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Abstract
Purpose — Previous dynamic prediction models rarely handle multi-period data with different intervals, and
the large-scale patient hospital records are not effectively used to improve the prediction performance. This

paper aims to focus on the prediction of cardiovascular disease using the improved long short-term memory
(LSTM) model.

Design/methodology/approach — A new model based on the traditional LSTM was proposed to predict
cardiovascular disease. The irregular time interval is smoothed to obtain the time parameter vector, and it is
used as the input of the forgetting gate of LSTM to overcome the prediction obstacle caused by the irregular
time interval.

Findings — The experimental results show that the dynamic prediction model proposed in this paper
obtained a significant better classification performance compared with the traditional LSTM model.
Originality/value — In this paper, the authors improved the LSTM by smoothing the irregular time
between different medical stages of the patient to obtain the temporal feature vector.
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1. Introduction
Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels
(Mendis et al., 2011). CVD is the chronic disease that poses the greatest threat to people, and
now it has become one of the leading causes of death around the world (Gibbons et al., 1999).
According to data released by the World Health Organization in May 2017, approximately
17.7 million people died of CVD in 2015, accounting for 31 per cent of the global death.
Therefore, medical professionals and researchers have carried out extensive studies on the
treatments and interventions for CVD (Kagashe et al., 2017; Yan et al., 2016; Zhu et al., 2017).
Unlike acute diseases, there are many stages during the development and evolution of
chronic diseases, and the characteristics of chronic diseases vary across stages (Asaria ef al.,
2007). To take early interventions and maintain the healthiness of patients with CVD,
various predictive models were developed to identify high-risk groups or predict the
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development of disease. Most previous disease prediction models were based on case-cohort
study to investigate the relationship between potential high risk factors and morbidity and
mortality (Ganna and Ingelsson, 2015). It is found that body mass index (Rost et al., 2018),
waist-hip ratio (Zwakenberg ef al.,, 2018) and sitting time and sitting posture (Howell et al.,
2017) have high correlations with the morbidity of CVD. However, due to the high cost of
case-cohort study, the training data of these models are insufficient, and the prediction
performance needs further improvement.

In recent years, with the development of information technology and the wide application
of information systems in medical industry, hospital information system (HIS) has
accumulated large-scale and multi-dimensional data including patient demographics, disease
symptoms and diagnosis and biochemical indicators (Ahmadi et al, 2017). HIS is an ideal
data source to support risk assessment and the development of prediction models of CVD
with machine learning algorithms (Goldschmidt, 2005). Long short-term memory (LSTM) is a
recurrent neural network (RNN) that is suitable for processing and predicting important
events with relatively long intervals and delays in time series. However, in the context of
medical industry, the time interval between multiple hospitalizations of patients is different,
and the traditional LSTM cannot effectively learn the important characteristics of patient’s
medical condition, which limits the practical application of LSTM in medical problems.

In this paper, we improved the LSTM by smoothing the irregular time between different
medical stages of the patient to obtain the temporal feature vector. The temporal feature vector is
used as the input of the forgetting threshold, which can effectively deal with the irregular time
interval between the multi-period data and improve the predictive performance of the model.

2. Literature review

Machine learning algorithms have been used in various fields including disease prediction.
Using logistic regression, Zhou et al. constructed a risk score model for type 2 diabetes in
middle-aged male populations in rural China (Zhou ef al, 2017). Lin et al. considered the
problem of co-occurring diseases and constructed a Bayesian multi-task learning model for
chronic diseases and their corresponding complications (Lin ef al, 2017). To improve the
accuracy of prediction, Long et al. proposed a hybrid heart disease prediction method, which
combines rough set theory, clustering algorithm, genetic algorithm, naive Bayes and
support vector machines, and the model showed obvious advantages over baseline models
(Long et al, 2015). Based on electronic medical record data, Ye et al. used the xghoost
algorithm to predict the risk of hypertension of patients (Ye ef al., 2018).

However, existing models usually take a single period of sample data as input, and
ignoring the time-series characteristics of clinical medical data, especially for chronic
diseases. Therefore, many studies began to consider the inclusion of time series features in
the model of chronic disease static prediction to construct a dynamic prediction model of
chronic diseases. Marini ef al. used the dynamic Bayesian model to simulate the long-term
disease state of type 1 diabetes. The model can dynamically simulate the development of
type 1 diabetes and predict future status (Marini et al., 2015). Bueno et al. proposed to use a
dynamic Bayesian network to model the patient’s data over multiple periods to study the
potential physiological changes that may occur after the patient received the drug treatment
(Bueno et al., 2016). Jackson et al. constructed a three-stage hidden Markov model (HMM) to
characterize and predict chronic rejection after six months of lung transplantation (Jackson
and Sharples, 2002). Forkan, et al. combined the HMM with neural network algorithms to
learn and construct the probability of future disease in chronic diseases for elderly people
living alone (Forkan and Khalil, 2017). However, both the dynamic Bayesian model and the
HMM assume that the time interval between successive observations is fixed, and the
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computational complexity increases rapidly as the number of variables increases, which
limits the ability to learn complex data.

RNN is a kind of neural network used to process sequential data (Graves et al., 2013b).
The network memorizes the previous information and applies it to the calculation of the
current output, that is, the nodes between the hidden layers of each segment also establish a
connection. In addition, the input of the hidden layer at time step  includes the input of the
input layer at time step ¢ and the output of the hidden layer at time step t-1 (Graves, 2013a).
However, in the process of learning long-term data, RNN may have the problem of gradient
disappearing. In light of this, an improved version of RNN named LSTM was proposed to
solve the problem of gradient disappearance in the long-dependent learning process by
introducing structures of forgetting gates (Graves, 1997).

However, the existing LSTM model also assumes a fixed time interval between different
time slices, which limits its practical application in medical problems. In view of the above
problems, this paper improves the internal structure of the LSTM unit through
parameterizes the time interval between time slices, thus obtaining important information of
the influence of time interval on the development of disease.

3. Model framework
This paper investigates how to predict the diagnosis result at time step ¢ (Y7), in the case of a
given patient’s records from time step 1 to time step # (X7, X5, . . ., X7). Among them, the number
of records per patient and the time interval between samples X; ;, X;, and X, 1 could be different.
To use LSTM to process sequence data with irregular time intervals, we first adapt the
threshold structure of the LSTM unit to learn the temporal characteristics associated with
CVD evolution at different time intervals. After that, we propose to use the target repeat
prediction method for the output of hidden layer at each time step, which can simplify the
model training process with different lengths of time series. Finally, for the output layer of
the model, the Sigmoid function is introduced as the activation function of the multi-tag
output, so that the patient’s multiple diagnostic tags are predicted as output. The overall
structure of the model is shown in Figure 1.

3.1 Introduction to long short-term memory

A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate.
The cell remembers values over arbitrary time intervals, and the three gates regulate the
flow of information into and out of the cell.

Figure 2 shows the structure of a traditional LSTM cell and illustrates the operations of
the gates. There are three gates (input, forget and output) in the basic cell of LSTM, and each
gate has a sigmoid activation function and a point-wise multiplication operation. The basic
cell of the LSTM is defined as the following equations:

fi= U(Wf[ht,hxt] + bf) 1
i = o (Willy1, 2] + b;) @
oy = U(Wa [htfhxt] + ba) ®)

where f; denotes the output of forget gate to the network at time step #, where o is the
logistic sigmoid function. i; and o; denote the output of input gate and output gate,
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respectively. x; and /,; are the input and the previous hidden state, respectively. W, W;, W,,
by, b;and b, are weight matrices which are learned.

3.2 Improved long short-term memory

In the medical situation, patients with chronic diseases will go to the hospital because of the
development of the disease, such as deterioration or recurrence. However, different patients
may have different time intervals between hospitalizations due to their physical condition,
condition, etc., and the difference may range from less than 1 month to several years. The
lack of time interval brings certain difficulties and challenges to the study of clinical time
series data.

To solve the problem of irregular time interval, we propose to smooth the time interval to
obtain the time parameter vector and use it as the input of LSTM forget gate. The improved
LSTM cell is shown in Figure 3. We will introduce the forward propagation process of the
LSTM network.

The first step in the forward propagation of the LSTM network is the calculation of
the forgotten threshold. This threshold determines which of the input information
will be forgotten and will not affect future time step. In detail, the time interval
between the time step t-1 and the time step # is smoothed to obtain a three-dimensional
vector, and the time vector is used as an input parameter of the forget gate, as shown
in equation (1).
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Figure 1.
Dynamic prediction
model structure of
cardiovascular
disease

Figure 2.
Traditional LSTM
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Figure 3.
Improved LSTM cell

fe= U(Wf[ht—hxt] + Prbac + bf) @

In equation (4), Prpa, ,, represents a vector after the smoothing of the time interval between
time slices, and the smoothing formula is shown in equation (5):

p o Atfl:t (Atlzt>2 (Atlzt)s (5)
A =\ 760 "\ 180 ) "\ 365

In equation (5), A1, represents the time interval, in units of days. Because patients rarely re-
hospitalize in the same month, so we choose two months as the denominator, then half a
year and one year, making the vector p,, ,, within a reasonable range.

Pris a connection weight parameter corresponding to the time interval vector, which
needs to be optimized for training to handle the memory effect generated by the irregular
time interval.

The second step of forward propagation determines what information is saved in the cell

state. First, you need to generate a temporary state and then update the old cell state. The
formula is shown in equations (6) and (7).

Cr= tanh(Well—1, 4] + be) ©)

G=r*C +it*ét @)

where W¢ and b¢ are the connection weight and offset of the temporary state. C; is a
temporary state containing new candidate values. C.; is the status information of the
previous time step. C; is the state of the time step ¢ after the update.

The third step of forward propagation determines the final network output, as shown in
equation (8).

ht = 0¢ * tanh(Ct) (8)
where i, is the current hidden state, and %, and C; will be used as input for the next time step.
3.3 Target repeat prediction

When constructing a traditional LSTM network model, generally, only the output prediction
of the last time step is given, and the error of the entire network is calculated to update the



network weight. However, when a sample has or is truncated into a short time series, the
prediction performance could be worsened.

To solve the above problem, this paper adopts the target repeat prediction method. For
the output of the hidden layer of each time step, the prediction probability of the diagnosis is
calculated by the Sigmoid activation function, and the prediction loss of each time step is
obtained by combining the real classification label. Finally, we use the weighted summation
of the prediction loss of all time slices and the prediction loss of the last time slice as a loss
function of the entire model to update the parameters of the entire model.

For a single time step, the loss function is calculated as follows:

=

loss(,y) = Tl — (i - log(;) + (1 — ;) - log(1 — 3,)) ©)
i1

In equation (9), y represents the disease diagnosis classification probability vector calculated
by the Sigmoid function in a single time slice, and 3, represents the output probability of
the corresponding i-th disease diagnosis. y indicates the actual class label of the current
sample, and y; indicates the classification label of the i-th disease diagnosis, taking 0 or 1. C
represents the dimension of the classification label vector. The overall loss function for the
entire model is shown in equation (10):

T
loss = a%Zloss(ﬂ”,y“O + (1= a) - loss(GT, y7) (10)
=1

In equation (10), ¥ is the real classification label of time slice ¢, and jz(t) represents the
corresponding classification label prediction probability vector. « is the hyperparameter of
the model, which is used to measure the sum of the predicted losses of all time slices and the
weight of the last time slice prediction loss for the overall loss of the model.

3.4 Multi-label classification

In actual medical scenes, doctors make a disease diagnosis based on patient’s laboratory
indicators. Patients may have multiple diseases at the same time, such as coronary heart
disease and type 2 diabetes. Thus, we define the disease diagnosis task as a multi-label
classification task. This paper proposes a prediction model for multi-label classification,
while the traditional model normally handles the single classification problem.

In the selection of the classification label, in addition to CVD, diseases that may cause
CVD and diseases that may be caused by CVD are also included (Jonnagaddala et al., 2015),
such as hyperlipidemia, diabetes and so on, which can be divided into eight categories (c1, ¢a,
..., cg). The diagnosis output for each sample is represented as eight-dimensional vectors
with Boolean values. The i-th dimensional of the vector is 1 if the diagnosis belongs to ¢; and
0 otherwise.

Compared to logistic and Softmax function, all elements in the output probability vector
of Sigmoid function are not equal to 1, which is more suitable for multi-label classification
problems. Therefore, we use Sigmoid as the activation function of our model. In existing
multi-label classification studies, the classification result is the k-value element with the
highest numerical value in the output probability vector, and the value of k is determined
according to the actual problem (Tsoumakas et al., 2007). In this paper, the average number
of labels for all samples is about 3, and k is set to 3.
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Tablel.
Test indicators

4. Experiment analysis

4.1 Data description

In the study, we used the data collected from the HIS of a hospital. The data set contained
age, sex, 23 test indicators and nine disease diagnosis labels. The specific test indicators we
used are shown in Table I. The disease diagnosis labels are shown in Table II. All
information of patients that are recorded during hospitalization was identified by the patient
ID and hospital ID. The disease diagnosis uses International Classification of Diseases 10th
Revision (ICD-10) coding, and the test and inspection items use the system-defined code,
which can be uniquely identified.

4.2 Data preprocess

To make the data meet the requirements and specifications, we only keep the records of
patients whose “patient ID” and “hospital ID” is non-empty, the number of hospitalizations
is more than twice, the “discharge method” is “normal”, “age” is 18 or older, “admission
time” and “discharge time” is valid, and the diagnostic records include cardiovascular or
related diseases.

After preprocessing, we obtained 12,545 hospital records generated by 3,805 patients
collecting from 15 March 1999 to 7 July 2010and calculated the length of time series for each
sample. As shown in Figure 4, the length of samples is mostly concentrated from 2 to 5.
Therefore, in the subsequent model training process, we set the maximum length of all
samples to be 5. Samples with length less than 5 are complemented by 0, and samples with
length longer than 5 are truncated.

The data set consists of 2,176 males and 1,629 females. The age distribution is shown in
Table II1.

Column Test indicator
1 Serum albumin (g/L)
2 Low density lipoprotein cholesterol (mmol/L)
3 Triglyceride (mmol/L)
4 High density lipoprotein cholesterol (mmol/L)
5 Glutamic-pyruvic transaminase (IU/L)
6 Glutamic oxalacetic transaminase (IU/L)
7 Creatine jubase (IU/L)
8 Creatine Kinase Isoenzyme (IU/L)
9 Creatinine (umol/L)

10 Kalium (mmol/L)

11 Alkaline phosphatase (mmol/L)

12 Fasting plasma glucose (IU/L)

13 Chlorine (mmol/L)

14 Sodium (mmol/L)

15 Urine-specific gravity (mmol/L)

16 urea nitrogen

17 Uric Acid (umol/L)

18 Urine ph

19 Globulin (g/L)

20 Lactic dehydrogenase (IU/L)

21 Direct bilirubin (umol/L)

22 Total cholesterol (mmol/L)

23 Total bilirubin (mg/dl)




The missing values of continuous variables are filled with mean values, and the missing
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values of discrete variables are filled with the majority. cardiovascular
To meet the input requirements of LSTM, we encode classification features using one-hot disease
encoding. On the test project, the mean, maximum and minimum values of the sequence
data are extracted to achieve feature extraction and dimensionality reduction.
Different variables have different value range and units, and the value range and unit
dimensions have great impact on the weight learning process of the model. Generally, in 21
classification and clustering algorithms, the z-score algorithm is usually used for
normalization, which can achieve better results. Therefore, this paper uses the z-score
standardization method to preprocess the input data.
4.3 Performance evaluation metrics
This paper focuses on the classification of disease diagnosis, and the classification
performance of the diagnosis of different diseases. Therefore, the Precision,,;e.,, Recall, iy,
Column Disease diagnosis label
1 Coronary heart disease
2 Myocardial infarction
3 Stenocardia
4 High blood pressure
5 Cerebral infarction
6 Hyperlipidaemia
7 Diabetes mellitus ] T'able H
8 Chronic renal insufficiency Disease diagnosis
9 Other labels
3,000
2,500
é 2,000
g 1,500
£
. 1,000
%001 Figure 4.
Sample sequence
0- - - v v X
10 15 20 25 length histogram
Length of Sequences
Min st Median Mean 3rd Max Table III.
Sample age
19 54 67 64 76 102 distribution
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TableIV.

The performances of
T-LSTM-TR and
LSTM

and F1,,,,, are selected as evaluation metrics. These three indicators are adapted from the
corresponding single label classification model, and the calculation formulas are as follows:

15
Precisionyyr, = =g —— 11
Zj:l TP + Zj:lF P
L7
Recallyier, = — —— 12
ijl T + Zj:lF N
Fl,. — 2% Precision, ey, * Recall ey, 13)

Precision,,;.,, + Recall,;;cr,

In addition, the AUC indicator indicates the area under the ROC curve and is often used to
evaluate classifier performance. Therefore, in the multi-classification problem of this paper,
we use micro AUC as one of the model evaluation indicators.

4.4 Experimental result

LSTM learn the characteristics of data set from training set and predict the classification
labels of new samples. The hyper parameters of LSTM model needs to be set. The proposed
improved LSTM model is defined as T-LSTM-TR. We train and tune the parameters of our
model using 10-fold cross-validation method.

The hyper parameters need to be adjusted and optimized during training process,
including the number of hidden layer neurons H, the end time slice loss function weight «
and the dropout parameter. The model is trained by setting different parameter sets
separately, and then the test results are compared. Finally, the optimal parameters of the
T-LSTM-TR model is set as H = 120, a = 0.5 and Dropout = 0.4.

This paper selects the traditional LSTM model as the benchmark model for performance
comparison. As shown in Table IV, the performance of T-LSTM-TR model proposed in this
paper is similar to that of the LSTM model in terms of precision, while the performance of
T-LSTM-TR is significantly superior compared to that of the traditional LSTM model in
terms of other indicators. The results show that the classification performance of our model
is effectively improved by adapting the departmental structure of traditional LSTM unit. As
shown in Figure 5, we can more clearly compare the performance of T-LSTM-TR and LSTM
through the ROC curve.

For the hidden layer feature processing of all time slices, the average pooling process is
an alternative method, and the output prediction result can be obtained using the Sigmoid
function. To validate the effectiveness of the proposed target repeat prediction method, we

Models Precision Recall F1 AUC
T-LSTM-TR 0.492 0.811%* 0.608* 0.896***
LSTM 0.478 0.754 0.584 0.844

Notes: *p < 0.1; p < 0.05; **p < 0.001
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compared the performance of average pooling process and target repeat prediction method.
The average pooled model is defined as T-LSTM-MP, and the comparison results are shown
in Table V. As shown in Table V, the T-LSTM-TR model obtained higher results compared
to the T-LSTM-MP model in all the four indicators, indicating that the target repeated
prediction method is significantly better than the average pooling method. As shown in
Figure 5, we can more clearly compare the performance of T-LSTM - TR and T-LSTM-MP
through the ROC curve.

5. Conclusion

Based on the traditional LSTM, this paper proposed a new model by improving the internal
forgetting gate input. First, the irregular time interval is smoothed to obtain the time
parameter vector, and then it is used as the input of the forgetting gate to overcome the
prediction obstacle caused by the irregular time interval. The experimental results show
that the dynamic prediction model proposed in this paper has a significant improvement in
classification performance compared with the traditional LSTM model, which verifies the
effectiveness of the proposed model.

There are still some limitations in this paper for future studies. First, this paper assumes
that the diagnostic labels of the samples are independent to each other, which in fact there
are varying degrees of correlation between many diseases. Second, due to the limits of data
size, although the model of this paper has a significant improvement over the existing
models in the performance evaluation indicators, the model still need further improvement
to meet the requirements of practical applications.
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Figure 5.

ROC curve of
T-LSTM-TR and
LSTM

PERI Precision Recall F1 AUC
T-LSTM-TR 0.492"* 0811 0.608™" 0.896™"
T-LSTM-MP 0478 0.787 0.591 0.879

Notes: *p < 0.1; ##p < 0.05; ***p < 0.001

Table V.

The performance of
T-LSTM-TR and
T-LSTM-MP
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Figure 6.

ROC curve of
T-LSTM-TR and
T-LSTM-MP
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