, to make the industry efficient with fewer efforts, we applied the closest target method
in the DEA to measure eco-efficiency and set benchmarks.

The results show that the average eco-efficiencies of Chinese provincial industries
gradually increased during 2006-2013. This indicated that China had made some
achievement in protecting the environment and building a harmonious society, where
economy and environment develop coordinately. The industry in Eastern China performed
the best, followed by Central China, and Western China performed the worst. Compared
with the classical eco-efficiency, eco-efficiency based on our closet target method of each
province was larger because the efforts (improvement) made for achieving efficiency for the
province by our method were fewer. Moreover, we find that all eco-efficient provinces are
highly developed provinces with a big economy, such as Beijing, or tourist provinces with
fine environment, such as Hainan. Other efficient provinces can learn from these provinces
to develop policies according to their economic and environmental situations.

Note

1. The data are available in website http://tongji.cnki.net/kns55/navi/NaviDefault.aspx
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