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Abstract
Purpose – The purpose of this paper is to examine the impact of structural breaks on the conditional
variance of carbon emission allowance prices.
Design/methodology/approach – The authors employ the symmetric GARCHmodel, and two asymmetric
models, namely the exponential GARCH and the threshold GARCH.
Findings – The authors show that the forecast performance of GARCHmodels improves after accounting for
potential structural changes. Importantly, we observe a significant drop in the volatility persistence of
emission prices. In addition, the effects of positive and negative shocks on carbon market volatility increase
when breaks are taken into account. Overall, the findings reveal that when structural breaks are ignored in
the emission price risk, the volatility persistence is overestimated and the news impact is underestimated.
Originality/value – The authors are the first to examine how the conditional variance of carbon emission
allowance prices reacts to structural breaks.
Keywords Risk assessment, Structural breaks, GARCH models,
European Union carbon emission allowance
Paper type Research paper

1. Introduction
Structural breaks in volatility (i.e. volatility shifts) are found to characterize the volatility
dynamics of many conventional assets such as equities (Stărică and Granger, 2005),
commodities (Ewing and Malik, 2017) and currencies. If they are not properly taken into
account, they can lead to over-persistent GARCH models (Hillebrand, 2005), affecting
volatility forecasts (Stărică and Granger, 2005). While the effect of structural breaks on the
modeling and forecasting of the volatility of many assets has been empirically examined,
there is very limited evidence of that effect in the carbon emission market.

The carbon emission trading scheme has been remarkably efficient in reducing
greenhouse gas (GHG) emissions (Zhang and Sun, 2016; Ji et al., 2018; Zhang, Li, Hao and Tan,
2018; Zhang, Liu and Xu, 2018)[1], leading to broad implications for environmental policy,
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institutional investors and industries across various sectors[2]. While carbon allowances have
emerged as a financial asset, they are characterized by high volatility (Creti and Joëts, 2017),
and can be subject to shifts. This has raised concerns among market participants about
suitable risk tools to deal with the modeling and forecasting of price volatility. Numerous
articles explore the volatility dynamics of carbon allowance prices. Paolella and Taschini
(2008) show that the employment of a standard GARCH process in the market for emission
allowances provides accurate one-day ahead VaR forecasts. Benz and Truck (2009) use
different GARCH models to study the short-term spot price behavior of carbon allowance
prices. Their findings suggest that the GARCH methods adopted are suitable for capturing
important statistical properties. Chevallier (2011) indicates the presence of outliers in the
volatility of carbon prices via GARCH-based models and argues that yearly compliance
events, and growing uncertainties in post-Kyoto agreements, may be among the reasons for
the instability in the volatility of carbon allowance prices. Rittler (2012) employs multivariate
GARCH models in order to estimate the volatility spillover effects amongst the spot and
futures allowance markets during the Phase II period. The study reveals that the futures
market sends volatility to the spot market. Byun and Cho (2013) focus on the volatility
forecasting of carbon futures and find that GARCH-type models have a better performance
than implied volatility and the k-nearest neighbor model. Spiesová (2016) examines the
conditional variance of carbon emissions prices using various GARCH models. Dhamija et al.
(2017) stress the suitability of applying asymmetric GARCHmodels for modeling the volatility
of carbon allowance prices. Dutta (2018) shows that time-varying jumps occur in the emission
price series and play an important role in modeling volatility.

The European Union Allowance (EUA) market has become a particularly important
sector, representing more than 80 percent of the global carbon emission market (Tian et al.,
2016; Dutta, 2018). The participants in the EUA market have increased in number, and
previous studies provide evidence for its utility for hedging portfolio risk (Viteva et al., 2014;
Zhang and Sun, 2016). Given that financial time series are often characterized by structural
changes in volatility (Stărică and Granger, 2005; Hood and Malik, 2018), one can argue
whether such structural breaks are also present in EUA prices and, importantly, whether
they can affect the volatility modeling and forecasting of EUA prices.

Our work attempts to address this gap in the related literature by modeling and
forecasting the volatility (or risk) of the EUA prices after accounting for structural breaks.
Specifically, we deal with the presence of structural breaks, and conduct volatility forecast
evaluation and value-at-risk (VaR) evaluation.

Methodologically, we detect the presence of structural breaks in the allowance market
volatility (Inclan and Tiao, 1994), incorporate the breaks detected into the conditional
variance along the line of Ewing and Malik (2017), and then assess whether GARCH models
with structural breaks exhibit better forecasting performance than GARCH models without
structural breaks (Kanas, 2013). In doing so, we use asymmetric GARCH processes
(EGARCH and GJR-GARCH) to model the asymmetric volatility in emission prices and make
related inferences about how good and bad news impact the EUA market volatility under
structural breaks. We also consider the effects of structural breaks on the VaR measures
(Charles and Darné, 2014). Such rich analyses add to previous studies modeling the volatility
of carbon emissions with GARCH without accounting for structural breaks (e.g. Paolella and
Taschini, 2008; Benz and Truck, 2009; Rittler, 2012; Spiesová, 2016; Dhamija et al., 2017).

The current paper is related to two strands of research in the carbon market. The first
considers the prediction and modeling of carbon price volatility by considering spillovers
from other markets such as energy markets (Zhang and Sun, 2016; Wen et al., 2017; Ji et al.,
2018). The second considers the dynamic behavior of carbon prices (e.g. Zhang, Li, Hao and
Tan, 2018; Zhang, Liu and Xu, 2018). In contrast, this study attempts to refine the modeling
and forecasting of carbon price volatility by considering the presence of structural breaks
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emanating from extreme events. Importantly, unlike Zhang, Li, Hao and Tan (2018) and
Zhang, Liu and Xu (2018), our focus is on volatility, which represents the second component
of price return distribution. As argued by Christoffersen and Diebold (2000), volatility plays
a more important role in asset pricing and risk management than the first moment of the
price return distribution.

The findings of our empirical analyses indicate that structural changes in the variance of
emission prices should be considered when modeling and forecasting the volatility of the
EUA market. Otherwise, inferences about the volatility of the EUA market might be
misleading. In fact, after accounting for the potential structural breaks, a significant drop is
observed in the volatility persistence of emission prices. Furthermore, the effect of positive
and negative innovations on EUA market volatility increases under structural breaks.
Finally, the forecast performance of GARCH models improves when structural changes in
the emission price variance are taken into account.

The rest of the paper proceeds as follows. Section 2 provides the data and Section 3
describes the methods. Section 4 presents and discusses the empirical results. Finally,
Section 5 offers concluding remarks.

2. Data
We use daily spot prices of EUA from July 1, 2009 to December 31, 2017, consisting of 2,218
daily observations. Prices are collected from DataStream. Notably, the EU ETS involves
three phases: Phase I spans January 2005 to December 2007; Phase II is January 2008 to
December 2012; and the EU ETS is currently in Phase III which started in January 2013.
Following Tian et al. (2016) and Dutta (2018), our sample period does not cover Phase I
because allowance prices at the end of that phase converged to 0 (Tian et al., 2016; Dutta,
2018). Figure 1 shows the emission price index for the sample period under study.

Summary statistics of EUA daily price returns are given in Table I. Price returns exhibit
more volatility in Phase III than Phase II. The value of kurtosis is higher than 3 in all cases,
suggesting that the distribution of returns is leptokurtic. Except in Phase II, all return series
are negatively skewed, suggesting a risk of left tail events. In all cases, the distribution of
returns departs from normality, as evidenced by the JarqueBera statistics.

Based on the stationarity tests, specifically the augmented DickeyFuller (ADF) and
PhillipsPerron (PP) tests, Table II shows that all EUA price series are non-stationary at
levels, whereas their return series are stationary.
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Figure 1.
Emission price index
for the sample period
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However, Perron (1989) highlights the need to consider the presence of structural breaks
while testing the stationarity of time series. We therefore apply the structural break ADF
test and report the results in Table III. They show that EUA prices become stationary at
levels when structural breaks are considered. Notably, the results confirm that the three
return series are stationary.

3. Methods
3.1 GARCH models
The ability of GARCH models to accurately forecast the volatility of financial variables
cannot be overstated (e.g. Kang et al., 2009). As indicated in the introduction section, this
paper uses both symmetric and asymmetric GARCH processes to model and forecast the
risk of EUA prices. Specifically, we employ the symmetric GARCH model (Bollerslev, 1986)
and two asymmetric models, the exponential GARCH (EGARCH) model (Nelson, 1991) and
the threshold-GARCH (TGARCH) model (Glosten et al., 1993)[3].

The mean equation is given by:

rt ¼ pþfrt�1þet ; (1)

where, rt refers to the daily log return of the carbon emission price at time t. The error term et
is assumed to follow a normal distribution with 0 mean.

The equation of the GARCH (1, 1) model has the form:

h2t ¼ oþae2t�1þbh2t�1; (2)

Mean SD Skewness Kurtosis JarqueBera

Full −0.0093 1.3522 −1.1425 26.252 50429.29*
Phase II −0.0329 1.1000 0.2177 8.071 985.54*
Phase III 0.0071 1.5047 −1.4866 27.611 33365.54*
Notes: In this table, we provide summary statistics for daily returns of the emission allowance price index.
The statistics are obtained for both full and subsamples. *Statistical significance at 1 percent level

Table I.
Summary statistics

ADF tests PP tests
Level First difference Level First difference

Full −1.60 −34.98* −1.59 −46.03*
Phase II −0.62 −29.10* −0.64 −29.08*
Phase III −2.12 −28.24* −2.17 −36.09*
Notes: In this table, we present the results for the ADF and PP tests applied to both full and subsamples.
*Statistical significance at 1 percent level

Table II.
Results of ADF
and PP tests

Levels First difference

Full −5.34* −46.70*
Phase II −4.36 −29.76*
Phase III −3.10 −28.82*
Notes: In this table, we apply the ADF test accounting for structural break points. The test is applied to both
full and subsamples. *Coefficient is statistically significant at the 1 percent level

Table III.
Results of unit root
testing with structural
breaks
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where α and β are GARCH parameters, h2t denotes the conditional variance, e
2
t�1 stands for

the volatility news at time t−1. The persistence of volatility is given by α + β.
The TGARCH model of Glosten et al. (1993) is defined as:

h2t ¼ oþae2t�1þge2t�1St�1þbh2t�1; (3)

where, St−1 indicates a dummy variable taking the value 1 when et−1 is negative and 0
otherwise.

Asymmetry is said to be present when H0:g ¼ 0 does not hold. The persistence of
volatility amounts to α + β + (1/2)g.

The EGARCH model assumes the form:

h2t ¼ oþa
et�1

ht�1

����
����þg

et�1

ht�1
þbh2t�1; (4)

where g refers to the asymmetric parameter.

3.2 Detecting and dealing with structural breaks
Following Inclan and Tiao (1994), we detect the presence of multiple breaks in the
unconditional variance of the EUAmarket via the iterated cumulative sum of squares (ICSS)
algorithm. We augment the GARCH model with structural breaks by adding dummy
variables taking a value of one from each point of structural break in variance onwards and
0 elsewhere (Ewing and Malik, 2017). Accordingly, Equation (2) is extended to become
Equation (5) and the null hypothesis of no breaks at 5 percent significance level is tested:

h2t ¼ oþj1D1þ � � � þjnDnþae2t�1þbh2t�1: (5)

As in Ewing and Malik (2017), D1,…,Dn represent the dummy variables that take the value
of one for the break periods and 0 elsewhere. The same extension and tests are applied to the
two asymmetric GARCH specifications, formulated in Equations (3) and (4).

3.3 Volatility forecast evaluation
We investigate whether including structural breaks in the GARCH models can improve the
volatility forecasts for EUA prices. Such an investigation represents an important input for
option pricing and risk management decisions. To this end, we follow Kanas (2013) by
considering the following regression:

s2tþ 1 ¼ aþbs2f ;tþxt ; (6)

where s2tþ 1 is the realized volatility[4] of emission prices at the next period, s2f ;t represents
the volatility forecast at time t and ξt represents the forecast residual. In fact, s2f ;t is proxied
by either the conventional GARCH forecast or extended GARCH forecast; whereas the
forecast performance across the various GARCH models is compared based on R2 values.

As a robustness check, we calculate the root mean square error (RMSE) and mean
absolute error (MAE) statistics and verify whether considering structural breaks in the
GARCH model improves the volatility forecasts for the EUA market. These statistics are
defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

s2t�s2f ;t
� �2

vuut ; (7)
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MAE ¼ 1
n
s2t�s2f ;t
���

���: (8)

3.4 VaR evaluation
To further study the implications of including structural breaks in the conditional variance
of EUA prices, we consider the VaR measure that represents a quantile of the profitloss
distribution (Charles and Darné, 2014). Specifically, we assess whether GARCH models with
structural breaks lead to more accurate estimates of the VaR than GARCH models without
breaks. We do this for both standard and asymmetric GARCH models. To this end, we first
compute the VaR measure as follows:

VaR ¼ mþ t:
ffiffiffiffiffi
h2t

q
: (9)

We then compare the VaR of GARCHmodels with structural breaks and the VaR of GARCH
models without structural breaks via breach frequencies[5]. If the realized breach frequency
(failure ratio) of the VaR of the GARCH model with structural breaks does not exceed the
selected 5 percent probability level (of that in the VaR), and, importantly, it is lower than the
VaR of the GARCH model without structural breaks, we conclude that accounting for
structural breaks leads to a more accurate estimate of the VaR measure.

4. Empirical results
4.1 Outlier detection
Application of the ICSS algorithm detected 17 structural breaks in the EUA price index.
Figure 2 shows the price series with structural breaks, which are generally the consequences
of economic and political events such as financial crises, wars, etc (Chevallier, 2011).
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Figure 2.
Emission price index
with structural breaks
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4.2 Results of GARCH models
Results from the baseline GARCH model without structural breaks (Equation (2)) and the
extended model incorporating structural breaks (Equation (5)) are presented in Table IV.
They show that the GARCH parameters are highly significant. The sum of α and β reveals
strong evidence of volatility persistence. Therefore, the next period’s volatility is affected by
today’s return, which suggests that the future volatility of the EUA prices depends upon the
current levels of EUA returns.

Further results show that the degree of volatility persistence decreases when structural
changes are taken into consideration. For instance, the estimates from the extended GARCH
model indicate a significant drop in volatility persistence (i.e. α + β).

The coefficient estimates of the asymmetric GARCHmodels, exhibited in Tables V and VI,
reveal that taking structural breaks into account plays a vital role in modeling EUA price
volatility. As with the symmetric case, there is a significant drop in the persistence of volatility
for the two asymmetric GARCH processes.

Furthermore, the findings of both TGARCH and EGARCH models confirm the existence of
asymmetric volatility effects, implying that positive and negative innovations would have
heterogeneous impacts on volatility. The coefficient measuring the effects of good and bad
news increases significantly when structural breaks are taken into account (see Table VII).
These results suggest that for the TGARCH model, for instance, the effect of bad news
amounts to 0.145 when breaks are overlooked and 0.186 when breaks are considered. Studying
the Chinese carbon market, Zhang, Li, Hao and Tan (2018) and Zhang, Liu and Xu (2018) find
evidence of asymmetry, but volatility seems to be more sensitive to good news than bad news.

Standard GARCH Extended GARCH
Parameters/models Estimates SE Estimates SE

ω 0.0130* 0.0023 0.0946* 0.0144
α 0.1153* 0.0074 0.1372* 0.0149
β 0.8886* 0.0063 0.7642* 0.0208
Persistence 1.0039 0.9014
Log likelihood −3,355.48 −3,280.97
AIC 3.032 2.980
BIC 3.045 3.034
Notes: This table shows the estimates of the GARCH (1, 1) process. The extended GARCH model incorporates
structural breaks. Persistence is measured as α + β. AIC and BIC refer to Akaike and Bayesian information
criteria. *Coefficient is statistically significant at 1 percent level

Table IV.
Estimates of GARCH

(1, 1) model

Standard TGARCH Extended TGARCH
Parameters/models Estimates SE Estimates SE

ω 0.0137* 0.0024 0.0987* 0.0143
α 0.0910* 0.0086 0.0956* 0.0154
β 0.8855* 0.0063 0.7586* 0.0207
g 0.0546* 0.0125 0.0919* 0.0235
Persistence 1.0038 0.9001
Log likelihood −3,351.34 −3,276.38
AIC 3.030 2.976
BIC 3.045 3.033
Notes: This table shows the estimates of the TGARCH process. The extended TGARCH model incorporates
structural breaks. Persistence is measured as α + β + (1/2)g. AIC and BIC refer to Akaike and Bayesian
information criteria. *Coefficient is statistically significant at 1 percent level

Table V.
Estimates of

TGARCH model
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The significance of considering the presence of structural breaks while modeling EUA
price returns is further supported by the log likelihood statistic along with other
penalized-likelihood criteria such as the AIC and BIC. In fact, when considering structural
breaks, the likelihood statistic tends to increase and the AIC and BIC values seem to
decrease. Overall, the results indicate that, under structural breaks, standard GARCH
models should not be adopted.

4.3 Volatility forecasting performance
Moving to the assessment of whether considering structural breaks in the GARCH models
can improve the volatility forecasts of EUA prices, the coefficient estimates of Equation (6)
are presented in Table VIII. They show that GARCHmodels incorporating structural breaks
have higher R2 values than the GARCH model without structural breaks. For instance, in
the case of the TGARCH specification, the R2 value increases from 0.027 to 0.065 when the
structural breaks are taken into account. We document similar findings for the case of the

Standard EGARCH Extended EGARCH
Parameters/models Estimates SE Estimates SE

ω −0.1539* 0.0084 −0.1762* 0.0197
α 0.2155* 0.0116 0.2465* 0.0231
β 0.9868* 0.0018 0.8870* 0.0126
g −0.0335* 0.0076 −0.0485* 0.0143
Persistence 0.9868 0.8870
Log likelihood −3,357.80 −3,286.07
AIC 3.035 2.985
BIC 3.051 3.042
Notes: This table shows the estimates of the EGARCH process. The extended EGARCH model incorporates
structural breaks. Persistence is measured as β. AIC and BIC refer to Akaike and Bayesian information
criteria. *Coefficient is statistically significant at 1 percent level

Table VI.
Estimates of
EGARCH model

Standard models Extended models

Panel A: TGARCH process
Bad news 0.145 0.186
Good news 0.091 0.096

Panel B: EGARCH process
Bad news 0.248 0.294
Good news 0.182 0.198
Notes: In the case of TGARCH models, the effects of good and bad news are α and α + g respectively. In the
case of EGARCH models, the effects of good and bad news are α + g and α−g respectively. Extended models
incorporate structural breaks

Table VII.
The magnitude of
news impact
on volatility

Models → GARCH (1, 1) Extended GARCH (1, 1) TGARCH
Extended
TGARCH EGARCH

Extended
EGARCH

a 0.8456* 1.0333* 0.9604* 1.1302* 1.7122* 0.5738*
b 0.4883* 0.3710* 0.4224* 0.3213* 0.0440* 0.6620*
R2 0.029 0.072 0.027 0.065 0.011 0.033
Note: *Coefficient is statistically significant at 1 percent level

Table VIII.
Volatility prediction
performance
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EGARCH model. It can thus be concluded that the predictive ability of GARCH processes
incorporating structural breaks is better than that of the GARCH process ignoring the
breaks. These results simply reveal that accounting for structural changes in the variance of
emission prices improves the volatility forecasts for the EU carbon allowance data, which
potentially has implications for investors.

Table IX shows the values of RMSE and MAE statistics, which support earlier findings
presented in Table VIII. That is, considering structural breaks in the GARCH model improves
the volatility forecasts for the EUA market. For example, in the case of TGARCH process, the
MAE statistics obtained from the original and extended models amount to 2.20 and 1.98,
respectively. Similar results are reported in other cases. Therefore, based on both R2 and error
statistics, our findings indicate the superior performance of extended GARCH processes.

Generally, our results are in line with those of Charles (2008), Charles and Darné (2014) and
Ewing and Malik (2017). Although these papers do not focus on the EUA prices, they
highlight the adverse effects of structural breaks on the estimates of volatility processes and
indicate that considering structural changes is crucial when modeling volatility. In relation to
the market of carbon emission allowance, our findings add to those of Benz and Truck (2009),
Chevallier (2011), Byun and Cho (2013), Spiesová (2016), Dhamija et al. (2017) and Dutta (2018)
by showing that accounting for structural breaks in emission variance improves the
performances of the volatility prediction models. In that sense, our findings complement those
of other papers that focus on the forecasting of carbon prices (Zhang, Li, Hao and Tan, 2018;
Zhang, Liu and Xu, 2018), or the forecasting of carbon price volatility based on the volatility of
energy markets (Zhang and Sun, 2016; Ji et al., 2018). Moreover, earlier studies on the EUA
market (e.g. Dutta, 2018) inadvertently ignore structural breaks in emission price series, which
might lead to inconsistency in the estimates of volatility persistence. Our findings show that
the extended GARCH models not only perform better than the conventional models, but also
provide more precise estimates for GARCH parameters. Hence, our empirical analyses suggest
that making inferences without considering structural breaks could severely impact the risk
assessment procedure.

4.4 VaR performance
The results of the VaR measure of GARCH models with structural breaks and that of
GARCH models without structural breaks via backtests, are reported in Table X. They
show that the failure ratio (i.e. the percentage of negative returns smaller than the VaR)

Models
→ GARCH (1, 1)

Extended
GARCH (1, 1) TGARCH

Extended
TGARCH EGARCH

Extended
EGARCH

RMSE 9.21 7.77 9.30 7.77 14.88 9.08
MAE 2.17 1.99 2.20 1.98 2.54 2.06

Table IX.
RMSE and

MAE statistics

GARCH (1, 1)
Extended

GARCH (1, 1) TGARCH
Extended
TGARCH EGARCH

Extended
EGARCH

VaR −2.045 −2.003 −2.050 −2.002 −2.013 −2.025
Failure ratio
(%)

4.332 4.322 4.106 4.106 4.422 4.061

Notes: Risk measures are computed at 5 percent quantiles over the sample period. Following the related
literature, the failure ratio represents the percentage of negative returns smaller than the VaR

Table X.
Backtest results for
the VaR measure
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related to GARCH models with structural breaks is generally lower than that of the
GARCH model without structural breaks. This finding suggests that accounting for
structural breaks when modeling the volatility of EUA prices leads to a more accurate
estimate of the VaR measure, which further supports our earlier choice to account for
structural breaks when modeling volatility dynamics in EUA prices. Accordingly,
suboptimal capital allocation would more likely be prevented, which may lead to the
avoidance of unnecessary extra capital requirements to manage the underlying risk of the
EU carbon allowance market.

5. Concluding remarks
The EU carbon allowance market plays an important role in portfolio analysis. Accordingly,
numerous articles explore the price and volatility behavior of the EUA. However, the
presence of structural breaks in the variance of emission prices and their effect on EUA
volatility modeling and forecasting remains largely under studied.

Employing a set of GARCH-class models, we show that the forecast performance of
GARCH models improves when accounting for the presence of structural breaks and that
the volatility persistence of EUA prices decreases. We also notice that the effect of positive
and negative shocks on the EUA market volatility increases when breaks are taken into
account. Furthermore, we show that the VaR estimation can be made more accurate if the
structural breaks are taken into consideration. Overall, our findings reveal that when
structural breaks are ignored in modeling emission price variance, the volatility persistence
is overestimated, whereas the news impact is underestimated.

Given that modeling volatility plays a pivotal role in portfolio optimization, hedging
decisions and risk assessment techniques, our findings have potentially important
implications for policymakers and investors. Investors could forecast future EUA prices
more precisely, as our results suggest that dealing with the presence of structural breaks in
the variance of emission prices improves the performances of the volatility prediction
models. In addition, investors holding positions in the emission market could make proper
asset-allocation and hedging decisions by understanding the effect of structural breaks on
the emission price risk. Accordingly, they should carefully evaluate the effect of extreme
events when investing in the carbon market, which could help them design better risk
management procedures. Policymakers, supervising and operating the emission trading
systems, often need to formulate effective hedging strategies to avoid the adverse impact of
extreme events. A more accurate estimate of volatility is essential for implementing such
strategies. The results of this empirical research may help in this regard. Moreover,
policymakers and financial market participants are extremely interested in knowing how
major news (good and bad) impacts emission price volatility given that this has a major
effect on the carbon-intensive industries. The results of our empirical study are important
for academics as well, indicating that both good and bad news have significantly more
influence on volatility if structural breaks are accounted for in the model. Researchers could
replicate earlier studies which inadvertently ignore the presence of structural breaks in
modeling emission price volatility.

Our study is not free of limitations, despite our indication of the importance of
accounting for the presence of structural breaks in emission variance in modeling and
forecasting volatility. First, we use carbon emission data at a daily frequency. Future
research could consider the presence of breaks and its impact on volatility forecasting
using high-frequency data. As such, the presence of jumps in higher moments of return
can be considered. Second, we have limited our analysis to the European market, even
though the Chinese carbon emission market is now well established. Future research could
consider the role of structural breaks in modeling and forecasting the volatility of the
Chinese carbon emission market.
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Future studies could analyze the forecasting accuracy of the implied volatility of options
on futures contracts for the delivery of CO2 emission allowances (carbon options) traded on
the European Climate Exchange. It would be interesting to observe how, and to what extent,
the information on both structural breaks and options can improve the forecasting
performance for EU emission market volatility.

Notes

1. It is worth noting that China generated significant GHG emissions (Davis and Socolow, 2014).

2. The readers can refer to statistics from the ec.europa.eu.

3. Dhamija et al. (2017) indicate the suitability of asymmetric GARCH processes in modeling
EUA prices.

4. Following Kanas (2013), our proxy for realized volatility is the squared excess returns.

5. Recently, Bouri and Jalkh (2018) apply this measure to the implied volatility of gold and silver.
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