
Remaking and reinforcing
mathematics and technology with

programming – teacher
perceptions of challenges,
opportunities and tools in

K-12 settings
Niklas Humble and Peter Mozelius

Department of Computer and System Science, Mid Sweden University,
€Ostersund, Sweden, and

Lisa S€allvin
Department of Information Systems and Technology, Mid Sweden University,

Sundsvall, Sweden

Abstract

Purpose – The purpose of this study is to analyse and discuss K-12 mathematics and technology teachers’
perceptions on integrating programming in their teaching and learning activities, and perceptions on different
programming tools.
Design/methodology/approach – The approach of a case study was used, with data collected from three
instances of a professional development programming course for K-12 teachers in mathematics and technology.
Findings – The findings show that there are perceived challenges and opportunities with learning and
integrating programming, andwith different programming tools.Many teachers perceive programming as fun,
but lack the time to learn and implement it, and view different programming tools as both complementary to
each other and with individual opportunities and challenges.
Practical implications –The practical implication of the research is that it can provide guidance for teachers
and other stakeholders that are in the process of integrating programming in K-12 education. Further, the
research provides useful information on teachers’ experiences on working with different programming tools.
Social implications – The social implication of the research is that the overall aim of the nation-wide
integration process might not succeed if the challenges identified in this study are not addressed, which could
have negative effects on the development of students’ digital competence.
Originality/value – The value of the research is that it identifies important challenges and opportunities for
the integration of programming. That is, that many teachers perceive the different programming tools

K-12 Teachers’
perceptions of
programming

309

©Niklas Humble, Peter Mozelius and Lisa S€allvin. Published byEmerald Publishing Limited. This article
is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce,
distribute, translate and create derivative works of this article (for both commercial & non-commercial
purposes), subject to full attribution to the original publication and authors. The full terms of this licence
may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Parts of this research have been presented in early versions at conferences and in a book chapter.
Comments and discussion in these forums have helped to improve the research. The authors would like to
thank the conference attendees, reviewers, editors and organisers of the ECEL2019 conference, the
EDULEARN2020 conference, the END2019 conference and the book Education Applications &
Developments V. Lastly, the authors would like to thank the teachers that participated in the course
instances. Without your participation, there would not have been a study.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2056-4880.htm

Received 28 February 2020
Revised 26 May 2020

17 July 2020
Accepted 24 July 2020

The International Journal of
Information and Learning

Technology
Vol. 37 No. 5, 2020

pp. 309-321
Emerald Publishing Limited

2056-4880
DOI 10.1108/IJILT-02-2020-0021

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/IJILT-02-2020-0021


available as complimentary to each other, but are hesitating aboutwhat is expected of the integration. Findings
could also be valuable for future course design of the teacher professional development.

Keywords Teacher professional development, Programming, Textual programming, Block programming,

Unplugged programming, K-12

Paper type Research paper

1. Introduction
The integration of programming and computer science in K-12 education has been an ongoing
process for decades (Rubio et al., 2015; Balanskat and Engelhardt, 2015; Tsukamoto et al., 2016;
Floyd,2019;Szaboetal., 2019;Nourietal., 2020).Somereasonsforthegrowinginterest incomputer
programmingare: an increasinglyneed forprofessionalswithcodingskills in future societyanda
needforcitizenswithbasicunderstandingofcomputerscienceinthedigitalisedsociety(Balanskat
and Engelhardt, 2015; Enders et al., 2019; Lindberg et al., 2019; Admiraal et al., 2019). In many
countries, thischangehasbeendrivenbyupdates tonationalcurriculatomandate the importance
of teaching and learningbasic programming (Balanskat andEngelhardt, 2015; Szabo et al., 2019).

In Sweden the time framewas narrowly defined when the Swedish government approved a
new curriculum in March 2017, with the plan to implement programming in K-12 settings
during 2018. In the Swedish context, programming should be involved as a teaching and
learning tool in technology and mathematics. (Heintz et al., 2017) Originally, the fundamental
ideawas to use programming as a problem-solving tool in these subjects, but later this has been
extended with the alternatives of using programming for data processing and visualisation.
Since most technology and mathematic teachers lack basic programming skills, a nation-wide
teacher professional development initiative is crucial (Mozelius et al., 2019). However, all schools
cannot send all their teachers to the courses for professional development simultaneously. In
the current plan from the Swedish National Agency for Education, the nation-wide teacher
training will continue in 2020 and 2021 (Swedish National Agency for Education, 2020).

Despite the structural similarities between the systematic workflow in programming and
mathematics and technology, the learning of programming is a time-consuming process. To
make a large-scale change in education takes time (Heintz et al., 2017), and many K-12
teachers lack earlier experiences of programming (Mozelius et al., 2019). The pedagogical
challenge that remains is the overhead of learning to programme for teachers with little or no
pre-knowledge, involving how programming should be “mathematized” or adapted as a tool
in science and technology (Sengupta et al., 2018). To improve the current process, it is
important to further explore the teachers’ perceptions on opportunities and challenges in
learning and integrating programming; and their perceptions of different programming tools.

This study was conducted with the aim to analyse and discuss K-12 mathematics and
technology teachers’ perceptions on integrating programming in their teaching and learning
activities, and perceptions on different programming tools. The work was guided by the
following two research questions:

RQ1. What are K-12 mathematics and technology teachers’ perceptions of challenges
and opportunities in learning and integrating programming in their teaching and
learning activities?

RQ2. What are K-12 mathematics and technology teachers’ perceptions of challenges
and opportunities with different programming tools for their teaching and learning
activities?

2. Background
Previous research has pointed out both opportunities and obstacles with learning and
integrating programming in K-12 education. An opportunity is that learning programming is
expected to help students acquire and develop skills that are useful, such as problem-solving,

IJILT
37,5

310



collaboration, creativity, logical and computational thinking (Balanskat and Engelhardt,
2015; Duncan and Bell, 2015; Zhang and Nouri, 2019). An obstacle is that learning and
teaching programming is a resource-demanding activity, where expected skills does not
develop in itself simply by learning programming (Psycharis and Kallia, 2017). Schools need
to have access to teacher professional development courses and resources for the teachers to
learn and integrate programming (Mannila et al., 2014; Tundjungsari, 2016).

Programming can be defined as in the Cambridge Dictionary (2020): “the activity or job of
writingcomputerprograms”.Anactivity thatcanbecarriedoutinawidevarietyofprogramming
languages and programming tools. Programming also involves computational thinking, which
has several definitions, one is the older broader definition by Wing (2006) that computational
thinking is about solving problems and designing computer programmes. This study uses the
term as it later has been elaborated and redefined by Shute et al. (2017), with the six main
components of abstraction, algorithms, debugging, decomposition, iteration and generalisation.

This study has a focus on teaching and learning programming in the formal context of K-
12mathematics and technology, because of the direction set by the Swedish National Agency
for Education (Swedish National Agency for Education, 2020). However, it is possible to teach
and learn programming through other strategies and contexts. From a Swedish perspective
there are earlier research studies on how to design programming activities in makerspaces in
both K-12 technology education (Eriksson et al., 2018) and teacher education (Kj€allander et al.,
2018). The more global roots to the maker movement can be traced back to the MIT and
Seymour Papert (Resnick and Robinson, 2017, p. 36).

Two common approaches to teach programming are through textual programming tools and
block programming tools, both requires access to a computer (Garneli et al., 2015; Tsukamoto
et al., 2016; Gomez et al., 2019). A third approach, called unplugged programming, that uses no
computer is also described in previous research (Bell et al., 2009;ArandaandFerguson, 2018; Caeli
and Yadav, 2020). These three types of programming tools are described more thoroughly in the
sub-sections below.

2.1 Textual programming
A definition of textual programming is that it is written and modified with the help of a text
editor (Chen et al., 2019; Chiu, 2020). Many see this as the authentic way of programming and
the approach has a more established connection to professional development than block
programming tools (Garneli et al., 2015; Tsukamoto et al., 2016; Mladenovi�c et al., 2020). In a
literature review on introductory programming in education, Szabo et al. (2019) conclude that
the three main textual programming tools used were Python, Pascal and Java.

A common challenge in previous research is that textual programming is more complex
and difficult to learn for novice programmers than other types of programming, such as block
programming (Garneli et al., 2015; Tsukamoto et al., 2016; Lindberg et al., 2019; Chiu, 2020). In
a study on introducing programming to primary school students, textual programming tool
did not seem to score as high as the block programming tool in regards to student motivation
(Tsukamoto et al., 2016). This could indicate that it is less suitable for teaching younger
students programming. Figure 1 below shows a teacher’s solution of a programming
assignment with the use of textual programming in a course on fundamental programming
for technology and mathematic teachers.

An opportunity with using textual programming tools are their connection to professional
development and perception as “authentic” programming, which could be motivating and
inspiring for the students (Garneli et al., 2015; Tsukamoto et al., 2016; Mladenovi�c et al., 2020).
In a study byTsukamoto et al. (2015) it is concluded that it is possible for students from grade
4 and above to use and enjoy textual programming tools. It is also suggested that the use of
textual programming tools in education could attract students with higher programming
ability, which could make it a suitable for after school activities (Mladenovi�c et al., 2018).

K-12 Teachers’
perceptions of
programming

311



2.2 Block programming
Block programming tools can be compared to building with LEGO, programmes are created
by manipulating graphical elements in the environments, usually by a drag-and-drop
approach (Maloney et al., 2010; Lawanto et al., 2017; Rodr�ıguez-Mart�ınez et al., 2020; Chiu,
2020). According to a study, block programming tools are amongst the most commonly used
in introductory programming in K-12 education (Garneli et al., 2015). Figure 2 below shows a
teacher’s solution of a programming assignment with the use of block programming in a
course on fundamental programming for technology and mathematic teachers.

One challenge mentioned by Tsukamoto et al. (2015) is that block programming tools
might limit advanced students in developing their programming skills. In a study by
Weintrop andWilensky (2019) it was concluded that skills acquired with block programming
tools did not automatically transfer to textual programming tools. This could potentially pose
a challenge, since block programming tools are not commonly used in a professional context,
but textual programming tools are (Tsukamoto et al., 2015). Sooner or later students will have

Figure 1.
Velocity conversion
assignment solved in
Python (Graphics by
Peter Mozelius)

Figure 2.
Velocity conversion
assignment solved in
Scratch (Graphics by
Peter Mozelius)

IJILT
37,5

312



to make the transition to textual programming tools (Tsukamoto et al., 2015), but will they be
able to draw on previous knowledge in block programming tools?

An opportunity with block programming tools is their way of avoiding syntactical errors,
since the environments are constructed so that blocks will only connect to each other when
everything is correct (S�aez-L�opez et al., 2016). In a study on introducing programming to
students in primary school, it is suggested that block programming tools might be more
suitable for younger students, since they seemed to be perceived as more motivating
(Tsukamoto et al., 2016). Another opportunity is that block programming tools have a history
of incorporating other activities to programming, such as storytelling, games, music and art
(Maloney et al., 2010; Cooper and Cunningham, 2010; Topalli and Cagiltay, 2018).

2.3 Unplugged programming
The act of programming without a computer is called unplugged programming (Bell et al.,
2009; Faber et al., 2017; Heintz et al., 2017; Aranda and Ferguson, 2018). The idea is that it is
possible to learn basic programming through activities that do not necessarily require a
computer, such as giving oral or written instructions on how to perform a task in a number of
steps (Wyffels et al., 2014; Faber et al., 2017; Aranda and Ferguson, 2018; Miller et al., 2018).
Another way to approach unplugged programming is through board games that aims to
teach basic programming (Tsarava et al., 2018; Jagu�st et al., 2018). Figure 3 below shows an
example of an unplugged programming exercise used in a course on fundamental
programming for technology and mathematic teachers.

Bell and Vahrenhold (2018) comes to the conclusion, after reviewing previous research on
unplugged programming, that it should be used in relation to other technology and not as an
isolated occurrence. In a study on high school students’ perceived understanding of computer
science concepts and their attitudes towards the subject, the unplugged approach did not
seem to have any impact (Feaster et al., 2011). Previous research points out that there is a need
for further research on unplugged programming to determine the effect on learning
programming and relating concepts (AlAmer et al., 2015; Brackmann et al., 2017).

An opportunity with unplugged programming is the easy access, since a computer is not
required. Brackmann et al. (2017) points out that this could be valuable for schools in regions
that are low on technical resources. Studies suggests that unplugged programming, if used
appropriately, could introduce programming and computer science to, especially younger,
students in a meaningful way (Brackmann et al., 2017; Bell and Vahrenhold, 2018). In a study
byWohl et al. (2015), it is concluded that unplugged programming can generate high level of
understanding for algorithms, debugging and logical predictions amongst younger students.

Figure 3.
Example of an

unplugged
programming exercise

(Graphics by Niklas
Humble)

K-12 Teachers’
perceptions of
programming

313



3. Methodology
The study was conducted with a case study approach, with data gathered from three
instances of a professional development programming course for K-12 teachers in
mathematics and technology. The course instances were given during the Autumn
Semester of 2018, Spring Semester of 2019 and Autumn Semester of 2019. The course was of
7.5 ECTS, a study pace of 25%, and included both online learning in a virtual learning
environment, and face-to-face meetings with lectures and workshops. A common
recommendation for the case study approach is to use multiple sources for data collection
to reach deeper understanding of the studied phenomenon (Remenyi et al., 2002; Denscombe,
2014, pp. 54–56; Bryman, 2016, pp. 60–61).

The data in this study were collected through three sources, with the idea of triangulation
(Patton, 2007; Fusch et al., 2018), to enhance the analysis of the case, these were: workshop
observations, essays-assignments and online postings in the courses’ discussion forums
(Table 1). Content analysis, and deductive-inductive coding, was used to analyse the collected
data and identify topics of interests (Drisko andMaschi, 2015, pp. 5–26; Bryman, 2016, p. 283).
A content analysis is carried out by creating codes that can be applied to data for the
development of meaningful categories as described by Blair (2015).

As pointed out by Stemler (2001) the coding and categorisation can be conducted
inductively with codes that emerges from data, or with a deductive a priori approach where
codes and categories have been created beforehand. In this study, the collected data were first
structured with deductive coding according to the two research questions. Inductive coding
was used to analyse and group emerging themes of challenges and opportunities in the
collected essays and forum postings in spreadsheets, these were later compared to the
analysis of the workshop observations for additional themes of interests.

The workshop observations were conducted during face-to-face meetings in all course
instances (Table 1). The workshops focussed on programming assignments, discussions, and
exchanging knowledge and experience. All workshops touched upon textual programming
tools and block programming tools, as well as programming in general. Three of the
workshops (two in spring 2019 and one in autumn 2019) also included exercises and
discussions on unplugged programming.

The essay assignments were collected from the online virtual learning environment
Moodle, that was used in all course instances (Table 1). The assignment was given a couple of
weeks into the courses with instructions to write an essay, reflecting on opportunities and
challenges in learning programming and how participants perceive the textual programming
tool Python and the block programming tool Scratch.

The forum postings were collected from the online virtual learning environment in two of
the course instances (Table 1). This was done midway through the courses, in relation to the
workshops that touched upon unplugged programming. Besides unplugged programming
exercises and discussions, the participants were encouraged to share their thoughts on the
subject in the online course forum of Moodle. The instruction for the online postings was to
reflect on how they perceived unplugged programming and what challenges and
opportunities they could see for its application in the classroom.

Autumn 2018 Spring 2019 Autumn 2019

Number of participants 60 32 15
Number of workshop observations 8 8 4
Number of essay-assignments 31 18 6
Number of forum postings 0 28 5

Table 1.
Data collection

IJILT
37,5

314



All teachers participating in the course instances have been informed about the intention
to use the collected material in research. They have been informed about the intention with
the research and their right to withdraw contribution. To protect participants’ anonymity, all
extracts from forum postings and essays have been translated and rewritten, without
changing the essential meanings.

4. Results and analysis
This section presents the results according to the research question that they relate to.
Results that relate to the first research question are presented in the first category, “Learning
and integrating programming”. Results that relate to the second research question are
presented in the second category, “Perceptions of programming tools”.

4.1 Learning and integrating programming
Three themes of opportunities emerged in the collected essay-assignments:

(1) It is easy to connect programming to other teaching and learning activities in school,
such as logic and problem-solving.

(2) There are a lot of easily accessible teaching and learning material on the Internet and
in books.

(3) Programming is fun, which was the most frequent theme. These themes were
amplified by the workshop observations. One teacher writes about the experience of
implementing programming in grade 7 and 9 in an essay:

My plans for the lesson cracked after 20 minutes, at the same time creativity sparked throughout the
classroom. I must admit that it was uncomfortable to lose control, but at the same time it was fun to
see the enthusiasm in the classroom that maintained throughout the whole lesson.

Three themes about challenges emerged in the collected essay-assignments:

(1) Lack of directives for the integration, for example, what type of programming is to be
implemented, where should it be implemented and how much?

(2) Programming is difficult, for example, learning new structures and logic andmuch of
the available material is in English.

(3) Lack of time for learning and integrating programming, which was the most frequent
theme. These themes were amplified by the workshop observations, where teachers
discussed and shared experiences about implementing programming and trying to
get directives from schoolboards and the Swedish National Agency for Education.
One teacher expresses the frustration about this in an essay:

It is simply not possible for me to put the amount of time on this that I think it requires. From where
am I supposed to take time in an already full schedule? [. . .] As I have mentioned earlier, I get no
time from my employer to work with the integration of programming in my subjects and because of
this the timemust be taken from something else. I find it extremely difficult to have to prioritise away
something that my student might need and, in that way, potentially affect their learning negatively.

4.2 Perceptions of programming tools
The main opportunity with the textual programming tool Python is its perceived freedom
and potential compared to the block programming tool Scratch, for example in relation to

K-12 Teachers’
perceptions of
programming

315



other subjects, future education and labour market. The main challenge is that Python is
perceived as difficult compared to Scratch, whichmightmake the process of integrationmore
difficult. The opportunity and challenge are mentioned in both essays and workshop
observations. In an essay, one teacher writes:

My plan is to solve all assignments in this course with Python, because it seems to be more flexible
and appropriate for advanced projects. At the same time, I am hesitant to use it in my own teaching.
Although it is pretty forgiving compared to other textual programming tools, for example in regards
to the use of data types.

The main opportunity with the block programming tool Scratch is its perceived lower
threshold and being easier than Python, especially for novice programmers. The main
challenge is that Scratch is perceived as limited and not appropriate for more complex tasks
compared to Python. The opportunity and the challenge are mentioned in both essays and
workshop observations. In an essay, one teacher writes:

If I write a program in Scratch the structure will be much better with the use of blocks. However, it is
also harder for me to use when the programming is about mathematical calculations.

Themain opportunity with unplugged programming is that it is perceived as an easy and fun
way to introduce or support programming and other activities, such as mathematics,
computational thinking and logical thinking. The main challenge is that it is perceived as
mainly directed towards younger students, and that using it with older students might not
resonate with their expectations about programming. The opportunity and the challenge are
mentioned in both essays andworkshop observations. In a forum posting, one teacher writes:

Unplugged programming is a good way to show how complicated and yet easy it is to build a
program. [. . .] The students need to understand that when you write a program, what you are doing
is giving instructions to someone/something that have no knowledge of what your intensions are.
Everything needs to be described in detail. It would be desirable if students had good experiencewith
unplugged programming before grade 1–6. After that they could start with block programming and
draw on their previous experiences when the programs start to become more complicated.

It was common in both essays, forum postings and workshop observations that teachers
expressed a perceived relationship between the programming tools. In the workshops,
teachers elaborated on this notion and expressed a perception of the programming tools to
range from a general approach to a more specialised approach on programming. Unplugged
programming was described as the most general and appropriate for the lower grades and a
wider range of subjects. Python was described as the most specialised approach and more
appropriate for the upper grades and the subject of mathematics. While Scratch was
described in the middle, concerning subjects and grades. In one essay, a teacher writes:

I believe that knowledge in one programming language leads to similar insights in the other
language, although the problem at hand might be solved a little differently depending on what
programming tool is at your disposal. Programming is a way of thinking in its own, independent of
what language, it is about algorithms and the implementation of these.

5. Findings and discussion
Concerning the first research question, there are both expected and unexpected findings. The
expected findings relate to findings in previous research. The first being that teachers found
it easy to connect programming to other activities, which can be related to the expectancy of
students getting support to develop other skills through learning programming, such as:
problem-solving, collaboration, creativity, logical and computational thinking (Balanskat
and Engelhardt, 2015; Duncan and Bell, 2015; Zhang and Nouri, 2019). The second being that

IJILT
37,5

316



teachers expressed concerns about programming being too difficult, which can be related to
that learning and teaching programming is a difficult task; and that knowledge, resources
and support is needed (Mannila et al., 2014; Tundjungsari, 2016; Psycharis and Kallia, 2017).

The unexpected findings have some connections to previous research. For example,
previous research expresses that programming can be fun and engaging (Tsukamoto et al.,
2015; Tsukamoto et al., 2016; Brackmann et al., 2017; Bell and Vahrenhold, 2018). But it was
unexpected that it was one of the most recurring themes in the analysed material. Previous
research has pointed out the need for resources, knowledge and support in learning and
integrating programming (Mannila et al., 2014; Tundjungsari, 2016; Psycharis and Kallia,
2017). It was unexpected that so many teachers expressed a lack of time and guidance in the
collected material.

Concerning the second research question, there are both expected and unexpected
findings. The expected findings relate to the findings in previous research. The first being
that teachers tend to compare textual programming tools to block programming tools in
regards to opportunities and challenges. Textual programming tools are often perceived as
difficult compared to block programming tools, but also to have greater freedom and
potential (Garneli et al., 2015; Tsukamoto et al., 2015; Tsukamoto et al., 2016; S�aez-L�opez et al.,
2016; Lindberg et al., 2019; Weintrop andWilensky, 2019; Mladenovi�c et al., 2020; Chiu, 2020).
The second being that unplugged programming is perceived as fun and easy, but might be
limited to younger students (Feaster et al., 2011; Wohl et al., 2015; Brackmann et al., 2017; Bell
and Vahrenhold, 2018).

The unexpected findings have some connections to previous research. Independent of
which tools or approaches that are used to learn and integrate programming, the goal is often
similar, to develop computational thinking and foster creativity, collaboration and problem-
solving (Balanskat and Engelhardt, 2015; Duncan and Bell, 2015; Zhang and Nouri, 2019). It
was unexpected that teachers, relatively early in the courses, expressed perceptions of
similarity between the programming tools, and that the tools could be used to enrich and
build upon each other.

6. Conclusion
The study was conducted with the aim to analyse and discuss K-12 mathematics and
technology teachers’ perceptions on integrating programming in their teaching and learning
activities, and their perceptions on different programming tools. Both challenges and
opportunities have been found regarding the learning and integration of programming in K-
12 mathematics and technology, and with different programming tools. Recurring in the
collectedmaterial were teachers’ perceptions of programming as fun, but difficult to learn and
integrate due to a lack of time and directives for the integration and their own professional
development.

An interesting finding was also the perceived relationship between textual programming,
block programming and unplugged programming; and that it was described in hierarchical
terms. This could potentially be drawn upon in a large-scale integration of programming inK-
12 education. The finding suggest that unplugged programming has a more general
approach to programming, which make it appropriate for the lower grades and a wide range
of school subjects. Textual programming has a more specialised approach, which make it
appropriate for the upper grades and the subject of mathematics. While block programming
has an approach somewhere in themiddle of general and specialised, making it appropriate to
integrate as a stepping stone in the grades between unplugged and textual programming.

K-12 Teachers’
perceptions of
programming

317



7. Limitations and future research
This study was conducted in three instances of a programming course for K-12 teachers in
mathematics and technology where the authors were both course teachers and researchers.
With multiple roles for the authors, challenges and limitations follows that need to be
addressed. The collection of data was conducted in a context where teachers have freely
chosen to learn programming, it is likely that their attitudes towards programming do not
represent that of the average teacher. The authors where both course teachers and
researchers, it is possible that the authors attitudes towards programming has affected the
teachers’ attitudes during the courses.

An interesting next step of research would be to investigate the role of different
programming tools in makerspace and after school activities. In this study, the use and
perception of programming tools are influenced by the subjects in which they are to be
integrated. But how are the use and perception of programming tools affected, if they are
removed from the context of school subjects? Do they remain the same or do new
opportunities and obstacles emerge?

References

Admiraal, W., Post, L., Guo, P., Saab, N., Makinen, S., Rainio, O., Vuori, J., Bourgeois, J., Kortuem, G.
and Danford, G. (2019), “Students as future workers: cross-border multidisciplinary learning
labs in higher education”, International Journal of Technology in Education and Science, Vol. 3
No. 2, pp. 85-94.

AlAmer, R.A., Al-Doweesh, W.A., Al-Khalifa, H.S. and Al-Razgan, M.S. (2015), “Programming
unplugged: bridging CS unplugged activities gap for learning key programming concepts”,
2015 Fifth International Conference on E-Learning (Econf), IEEE, pp. 97-103.

Aranda, G. and Ferguson, J.P. (2018), “Unplugged Programming: the future of teaching computational
thinking”, Pedagogika, Vol. 68 No. 3, pp. 279-292.

Balanskat, A. and Engelhardt, K. (2015), Computing Our Future: Computer Programming and coding,
Priorities, School Curricula and Initiatives across Europe: European Schoolnet (EUN
Partnership AIBSL), Brussels.

Bell, T. and Vahrenhold, J. (2018), “CS unplugged—how is it used, and does it work?”, Adventures
between Lower Bounds and Higher Altitudes, Springer, Cham, pp. 497-521.

Bell, T., Alexander, J., Freeman, I. and Grimley, M. (2009), “Computer science unplugged: school
students doing real computing without computers”, The New Zealand Journal of Applied
Computing and Information Technology, Vol. 13 No. 1, pp. 20-29.

Blair, E. (2015), “A reflexive exploration of two qualitative data coding techniques”, Journal of
Methods and Measurement in the Social Sciences, Vol. 6 No. 1, pp. 14-29.

Brackmann, C.P., Rom�an-Gonz�alez, M., Robles, G., Moreno-Le�on, J., Casali, A. and Barone, D. (2017),
“Development of computational thinking skills through unplugged activities in primary school”,
Proceedings of the 12th Workshop on Primary and Secondary Computing Education, pp. 65-72.

Bryman, A. (2016), Social Research Methods, Oxford University Press, Oxford.

Caeli, E.N. and Yadav, A. (2020), “Unplugged approaches to computational thinking: a historical
perspective”, TechTrends, Vol. 64 No. 1, pp. 29-36.

Chen, C., Haduong, P., Brennan, K., Sonnert, G. and Sadler, P. (2019), “The effects of first programming
language on college students’ computing attitude and achievement: a comparison of graphical
and textual languages”, Computer Science Education, Vol. 29 No. 1, pp. 23-48.

Chiu, C.F. (2020), “Facilitating K-12 teachers in creating apps by visual programming and project-
based learning”, International Journal of Emerging Technologies in Learning (iJET), Vol. 15
No. 1, pp. 103-118.

IJILT
37,5

318



Cooper, S. and Cunningham, S. (2010), “Teaching computer science in context”, Acm Inroads, Vol. 1
No. 1, pp. 5-8.

Denscombe, M. (2014), The Good Research Guide: For Small-Scale Social Research Projects, McGraw-
Hill Education, Maidenhead.

Cambridge Dictionary (2020), Cambridge English Online Dictionary, available at: https://dictionary.
cambridge.org/dictionary/english/programming (accessed 29 04 2020).

Drisko, J.W. and Maschi, T. (2015), Content analysis, Pocket Guides to Social Work R, Oxford.

Duncan, C. and Bell, T. (2015), “A pilot computer science and programming course for primary school
students”, Proceedings of the Workshop in Primary and Secondary Computing Education,
pp. 39-48.

Enders, T., Hediger, V., Hieronimus, S., Kirchherr, J.W., Klier, J., Schubert, J. and Winde, M. (2019),
“Future skills: six approaches to close the skill gap”, The 7th World Government
Summit, pp. 5-15.

Eriksson, E., Heath, C., Ljungstrand, P. and Parnes, P. (2018), “Makerspace in school—considerations
from a large-scale national testbed”, International journal of child-computer interaction,
Vol. 16, pp. 9-15.

Faber, H.H., Wierdsma, M.D., Doornbos, R.P., van der Ven, J.S. and de Vette, K. (2017), “Teaching
computational thinking to primary school students via unplugged programming lessons”,
Journal of the European Teacher Education Network, Vol. 12, pp. 13-24.

Feaster, Y., Segars, L., Wahba, S.K. and Hallstrom, J.O. (2011), “Teaching CS unplugged in the high
school (with limited success)”, Proceedings of the 16th Annual Joint Conference on Innovation
and Technology in Computer Science Education, pp. 248-252.

Floyd, S.P. (2019), “Historical high school computer science curriculum and current K-12 initiatives”,
Proceedings of the 50th ACM Technical Symposium on Computer Science Education, p. 1287.

Fusch, P., Fusch, G.E. and Ness, L.R. (2018), “Denzin’s paradigm shift: revisiting triangulation in
qualitative research”, Journal of Social Change, Vol. 10 No. 1, p. 2.

Garneli, V., Giannakos, M.N. and Chorianopoulos, K. (2015), “Computing education in K-12 schools: a
review of the literature”, 2015 IEEE Global Engineering Education Conference (EDUCON),
IEEE, pp. 543-551.

Gomez, M.J., Moresi, M. and Benotti, L. (2019), “Text-based programming in elementary school: a
comparative study of programming abilities in children with and without block-based
experience”, Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education, pp. 402-408.

Heintz, F., Mannila, L., Nord�en, L.�A., Parnes, P. and Regnell, B. (2017), “Introducing programming and
digital competence in Swedish K-9 education”, International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives, Springer, Cham, pp. 117-128.

Jagu�st, T., Krzic, A.S., Gledec, G., Grgi�c, M. and Bojic, I. (2018), “Exploring different unplugged game-
like activities for teaching computational thinking”, 2018 IEEE Frontiers in Education
Conference (FIE), IEEE, pp. 1-5.

Kj€allander, S., �Akerfeldt, A., Mannila, L. and Parnes, P. (2018), “Makerspaces across settings: didactic
design for programming in formal and informal teacher education in the nordic countries”,
Journal of Digital Learning in Teacher Education: Special Issue: Maker Spaces in Teacher
Education, Vol. 34 No. 1, pp. 18-30.

Lawanto, K., Close, K., Ames, C. and Brasiel, S. (2017), “Exploring strengths and weaknesses in middle
school students’ computational thinking in scratch”, Emerging Research, Practice, and Policy on
Computational Thinking, Springer, Cham, pp. 307-326.

Lindberg, R.S., Laine, T.H. and Haaranen, L. (2019), “Gamifying programming education in K-12: a
review of programming curricula in seven countries and programming games”, British Journal
of Educational Technology, Vol. 50 No. 4, pp. 1979-1995.

K-12 Teachers’
perceptions of
programming

319

https://dictionary.cambridge.org/dictionary/english/programming
https://dictionary.cambridge.org/dictionary/english/programming


Maloney, J., Resnick, M., Rusk, N., Silverman, B. and Eastmond, E. (2010), “The scratch programming
language and environment”, ACM Transactions on Computing Education (TOCE), Vol. 10
No. 4, pp. 1-15.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L. and Settle, A. (2014),
“Computational thinking in K-9 education”, Proceedings of the Working Group Reports of the
2014 on Innovation & Technology in Computer Science Education Conference, pp. 1-29.

Miller, B., Kirn, A., Anderson, M., Major, J.C., Feil-Seifer, D. and Jurkiewicz, M. (2018), “Unplugged
robotics to increase K-12 students’ engineering interest and attitudes”, 2018 IEEE Frontiers in
Education Conference (FIE), IEEE, pp. 1-5.

Mladenovi�c, M., Boljat, I. and �Zanko, �Z. (2018), “Comparing loops misconceptions in block-based and
text-based programming languages at the K-12 level”, Education and Information Technologies,
Vol. 23 No. 4, pp. 1483-1500.

Mladenovi�c, M., Mladenovi�c, S. and �Zanko, �Z. (2020), “Impact of used programming language for K-12
students’ understanding of the loop concept”, International Journal of Technology Enhanced
Learning, Vol. 12 No. 1, pp. 79-98.

Mozelius, P., Ulfenborg, M. and Persson, N. (2019), “Teacher attitudes towards the integration of
programming in middle school mathematics”, INTED 2019, IATED, Valencia.

Nouri, J., Zhang, L., Mannila, L. and Nor�en, E. (2020), “Development of computational thinking, digital
competence and 21st century skills when learning programming in K-9”, Education Inquiry,
Vol. 11 No. 1, pp. 1-17.

Patton, M.Q. (2001), Qualitative Research & Evaluation Methods: Integrating Theory and Practice, Sage
publications,, pp. 247-248.

Psycharis, S. and Kallia, M. (2017), “The effects of computer programming on high school students’
reasoning skills and mathematical self-efficacy and problem solving”, Instructional Science,
Vol. 45 No. 5, pp. 583-602.

Remenyi, D., Money, A., Price, D. and Bannister, F. (2002), “The creation of knowledge through case
study research”, Irish Journal of Management, Vol. 23 No. 2, p. 1.

Resnick, M. and Robinson, K. (2017), Lifelong Kindergarten: Cultivating Creativity through Projects,
Passion, Peers, and Play, MIT Press, Cambridge.

Rodr�ıguez-Mart�ınez, J.A., Gonz�alez-Calero, J.A. and S�aez-L�opez, J.M. (2020), “Computational thinking
and mathematics using Scratch: an experiment with sixth-grade students”, Interactive Learning
Environments, Vol. 28, pp. 1-12.

Rubio, M.A., Romero-Zaliz, R., Ma~noso, C. and Angel, P. (2015), “Closing the gender gap in an
introductory programming course”, Computers & Education, Vol. 82, pp. 409-420.

S�aez-L�opez, J.M., Rom�an-Gonz�alez, M. and V�azquez-Cano, E. (2016), “Visual programming languages
integrated across the curriculum in elementary school: a two year case study using ‘Scratch’ in
five schools”, Computers & Education, Vol. 97, pp. 129-141.

Sengupta, P., Brown, B., Rushton, K. and Shanahan, M.-C. (2018), “Reframing coding as
“mathematization” in the K–12 classroom: views from teacher professional learning”, Alberta
Science Education Journal, Vol. 45 No. 2, pp. 28-36.

Shute, V.J., Sun, C. and Asbell-Clarke, J. (2017), “Demystifying computational thinking”, Educational
Research Review, Vol. 22, pp. 142-158.

Stemler, S. (2001), “An overview of content analysis”, Practical Assessment, Research & Evaluation,
Vol. 7, pp. 137-146.

Swedish National Agency for Education / Skolverket (2020), “Fundamentals of programming aligned
to the subject didactics / Grundl€aggande Programmering Med €Amnesdidaktisk Inriktning”,
available at: https://www.skolverket.se/skolutveckling/kurser-och-utbildningar/grundlaggande-
programmering-med-amnesdidaktisk-inriktning (accessed 27 February 2020).

IJILT
37,5

320

https://www.skolverket.se/skolutveckling/kurser-och-utbildningar/grundlaggande-programmering-med-amnesdidaktisk-inriktning
https://www.skolverket.se/skolutveckling/kurser-och-utbildningar/grundlaggande-programmering-med-amnesdidaktisk-inriktning


Szabo, C., Sheard, J., Luxton-Reilly, A., Becker, B.A. and Ott, L. (2019), “Fifteen years of introductory
programming in schools: a global overview of K-12 initiatives”, Proceedings of the 19th Koli
Calling International Conference on Computing Education Research, pp. 1-9.

Topalli, D. and Cagiltay, N.E. (2018), “Improving programming skills in engineering education
through problem-based game projects with scratch”, Computers & Education, Vol. 120,
pp. 64-74.

Tsarava, K., Moeller, K. and Ninaus, M. (2018), “Training computational thinking through board
games: the case of Crabs & Turtles”, International Journal of Serious Games, Vol. 5 No. 2,
pp. 25-44.

Tsukamoto, H., Takemura, Y., Nagumo, H., Ikeda, I., Monden, A. and Matsumoto, K.I. (2015),
“Programming education for primary school children using a textual programming language”,
2015 IEEE Frontiers in Education Conference (FIE), IEEE, pp. 1-7.

Tsukamoto, H., Takemura, Y., Oomori, Y., Ikeda, I., Nagumo, H., Monden, A. and Matsumoto, K.I.
(2016), “Textual vs. visual programming languages in programming education for primary
school children”, 2016 IEEE Frontiers in Education Conference (FIE), IEEE, pp. 1-7.

Tundjungsari, V. (2016), “E-learning model for teaching programming language for secondary school
students in Indonesia”, 2016 13th International Conference on Remote Engineering and Virtual
Instrumentation (REV), IEEE, pp. 262-266.

Weintrop, D. and Wilensky, U. (2019), “Transitioning from introductory block-based and text-based
environments to professional programming languages in high school computer science
classrooms”, Computers & Education, Vol. 142, 103646.

Wing, J.M. (2006), “Computational thinking”, Communications of the ACM, Vol. 49 No. 3, pp. 33-35.

Wohl, B., Porter, B. and Clinch, S. (2015), “Teaching computer science to 5-7 year-olds: an initial study
with scratch, cubelets and unplugged computing”, Proceedings of the Workshop in Primary and
Secondary Computing Education, pp. 55-60.

Wyffels, F., Martens, B. and Lemmens, S. (2014), “Starting from scratch: experimenting with computer
science in flemish secondary education”, Proceedings of the 9th Workshop in Primary and
Secondary Computing Education, pp. 12-15.

Zhang, L. and Nouri, J. (2019), “A systematic review of learning computational thinking through
Scratch in K-9”, Computers & Education, Vol. 141, 103607.

Corresponding author
Niklas Humble can be contacted at: niklas.humble@miun.se

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

K-12 Teachers’
perceptions of
programming

321

mailto:niklas.humble@miun.se

	Remaking and reinforcing mathematics and technology with programming – teacher perceptions of challenges, opportunities and ...
	Introduction
	Background
	Textual programming
	Block programming
	Unplugged programming

	Methodology
	Results and analysis
	Learning and integrating programming
	Perceptions of programming tools

	Findings and discussion
	Conclusion
	Limitations and future research
	References


