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Abstract
Purpose – With the popularity of the internet and the increasing numbers of netizens, tremendous
information flows are generated daily by the intelligently interconnected individuals. The diffusion
processes of different information are not independent, and they interact with and influence each other.
Modeling and analyzing the interaction between correlated information play an important role in the
understanding of the characteristics of information dissemination and better control of the information
flows. This paper aims to model the correlated information diffusion process over the crowd intelligence
networks.

Design/methodology/approach – This study extends the classic epidemic susceptible–infectious–
recovered (SIR) model and proposes the SIR mixture model to describe the diffusion process of two correlated
pieces of information. The whole crowd is divided into different groups with respect to their forwarding state
of the correlated information, and the transition rate between different groups shows the property of each
piece of information and the influences between them.

Findings – The stable state of the SIRmixture model is analyzed through the linearization of the model, and
the stable condition can be obtained. Real data are used to validate the SIR mixture model, and the detailed
diffusion process of correlated information can be inferred by the analysis of the parameters learned through
fitting the real data into the SIRmixture model.

Originality/value – The proposed SIR mixture model can be used to model the diffusion of correlated
information and analyze the propagation process.
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1. Introduction
With the recent development of social media, Internet of Things, big data, cloud computing
and many other new technologies, we witness new industrial and social management
patterns, and the emergence of a crowd cyber eco-system consisting of smart and deeply
connected entities such as individuals, enterprises and government agencies (Chai et al.,
2017; Shen et al., 2017; Nan et al., 2017; Huang et al., 2017). Such smart entities constantly
interact with each other, influence each other’s decisions and have a significant impact on
our society and economy. It is of crucial importance to study how such smart entities
interact with each other, to understand their decision-making process, to analyze how they
influence each other and the impact of such interactions on the entire crowd intelligence
networks. Such investigation provides important guidelines on the design of efficient and
effective mechanisms to manage such crowd intelligence networks.

In this paper, using information diffusion in social networks as an example, we study
user behavior in such crowd intelligence networks. With deeply connected smart entities,
information diffusion plays a critical role in the information sharing and network
evolvement of such crowd eco-systems, sometimes detrimental to our society and economy.
One example is the “salt panic” in China after the 2011 Tohoku Tsunami, where the news of
nuclear leakage greatly stimulated the rumors like iodized salt can help ward off radiation
poisoning, which lead to the long lines and mob scenes at stores and 10-fold jump of salt
price throughout China (Pierson, 2011). Thus, it is important to study this complex
information diffusion process over networks, to analyze its social and economic impact, and
to prevent the propagation of such detrimental rumors.

Tremendous efforts have been dedicated to model the information diffusion process. The
existing works on modeling information diffusion can be classified into two categories:
graph and non-graph based approaches (Guille et al., 2013), which we will discuss in details
below.

The graph-based models assumed that social networks could be described by graphs,
where nodes represented users and an edge connecting two nodes represented a certain
relationship between the two corresponding users. Two seminal models in this category are
the Independent Cascades (IC) model (Goldenberg et al., 2001) and the Linear Threshold (LT)
model (Granovetter, 1978). For the IC model, each edge between users could be classified as
either the “weak tie”, i.e., the common relationship, or the “strong tie”, i.e., the closer and
stronger relationship. Different probabilities were assigned to different types of edges, and
the probability for a user to adopt a piece of certain information was determined by the
probabilities of the edges connecting with him/her. To take user’s collective behavior into
consideration, the LTmodel assumed that a user would accept a certain piece of information
when the percentage of his/her neighbors who had adopted the information was above a
threshold. Recently, the evolutionary dynamics of the natural ecological systems has been
introduced to model the information diffusion over the social networks (Jiang et al., 2014a,
2014b; Cao et al., 2016). The authors modeled the information diffusion process with
evolutionary game theory over the synthetic and real networks, and the evolutionary stable
states were analyzed with respect to different types of information and different network
structures.

The graph-based approaches could characterize the diffusion processes in the micro
view, that is, how each intelligent individual was influenced by their neighbors and how he/
she decided whether to adopt the information. However, these models were often limited by
the difficulty to obtain the complete social network structure (De Choudhury et al., 2010).

The non-graph based approaches did not consider network structure in their analysis,
and modeled the information diffusion process in a macro view. These models were mainly
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based on the epidemic models (Daley and Kendall, 1964) from epidemiology. The canonical
“Susceptible-Infectious-Recovered” (SIR) model and the “Susceptible-Infectious-Susceptible”
(SIS) model from epidemiology were introduced to model the information and computer
virus propagation over the online networks (Abdullah and Wu, 2011; Daley and Kendall,
1964; Lerman and Ghosh, 2010; Pastor-Satorras and Vespignani, 2001). These epidemic
models classified users into different groups: those who had not heard and never spread the
news (Susceptible), those who had received and forwarded the news (Infectious) and those
who had stopped forwarding (Recovered). Using a few parameters to model the transition
rates between groups, these models used the differential equations to describe andmodel the
dynamics of the population in different groups.

Many works extended the classic epidemic models by introducing other groups to
describe the diffusion process. Rui et al. proposed a Susceptible-Potential-Infective-Removed
(SPIR) model that introduced the “Potential” groups into the classic SIR model (Rui et al.,
2018). The “Potential” group was designed to describe the individuals who had heard of the
information but did not become infectious and forward it. By introducing this new group,
SPIR model matched the simulated information diffusion processes over the synthetic and
real networks better than the classic SIR model. Considering the scenario where there were a
few authorities that often clarified the fact and released the authoritative information to
confirm or refute the content of network rumors, Xia et al. (2015) introduced a new group
that represented these authorities into the classic SIR model, which is called the “SIAR”
model. Through the simulation over synthetic networks, the authors showed that the
“SIAR” model could realistically characterize the evolution of the rumor propagation.
The works in Zhao et al. (2012), Zhao et al. (2013a) and Zhao et al. (2013b) introduced the
forgetting and remembering mechanism, and designed a new group called “Hibernators”
referring to the individuals who had transformed from the spreaders due to the forgetting
mechanism and could be turned back to spreaders due to the remembering mechanism.
Through analytical and simulations over homogeneous and heterogeneous networks, the
authors found that this new group would reduce the maximum of rumor influence, and
postpone the terminal time of the diffusion. Liu et al. considered the existence of the “super-
spreaders” in the networks, whose spreading speed was much faster, and introduced a
corresponding new group into the classic SIR model (Liu et al., 2016). The validation on real-
world Weibo dataset of the proposed model was conducted and showed that this improved
SIR model was much more promising than the classic SIR model in characterizing a super-
spreading event of information propagation.

Most existing works focused on the diffusion process of only one information. However,
the numerous smart entities in the crowd cyber system can interact with each other (Chai
et al., 2017) due to the rapid development of the Internet. Thus, the diffusion process often
exhibits more complex features, and different information often influences each other and
spread together. The works in Beutel et al. (2012) and Prakash et al. (2012) modeled the
interaction between different information propagation processes as the competition of users’
attention, while in reality, there may be complicated patterns on how different information
propagation interact with each other, e.g., different information can also promote the
propagation of each other.

Inspired by the works of Myers and Leskovec (2012), Sun et al. (2017) and Fu et al. (2019),
in this work, we study how correlated information influence each other’s propagation over
networks, and assume that intelligent individuals who have heard and spread the first
information might have some pre-judgment and prior knowledge about the second
information. Thus, the probability for him/her to spread the second information should be
different from those who have not heard and never spread the first one.
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Based on this assumption, this work extends the classic SIR model in Daley and Kendall
(1964), Lerman and Ghosh (2010) and Abdullah andWu (2011) and proposes the SIRmixture
model to describe the diffusion process of two correlated pieces of information. The SIR
mixture model includes two stages. The first stage represents the process where the first
information spreads alone, while the two correlated information spread together in the
second stage. By classifying the crowd into 8 groups according to their current states in the
propagation of the two correlated information, the dynamics of the percentage of all groups
can be described by 8 differential equations, respectively. Through the linearization of the
differential equations, we can obtain the necessary conditions of the stable state of the
information propagation. We also test our model with real data and infer the propagation
process of two pieces of information.

The rest of the paper is organized as follows: Section 2 summarizes the classic SIR model
and discusses its properties. Section 3 models the diffusion processes of correlated
information, and provides the details of the proposed SIR mixture model. The stable state
analysis is discussed at the end of this section. Section 4 validates the SIR mixture model
with real data and infers the diffusion process. The conclusion is drawn in Section 5.

2. The classic susceptible–infectious–recovered model
There have been numerous works on the modeling and analysis of the dynamics of
information diffusion over social networks. A class of models is inspired by the epidemic
model from the epidemiology due to the similarity between the spread of infectious disease
and the diffusion of information.

2.1 The classic epidemic model in epidemiology
The epidemic model was proposed by Kermack andMcKendrick (1932) to model the disease
spreading. The two basic and classic epidemiology models are the SIS model, also known as
“Susceptible-Infectious-Susceptible” model, and the SIR model, also known as “Susceptible-
Infectious-Recovered”model (Hethcote, 2000).

These two classic models both divide the whole population into different groups
according to their state towards a single disease, which included “Susceptible” (S),
“Infectious” (I) and “Recovered” (R). The susceptible (S) state refers to those who might be
infected with the disease, the infectious (I) state refers to those who currently have the ability
to spread the disease and the recovered (R) state refers to those who have recovered from the
disease and get the immunity.

The state of each individual could change in the SIS and SIR model. The SIS model only
includes S and I states. The susceptible individuals might be infected by the infectious
individuals, so that their state could transit from the susceptible to the infectious. The
infectious individuals might recover from the disease and their state transit back to the
susceptible, that is, they do not get the immunity and might be infected again. However, in
the SIR model, the infectious individuals might recover from disease and acquire the
immunity, that is, they will never get the disease again and their states change to R, the
“Recovered”. The state transition of the SIS model and the SIR model are shown in
Figure 1(a) and (b), respectively.

Figure 1.
The state transition
of (a) SIS model and

(b) SIRmodel
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In addition to the similar state description of the whole population, these two models both
assume that the whole population is well mixed, and each person has the same probability to
contact with all the other people. All individuals are homogenous, that is, the probabilities to
transit between different states are the same for all individuals.

2.2 Epidemic models for information diffusion
The spread of disease share much common character with the diffusion of information. By
analogizing the spread of disease in the population, Daley and Kendall (1964) first modeled
the rumor propagation with the SIR model. In the past decade, the SIR model was also
successfully used to model the information diffusion over the social networks (Lerman and
Ghosh, 2010; Abdullah and Wu, 2011). The analogy between the spread of disease and the
information diffusion with respect to the “SIR”model is listed in Table I.

The “SIS”model can also be used to model the information diffusion (Pastor-Satorras and
Vespignani, 2001). However, the “SIS” model does not have the recovered groups. Thus, it
cannot characterize the process that the population loses interest in the information and the
infectious proportion decrease.

2.3 The dynamics of the classic SIR model
As illustrated in the previous subsection, the state transition of the SIR model is shown in
Figure 1(b). To characterize the percentage of each group changing with time, the
parameters b and g are introduced to quantify the transition rates between S, I and R. The
parameter b is the contact rate, and represents the average probability of adequate contacts
(i.e., contacts sufficient for transmission) of an infectious person per unit time. The
parameter g is called the recovery rate which represents the average probability for an
infectious individual to transit to the recovered (Hethcote, 2000). Let S(t), I(t) and R(t) denote
the percentage of each group, and the dynamics of the SIR model can be described with the
following differential equations:

dS tð Þ
dt

¼ �b I tð ÞS tð Þ; (1)

dI tð Þ
dt

¼ b I tð ÞS tð Þ � g I tð Þ; (2)

dR tð Þ
dt

¼ g I tð Þ: (3)

The S(t), I(t) andR(t) should also satisfy the requirement S(t)þ I(t)þ R(t) = 1.
Although the above equations of the SIR model are non-linear, the stable state analysis

can still be conducted. By setting equations (1)-(3) to zero, we can first obtain the equilibrium
points denoted as [s, i, r]T. According to the stability analysis at the equilibrium points in
Hethcote (2000) and Piqueira (2010), the stable state should satisfy that i = 0 and s < g=b .
The two conditions indicate that there does not exist any infectious individuals, and the
percentage of the susceptible individuals is lower than a threshold which is determined by
b and g at the stable state.

The analysis of the SIR model’s dynamics in Hethcote (2000) also shows that the
evolvement of the percentages of three groups in the SIR model can be obtained through
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numerical calculations when the initial state {S(0), I(0), R(0)} and the parameters {b ,g} are
given. The evolution process will finally reach one of the stable states.

3. Modeling correlated information diffusion based on the classic SIRmodel
Most prior works of SIR-based models only considered the diffusion of one single
information. In this work, we extend the classic SIR model, and focus on the diffusion
process of two pieces of correlated information, which takes the influences of correlated
information on intelligent individuals into account.

3.1 The SIR mixture model
In this work, we consider two pieces of correlated information disseminated over the crowd
intelligent networks and propose the SIR mixture model. Same as the classic SIR model
(Abdullah and Wu, 2011; Daley and Kendall, 1964; Lerman and Ghosh, 2010), we assume
that the whole population remains a constant with respect to time, and all individuals in the
networks are well mixed and homogeneous.

Let E1 and E2 represent the correlated information respectively. According to the classic
SIR model, each individual can have three possible states towards one information, denoted
as {S1, I1, R1} and {S2, I2, R2}, respectively. Combining the states with respect to E1 and E2,
we will have 9 states, which are, S1S2, I1S2, R1S2, S1I2, I1I2, R1I2, S1R2, I1R2, and R1R2.
However, in this work, we consider the simple scenario where individuals have limited
attention and can only focus on one information at a time. This will also greatly simplifies
the theoretical analysis as demonstrated below. Therefore, the state I1I2 where the
corresponding individuals spreading E1 and E2 simultaneously can be excluded. The total 8
possible states and their physical meanings are summarized in Table II. For notational
simplicity, we also denote the percentage of individuals in each state at time t with the same
annotation of the corresponding state when no confusions are made. For example, S1S2(t)
stands for the percentage of individuals who are in the state of S1S2 at time t, and other
notations can be derived in the same way.

Table I.
The analogy between

disease spreading
and information

diffusion Abdullah
andWu (2011)

Analogy terms Disease spreading Information diffusion

Spreading object Disease Information
Susceptible People who can be infected People who have not know the information
Infectious People who are infectious People who spread the information
Recovered People who are recovered People who do not spread the information anymore

Table II.
The states of the SIR
mixture model and

their physical
meanings

States Physical meaning

S1S2 People who do not know E1 and E2
I1S2 People who spread E1, but do not know E2
R1S2 People who do not spread E1 anymore, and do not know E2
S1I2 People who spread E2, but do not know E1
R1I2 People who do not spread E1 anymore, and spread E2
S1R2 People who do not spread E2 anymore, and do not know E1
I1R2 People who do not spread E2 anymore, and spread E1
R1R2 People who do not spread E1 and E2 anymore
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To take the actual information diffusion scenario into consideration, two pieces of
information may not begin to propagate at the same time, that is, one information might
spread for a certain time t0, and then, the other information begins to spread. Thus, our SIR
mixture model can be correspondingly divided into two stages.

In the first stage where t [ (0, t0), there is only the first information spreading across the
networks. Without loss of generality, we assume that E1 spreads first. In this stage, E2 does
not exist and the diffusion of E1 will not be influenced by E2. Thus, each individual can only
change his/her own state in three possible states, {S1S2, I1S2, R1S2}, while the percentages of
the other five states are always 0 in this stage.

In the information diffusion scenario, we often consider there are only a few people begin
to spread the information (Abdullah and Wu, 2011; Daley and Kendall, 1964; Lerman and
Ghosh, 2010; Liu et al., 2016). Consequently, the initial state of the first stage should satisfy
S1S2(0)� 1 and I1S2(0)� 0, and the percentages of people in other groups equal to 0 at time 0.

The state transition of the SIR mixture model in the first stage is shown in Figure 2, and
we can show that this state transition diagram is exactly the same with only one information
propagating as shown in Figure 1(b). The parameter b 1 and g 1 are the contact rate and the
recovery rate of the individuals who do not know E2, and they are actually the parameters
for E1 to spread alone. Therefore, we can use the classic SIR model to describe this process,
and the dynamics of the whole population in the first stage can be directly obtained from
equations (1)-(3) as:

dS1S2 tð Þ
dt

¼ �b 1I1S2 tð ÞS1S2 tð Þ; (4)

dI1S2 tð Þ
dt

¼ b 1I1S2 tð ÞS1S2 tð Þ � g 1I1S2 tð Þ; (5)

dR1S2 tð Þ
dt

¼ g 1I1S2 tð Þ; and (6)

S1I2 tð Þ ¼ R1I2 tð Þ ¼ S1R2 tð Þ ¼ I1R2 tð Þ ¼ R1R2 tð Þ ¼ 0; for t 2 0; t0½ Þ: (7)

At the end of the first stage at t0, the percentages of individuals at state S1S2, I1S2 and R1S2
are S1S2 (t0), I1S2 (t0) and R1S2 (t0), respectively. The value of these three percentages are
determined by the parameters b 1, g 1 and t0, that can be numerically solved and analyzed as
in prior works of the classic SIR model (Hethcote, 2000). The percentages of the other five
states still remain 0 as the time approaches t0.

The second stage of the SIR mixture model begins at time t0, where E2 also begins to
spread across the network together with E1. The state transition of the SIR mixture model in
the second stage is shown in Figure 3.

Figure 2.
The state transition
of the SIRmixture
model in the first
stage
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The initial state of the second stage is determined by the end of the first stage. According to
the previous analysis of the first stage, the percentage of individuals in state S1S2, I1S2 and
R1S2 at t = t0 are S1S2(t0), I1S2(t0) and R1S2(t0), respectively, while the percentages of other
five states equal to 0. To characterize the beginning of propagation of E2, we assume that a
little perturbation of S1I2 exists. That is, at time t0, some individuals whose state are S1S2
originally, become the “infectious” individuals of E2 and change their current state to S1I2.
Thus, this little perturbation will cause the percentage of S1I2(t0) to be slightly more than 0,
and the percentage of S1S2(t0) to be slightly less than the original value calculated at the end
of the first stage, while other percentages remain unchanged.

At the beginning of the second stage, most individuals are in states S1S2, I1S2 and R1S2.
For the individuals in state R1S2 who had spread E1, they can spread E2, i.e., become the
“infectious” individuals of E2 with their states changing to R1I2, and finally lose interests in
E2 and become R1R2. This process is the “Part 2” shown in Figure 3. According to our
assumption that each user can only spread one information at a time, the individuals in state
I1S2 can only finish their spreading of E1 first, and change their state to R1S2. After that, they
can spread E2, and the following state transition is the same as the individuals in state R1S2.
For the individuals in state S1S2, they can either firstly spread E1 or E2 in the second stage of
the SIR mixture model, which are the “Part 1” and “Part 3” in Figure 3, respectively.
Furthermore, for the individuals in state S1R2 who had spread E2 first, they can still become
a spreader of E1 and transit their state in “Part 4” in Figure 3.

We can show from the state transition diagram in Figure 3 that both “Part 1” and “Part
4” correspond to the propagation of information E1, while “Part 2” and “Part 3” correspond
to the propagation of information E2. “Part 1” is the propagation of E1 for the individuals in
S1S2 who do not know and never spread E2, while “Part 4” is the propagation of E1 for
individuals who are in state S1R2 and have spread E2. The difference between “Part 2” and
“Part 3” can be derived in a similar way. Therefore, by comparing “Part 1”with “Part 4”, we
can study how E2 affects the propagation of E1, and similarly, we can analyze how E1 affects
the propagation of E2 by comparing “Part 2”with “Part 3”.

To address the impact of correlated information on each other’s propagation, in this
work, we assume that the individuals in state S1R2 who have spread E2 have different
contact rate of E1 from those who have not spread and never know E2 (S1S2), due to the prior
knowledge of E1 which is generated by spreading E2. We denote the contact rate in the
former case as a1, which is different from the latter case defined as b 1 previously. We also
assume that the recovery rates of the individuals in state I1S2 and I1R2 are different to
generalize the SIRmixture model, which are denoted as g 1 and d 1, respectively. We can also
denote b 2 and a2 as the contact rate of individuals in state S1S2 and R1S2. The recovery rate
for individuals in state S1I2 and R1I2 are g 2 and d 2, respectively. All parameters of the SIR
mixture model are summarized in Table III.

Figure 3.
The state transition
of the SIRmixture

model in the second
stage
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According to the dynamics of the SIR model, we can use differential equations to describe
the second stage of the SIR mixture model, where E1 and E2 spread together. Based on the
assumptions and parameters’ physical meanings described previously, we can obtain
that:

dS1S2 tð Þ
dt

¼ �b 1I1 tð ÞS1S2 tð Þ � b 2I2 tð ÞS1S2 tð Þ; (8)

dI1S2 tð Þ
dt

¼ b 1I1 tð ÞS1S2 tð Þ � g 1I1S2 tð Þ; (9)

dS1I2 tð Þ
dt

¼ b 2I2 tð ÞS1S2 tð Þ � g 2S1I2 tð Þ; (10)

dR1S2 tð Þ
dt

¼ g 1I1S2 tð Þ � a2I2 tð ÞR1S2 tð Þ; (11)

dS1R2 tð Þ
dt

¼ g 2S1I2 tð Þ � a1I1 tð ÞS1R2 tð Þ; (12)

dR1I2 tð Þ
dt

¼ a2I2 tð ÞR1S2 tð Þ � d 2R1I2 tð Þ; (13)

dI1R2 tð Þ
dt

¼ a1I1 tð ÞS1R2 tð Þ � d 1I1R2 tð Þ; (14)

R1R2 tð Þ
dt

¼ d 2R1I2 tð Þ þ d 1I1R2 tð Þ; (15)

where I1(t) = I1S2 (t) þ I1R2 (t) represents all individuals who are spreading E1 at time t, and
I2(t) = S1I2 (t) þ R1I2 (t) represents all the individuals who are spreading E2 at time t.
equations (8), (9) and (11); equations (11), (13) and (15); equations (8), (10) and (12); and

Table III.
The parameters of
the SIR mixture
model and their
physical meanings

Parameter Physical meaning

b 1 Transition rate between S1S2 and I1S2
b 2 Transition rate between S1S2 and S1I2
a1 Transition rate between S1R2 and I1R2
a2 Transition rate between R1S2 and R1I2
g 1 Transition rate between I1S2 and R1S2
g 2 Transition rate between S1I2 and S1R2
d 1 Transition rate between I1R2 and R1R2
d 2 Transition rate between R1I2 and R1R2
t0 Time for E1 spreading alone
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equation (12), (14) and (15) describe the processes of “Part 1”, “Part 2”, “Part 3” and “Part 4”
in Figure 3, respectively, based on the dynamics of SIRmodel.

3.2 Stable state analysis of the susceptible–infectious–recovered mixture model
Since we have derived the dynamical equations of the SIR mixture model in
equations (8)-(15), we can perform the stability analysis. Let us denote the dynamical state as
x(t) = [S1S2(t), I1S2(t), S1I2(t), R1S2(t), S1R2(t), R1I2(t), I1R2(t), R1R2(t)]

T. By setting the
dynamical equations (8)-(15) to zero, we can obtain the equilibrium points of the SIR mixture
model, i.e., xe= [s1s2, i1s2, s1i2, r1s2, s1r2, r1i2, i1r2, r1r2]

T. Then by adopting the Lyapunov first
method (Teschl, 2012), we can analyze the stability condition for the equilibrium points xe
(Liu et al., 2016; Piqueira, 2010).

We first show that the equilibrium points should satisfy the requirement that i1s2, i1r2,
s1i2 and r1i2 should equal to zero. Mathematically, all parameters are both positive, and each
entry of the equilibrium points xe is non-negative due to their physical meanings. Then, by
setting equation (15) to zero, we should have r1i2 = 0 and i1r2 = 0. Taking these two
conditions into other equations, we will have i1s2 = 0 and i1r2 = 0. It is also reasonable in the
physical aspect, because the equilibrium point means the percentage of each group should
not change. Therefore, it should satisfy that no individuals spread E1 or E2 anymore at least,
which means i1s2, i1r2, s1i2 and r1i2 should equal to zero. Thus, the equilibrium points can be
simplified to xe = [s1s2, 0, 0, r1s2, s1r2, 0, 0, r1r2]

T . That is, at the equilibrium points, the state
of each individual should be in one of S1S2, S1R2, R1S2 andR1R2.

Due to the non-linearity of the dynamical equations (8)-(15), we could not obtain the exact
values of s1s2, r1s2, s1r2 and r1r2. However, we can adopt the Lyapunov first method to
analyze the stability condition for s1s2, r1s2, s1r2 and r1r2. We can first take the linear
approximation of the dynamical equations, which is the Jacobian matrix J of the right hand
side of equations (8)-(15). Then, plugging the simplified equilibrium point xe into the linear
approximation of the dynamical system, we can have:

_x tð Þ ¼ J � x tð Þ � xeð Þ

¼

0 �b 1s1s2 �b 2s1s2 0 0 �b 2s1s2 �b 1s1s2 0

0 b 1s1s2 � g 1 0 0 0 0 b 1s1s2 0

0 0 b 2s1s2 � g 2 0 0 b 2s1s2 0 0

0 g 1 �a2r1s2 0 0 �a2r1s2 0 0

0 �a1s1r2 g 2 0 0 0 �a1s1r2 0

0 0 a2r1s2 0 0 a2r1s2 � d 2 0 0

0 a1s1r2 0 0 0 0 a1s1r2 � d 1 0

0 0 0 0 0 d 2 d 1 0

2
666666666666666664

3
777777777777777775

x tð Þ � xeð Þ:

(16)

According to the criterion of Lyapunov stability in Teschl (2012) and Liu et al. (2016), the
real part of the eigenvalue of J should be less than or equal to zero, and for the eigenvalues
whose real part is equal to zero, the algebraic multiplicity should equal to the geometry
multiplicity. We can first derive the characteristic equation of J from equation (16), which is:

Diffusion in
crowd

intelligence
networks

177



l 4 l 2 � a2 � r1s2 þ b 2 � s1s2 � d 2 � g 2ð Þl þ d 2 � g 2 � d 2 � b 2 � s1s2 � g 2 � a2 � r1s2
� �

�
l 2 � a1 � s1r2 þ b 1 � s1s2 � d 1 � g 1ð Þl þ d 1 � g 1 � d 1 � b 1 � s1s2 � g 1 � a1 � s1r2
� �

¼ 0:

(17)

We can show that J has an eigenvalue l 1 = 0, which has algebraic multiplicity 4 from
equation (17). The other four eigenvalues, i.e., l 2, l 3 and l 4, l 5 are the roots of two
quadratic terms in the characteristic equation. To ensure the state is stable, l 2, l 3, l 4 and
l 5 should have the negative real parts, and this condition also ensures that the geometric
multiplicity of l 1 is 4 which is equal to its algebraic multiplicity. This condition is
equivalent to:

a2 � r1s2 þ b 2 � s1s2 � d 2 � g 2 < 0;

d 2 � g 2 � d 2 � b 2 � s1s2 � g 2 � a2 � r1s2 > 0;

a1 � s1r2 þ b 1 � s1s2 � d 1 � g 1 < 0;

d 1 � g 1 � d 1 � b 1 � s1s2 � g 1 � a1 � s1r2 > 0:

(18)

Hence, the equilibrium points xe = [s1s2, 0, 0, r1s2, s1r2, 0, 0, r1r2]
T which satisfies the

inequalities in equation (18) are the stable states.
When the initial state, the parameters of the SIR mixture model are given, the evolution

process of each group can be obtained with numerical solution, and the final state of the
evolution should stay in one of the stable states we calculated previously.

4. Real data validation with SIR mixture model
In this section, we use the dataset in Yang and Leskovec (2011) to validate our SIR mixture
model. According to the study by Yang and Leskovec about the patterns of temporal
variation in social media, the online contents exhibit rich temporal dynamics, that is, how
contents’ popularity grows and fades over time. The dataset includes top-1000 online
contents with the largest overall volumes from Sept. 2008 to Aug. 2009. Each online content
has a time sequence of 128 entries which indicates the numbers of news articles or the blog
posts in each hour around the most popular period of the corresponding online contents.

Each online content can be regarded as the diffusing information, and the corresponding
time sequence is the diffusion process of the information. Thus, the SIRmodel can be used to
describe these time sequences, which correspond to the dynamics of the I groups.

To obtain the percentage of the news articles and blog posts with respect to each time
unit, we adopt the method in Jiang et al. (2014b) and assume that the total number of news
websites and bloggers is the maximal value of all time sequences in the dataset and divide
all the time sequences by the maximal value, so that each entry of time sequences are
normalized to [0,1].

Through the observation of the whole 1000 time sequences, they can be roughly divided
into two kinds, whose representatives are shown in Figure 4 with blue solid lines. For the
first kind of online contents, shown in Figure 4(a), their time sequences have only one peak.
These diffusion processes can be described by the classic SIR model appropriately which is
shown in Figure 4(a) with the green dot line. However, for the second kind of online contents,
shown in Figure 4(b), there exist at least two peaks in the temporal sequences. The SIR
model cannot fit the data properly, as shown in Figure 4(b) with the green dot line.

The existence of the second peak may indicate that the corresponding online content has
something new so that the volume would go up again. We attribute this to the online content
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consisting of two pieces of correlated sub-information, and the first peak mainly results from
the first sub-information, while the second sub-information lead to the second peak of the
time sequences. Hence, the proposed SIR mixture model can be used to describe this kind of
information diffusion process.

Because the dataset does not provide the detailed diffusion processes of each
information, we only have the total volumes of each information over time. To fit the real
data into our proposed SIR mixture model, we define the percentage of total infectious
individuals of both E1 andE2 at time t, that is:

I tð Þ ¼ I1 tð Þ þ I2 tð Þ
¼ I1S2 tð Þ þ I1R2 tð Þ þ S1I2 tð Þ þ R1I2 tð Þ:

(19)

Thus, I(t) corresponds to the time sequences of the percentage of news articles and blog
posts given by the SIR mixture model, and we also denote Î(t) as the real time sequences of
the percentage of the same news articles and blog posts.

Similar to the validation of the SIR model with real data, the aim of fitting time sequences
with the SIR mixture model is to learn the parameters x = [b 1, b 2, g 1, g 2, a1, a2, d 1, d 2,
t0]

T, so that it minimizes the following MSE between the real data and the model fitting
result, that is:

min
x

X127

t¼0

1
128

����
����I tð Þ � Î tð Þ

����
����
2

: (20)

Because we cannot obtain the closed form expression of the I(t) of SIR mixture model
through such complex differential equations, we use particle swarm optimization (PSO)
algorithm Kennedy and Eberhart (1995) to efficiently obtain the solution to equation (20).
Due to the discreteness of t0, we try each t0 from 0 to 120 with a step size of 5. For a
determined t0, the PSO solver is used to obtain the optimal solution of the optimization
problem equation (20) with respect to [b 1, b 2, g 1, g 2, a1, a2, d 1, d 2]. The result is shown in
Figure 4(a) and (b) with orange dash lines.

Figure 4.
Time sequences of

two pieces
representative

information (blue
solid line) and their
model fitting results
corresponding to the

classic SIRmodel
(green dots) and the
SIRmixture model

(red dash line)
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We conduct the real data fitting validation of the total 1000 time sequences in the dataset,
and find that the average MSE given by the SIR mixture model is 5.19� 10�4. Compared to
the average MSE given by the classic SIR model, 1.44 � 10�3, the proposed model reduces
theMSE by about 64%, which indicates that the SIRmixture model is muchmore promising
than the classic SIR model in characterizing complex information propagation processes.
Specifically, with the time sequence shown in Figure 4, we can show that the SIR mixture
model performs as well as the classic SIR model in terms of the diffusion process with single
peaks. However, our SIR mixture model outperforms the classic SIR model with respect to
the diffusion process with double peaks.

Because no detailed information of each time sequence is provided in the dataset, we use
the parameters learned by fitting into the corresponding real data to calculate the
percentages of infectious individuals of E1 and E2 with respect to time t, which are I1(t) =
I1S2(t) þ I1R2(t) and I2(t) = S1I2(t) þ R1I2(t), respectively. Then, we can use the detailed
diffusion processes of E1 and E2 to analyze the evolvement processes of the correlated
information diffusion and the influence between correlated information.

We take the time sequence in Figure 4(b) as an example, and the other time sequences can
be analyzed in the same way. We first plot I1(t) and I2(t) in Figure 5(a) according to the SIR
mixture model whose parameters are learned by the corresponding real data. It validates our
assumption that the existence of the two peaks results from the spreading of E1 and E2,
respectively. The interval between the two peaks is approximately 25 time units, which is
also exactly the fitting results of t0.

Through the fitting parameters, we observe that g 1 � g 2 � 0.35 and d 1 � d 2 � 0.57
which indicates that the crowd’s recovery rates are barely influenced by the other
information. The reason might be that people pay more attention to the information that they
are spreading now. Hence, the recovery rates are less affected by the correlated information.

The fitting results show that b 2 � 0.54 < a2 � 1, which indicates that in this particular
example, people who have spread E1 are easier to spread E2. Thus, E1 has a positive impact
on E2. We also plot I1S2(t) = I1R2(t), S1I2(t) and R1I2(t) in Figure 5(b), and the curve of R1I2(t)
grows faster and higher than one of S1I2(t) which validates our analytical results.

The result in Figure 5(b) also indicates that I1R2 � 0 with respect to time. We also show
that a1� 0.52< b 1� 0.63, that is, the diffusion of E1 is suppressed by E2. We infer that it is
mainly because people have more interests in the new information although this two
information are correlated.

Figure 5.
The percentages of (a)
I1, I2 and (b) each
infectious group
over time

IJCS
3,2

180



5. Conclusion
In this work, we extend the classic SIR model, and propose the SIR mixture model which
formulates the process that two pieces of correlated information jointly propagates over the
crowd intelligent networks.

To describe the influence between the correlated information, we exploit the character of
the crowd intelligence, that intelligent individuals will have pre-judgment and prior
knowledge over the second information for spreading the correlated first information. The
influence will result in a different probability to spread the second information compared
with those who have not heard and never spread the first one.

The crowd is divided into 8 groups according to their state towards two pieces of
information. The SIR mixture model is a two-stage model including the process that the
first information propagates alone, which can be modeled by the SIR model, and the
process both information spread together whose dynamics can be described by eight
differential equations. We also discuss the stable state of the SIR mixture model
through linearization of the differential equations and obtain the condition for the
stable state.

Finally, we validate our model with real data, and find that our model can be used to
describe not only the information diffusion process with one peak, but also the more
complex one with two peaks. We also use the parameters learned from the real data to
reason about how correlated information interact with each other and propagate over the
crowd intelligent networks.

References
Abdullah, S. andWu, X. (2011), “An epidemic model for news spreading on twitter”, IEEE International

Conference on Tools with Artificial Intelligence (ICTAI), pp. 163-169.
Beutel, A., Prakash, B.A., Rosenfeld, R. and Faloutsos, C. (2012), “Interacting viruses in networks: can

both survive?”, Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 426-434.

Cao, X., Chen, Y., Jiang, C. and Liu, K.J.R. (2016), “Evolutionary information diffusion over
heterogeneous social networks”, IEEE Transactions on Signal and Information Processing over
Networks, Vol. 2, pp. 595-610.

Chai, Y., Miao, C., Sun, B., Zheng, Y. and Li, Q. (2017), “Crowd science and engineering: concept and
research framework”, International Journal of Crowd Science, Vol. 1 No. 1, pp. 2-8.

Daley, D.J. and Kendall, D.G. (1964), “Epidemics and rumours”,Nature, Vol. 204, p. 1118.
De Choudhury, M., Lin, Y.R., Sundaram, H., Candan, K.S., Xie, L. and Kelliher, A. (2010), “How does the

data sampling strategy impact the discovery of information diffusion in social media?”,
International AAAI Conference onWeb and Social Media (ICWSM), pp. 34-41.

Fu, G., Chen, F., Liu, J. and Han, J. (2019), “Analysis of competitive information diffusion in a group-
based population over social networks”, Physica A: Statistical Mechanics and Its Applications,
Vol. 525, pp. 409-419.

Goldenberg, J., Libai, B. and Muller, E. (2001), “Talk of the network: a complex systems look at the
underlying process of word-of-mouth”,Marketing Letters, Vol. 12 No. 3, pp. 211-223.

Granovetter, M. (1978), “Threshold models of collective behavior”, American Journal of Sociology,
Vol. 83 No. 6, pp. 1420-1443.

Guille, A., Hacid, H., Favre, C. and Zighed, D.A. (2013), “Information diffusion in online social networks:
a survey”,ACMSigmod Record, Vol. 42 No. 1, pp. 17-28.

Hethcote, H.W. (2000), “The mathematics of infectious diseases”, SIAM Review, Vol. 42 No. 4,
pp. 599-653.

Diffusion in
crowd

intelligence
networks

181



Huang, Y., Chai, Y., Liu, Y. and Gu, X. (2017), “Intelligent interaction based on holographic personalized
portal”, International Journal of Crowd Science, Vol. 1 No. 2, pp. 171-182.

Jiang, C., Chen, Y. and Liu, K.J.R. (2014), “Evolutionary dynamics of information diffusion over social
networks”, IEEE Transactions on Signal Processing, Vol. 62 No. 17, pp. 4573-4586.

Jiang, C., Chen, Y. and Liu, K.J.R. (2014), “Graphical evolutionary game for information diffusion
over social networks”, IEEE Journal of Selected Topics in Signal Processing, Vol. 8 No. 4,
pp. 524-536.

Kennedy, J. and Eberhart, R.C. (1995), “Particle swarm optimization”, International Symposium on
Neural Networks, pp. 1942-1948.

Kermack, W.O. and McKendrick, A.G. (1932), “Contributions to the mathematical theory of
epidemics. II. The problem of endemicity”, Proc. R. Soc. Lond. A, Vol. 138 No. 834,
pp. 55-83.

Lerman, K. and Ghosh, R. (2010), “Information contagion: an empirical study of the spread of news on
digg and twitter social networks”, International AAAI Conference on Web and Social Media
(ICWSM), pp. 90-97.

Liu, Y., Wang, B., Wu, B., Shang, S., Zhang, Y. and Shi, C. (2016), “Characterizing super-spreading in
microblog: an epidemic-based information propagation model”, Physica A: Statistical Mechanics
and Its Applications, Vol. 463, pp. 202-218.

Myers, S.A. and Leskovec, J. (2012), “Clash of the contagions: cooperation and competition in
information diffusion”, IEEE 12th International Conference on Data Mining (ICDM),
pp. 539-548.

Nan, Y., Liu, Y., Shen, J. and Chai, Y. (2017), “A study on MCIN model in intelligent clothing industry”,
International Journal of Crowd Science, Vol. 1 No. 2, pp. 133-145.

Pastor-Satorras, R. and Vespignani, A. (2001), “Epidemic spreading in scale-free networks”, Physical
Review Letters, Vol. 86 No. 14, p. 3200.

Pierson, D. (2011), “Japan radiation fears spark panic salt-buying in China”, Los Angeles Times,
available at: http://articles.latimes.com/2011/mar/18/world/la-fg-china-iodine-salt-20110318

Piqueira, J.R.C. (2010), “Rumor propagation model: an equilibrium study”, Mathematical Problems in
Engineering, pp. 1-7.

Prakash, B.A., Beutel, A., Rosenfeld, R. and Faloutsos, C. (2012), “Winner takes all: competing viruses
or ideas on fair-play networks”, Proceedings of the 21st International Conference on World Wide
Web, pp. 1037-1046.

Rui, X., Meng, F., Wang, Z., Yuan, G. and Du, C. (2018), “SPIR: the potential spreaders involved SIR
model for information diffusion in social networks”, Physica A: Statistical Mechanics and Its
Applications, Vol. 506, pp. 254-269.

Shen, J., Huang, Y. and Chai, Y. (2017), “A cyber-anima-based model of material conscious information
network”, International Journal of Crowd Science, Vol. 1 No. 1, pp. 9-25.

Sun, L., Zhou, Y. and Guan, X. (2017), “Modelling multi-topic information propagation in online social
networks based on resource competition”, Journal of Information Science, Vol. 43 No. 3,
pp. 342-355.

Teschl, G. (2012), “Ordinary differential equations and dynamical systems”, American Mathematical
Soc,

Xia, L., Jiang, G., Song, Y. and Song, B. (2015), “Modeling and analyzing the interaction between
network rumors and authoritative information”, Entropy, Vol. 17 No. 1, pp. 471-482.

Yang, J. and Leskovec, J. (2011), “Patterns of temporal variation in online media”, Proceedings of
the Fourth ACM International Conference on Web Search and Data Mining, 2011,
pp. 177-186.

IJCS
3,2

182

http://articles.latimes.com/2011/mar/18/world/la-fg-china-iodine-salt-20110318


Zhao, L., Wang, J., Chen, Y., Wang, Q., Cheng, J. and Cui, H. (2012), “SIHR rumor spreading model in
social networks”, Physica A: Statistical Mechanics and Its Applications, Vol. 391 No. 7,
pp. 2444-2453.

Zhao, L., Xie, W., Gao, H.O., Qiu, X., Wang, X. and Zhang, S. (2013a), “A rumor spreading model with
variable forgetting rate”, Physica A: Statistical Mechanics and Its Applications, Vol. 392 No. 23,
pp. 6146-6154.

Zhao, L., Qiu, X., Wang, X. and Wang, J. (2013b), “Rumor spreading model considering forgetting and
remembering mechanisms in inhomogeneous networks”, Physica A: Statistical Mechanics and Its
Applications, Vol. 392 No. 4, pp. 987-994.

Corresponding author
Yuejiang Li can be contacted at: lyj18@mails.tsinghua.edu.cn

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Diffusion in
crowd

intelligence
networks

183

mailto:lyj18@mails.tsinghua.edu.cn

	An epidemic model for correlated information diffusion in crowd intelligence networks
	1. Introduction
	2. The classic susceptible–infectious–recovered model
	2.1 The classic epidemic model in epidemiology
	2.2 Epidemic models for information diffusion
	2.3 The dynamics of the classic SIR model

	3. Modeling correlated information diffusion based on the classic SIR model
	3.1 The SIR mixture model
	3.2 Stable state analysis of the susceptible–infectious–recovered mixture model

	4. Real data validation with SIR mixture model
	5. Conclusion
	References


