
Asystematic literature review of
authorization and access control
requirements and current state of

the art for different databasemodels
Aya Khaled Youssef Sayed Mohamed, Dagmar Auer, Daniel Hofer

and Josef Küng
Institute for Application-Oriented Knowledge Processing (FAW), Johannes Kepler

University Linz, Linz, Austria and LIT Secure and Correct Systems Lab,
Linz Institute of Technology, Johannes Kepler University Linz, Linz, Austria

Abstract
Purpose – Data protection requirements heavily increased due to the rising awareness of data security, legal
requirements and technological developments. Today, NoSQL databases are increasingly used in security-critical
domains. Current survey works on databases and data security only consider authorization and access control in
a very general way and do not regard most of today’s sophisticated requirements. Accordingly, the purpose of
this paper is to discuss authorization and access control for relational and NoSQL database models in detail with
respect to requirements and current state of the art.
Design/methodology/approach – This paper follows a systematic literature review approach to study
authorization and access control for different database models. Starting with a research on survey works on
authorization and access control in databases, the study continues with the identification and definition of
advanced authorization and access control requirements, which are generally applicable to any database model.
This paper then discusses and compares current databasemodels based on these requirements.
Findings – As no survey works consider requirements for authorization and access control in different
database models so far, the authors define their requirements. Furthermore, the authors discuss the current
state of the art for the relational, key-value, column-oriented, document-based and graph database models in
comparison to the defined requirements.
Originality/value – This paper focuses on authorization and access control for various database models,
not concrete products. This paper identifies today’s sophisticated – yet general – requirements from the
literature and compares them with research results and access control features of current products for the
relational and NoSQL database models.

Keywords Authorization, Access control, Requirements, Relational database, NoSQL,
Key-value database, Column-oriented database, Document-based database, Graph database

Paper type Research paper

© Aya Khaled Youssef Sayed Mohamed, Dagmar Auer, Daniel Hofer and Josef Küng. Published by
Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY
4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for
both commercial and non-commercial purposes), subject to full attribution to the original publication and
authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

This paper forms part of a special section “Recent advances in big data and security engineering
for web/distributed applications part III”, guest edited by Tran Khanh Dang.

The research reported in this paper was partly supported by the LIT Secure and Correct Systems
Lab funded by the State of Upper Austria. The work was also funded within the FFG BRIDGE
project KnoP-2D (Grant No. 871299).

A systematic
literature
review

1

Received 30April 2023
Revised 18 July 2023

Accepted 18 August 2023

International Journal of Web
Information Systems

Vol. 20 No. 1, 2024
pp. 1-23

EmeraldPublishingLimited
1744-0084

DOI 10.1108/IJWIS-04-2023-0072

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/1744-0084.htm

http://dx.doi.org/10.1108/IJWIS-04-2023-0072


1. Introduction
The increasing awareness of data security, legal requirements and technological developments
is leading to sophisticated data protection requirements (Bertino et al., 2011). Today, not only
relational, but increasingly NoSQL databases are used in business and security-critical
domains, due to their ability to deal with big interconnected data (Zugaj and Beichler, 2019).
Security, especially authorization and access control, has not yet been sufficiently addressed.

Authorization and access control are recognized as the most important security issues in
big data (Tankard, 2012). Authorization is the specification of access rights in terms of who
(subject) can perform what action on which resource, while access control enforces these
access rights. Access control is crucial to regulate and check the flow of information in
enterprise systems. It prevents access to data by unauthorized users.

There is no general solution that applies to all database models. Each database model
has different access control requirements, depending on the kind of data (i.e. structured,
semi-structured or unstructured), regardless of the underlying datastore. Besides, the fine-
grained access control (FGAC) solutions developed for relational database systems cannot
be reused in non-relational datastores due to the schemaless nature of many NoSQLmodels.

The objective of this work is to guide researchers and practitioners by providing
authorization and access control requirements. In addition, we study the features and
limitations of the database models. In this literature work, we aim to answer the following
research questions:

RQ1. What are the main findings in survey works on authorization and access control
for different database models?

RQ2. What are the general requirements to apply fine-grained dynamic authorization
and access control in databases?

RQ3. Are these requirements satisfied for the respective database models?

The remainder of this paper is organized as follows. In Sections 2 and 3, we provide an overview
of our research method and related survey works, respectively. In Section 4, we identify general
authorization and access control requirements for different database models. We discuss these
requirements in terms of the relational and NoSQL database models (i.e. key-value, column,
document and graph) in Sections 5–9. For each of thesemodels, we give an overview followed by
a discussion of the authorization and access control requirements ending with the features that
are either supported in databases or published in research works. We then provide an overall
discussion in Section 10. The paper concludeswith a summary in Section 11.

2. Research method
The overall goal of our research is to understand the similarities and differences of current
database models with respect to authorization and access control. As our focus is on the
database models and not on specific database systems, we follow a systematic literature
review (SLR) research method.

We start with a SLR of survey papers on authorization and access control for relational
and NoSQL database models to answer research question RQ1. We then identify
authorization and access control requirements (RQ2) by systematically analyzing research
works, which address or contribute to enhancing authorization and access control for a
specific database model. To answer RQ3, we study these requirements with respect to
relational and NoSQL database models in detail, relying on papers and other resources from
research and practice.

IJWIS
20,1

2



2.1 Systematic literature review for RQ1
� Research question.What are the main findings in survey works on authorization

and access control for different database models?
� Key concepts. (1) Survey or review, (2) access control, (3) NoSQL model and (4)

relational model. We excluded the terms Internet of Things (IoT) and blockchain,
which came up frequently in the test search, but are not relevant in our context.
The test search results show that the terms authorization and access control are
not consistently used. They are often used as synonyms, but access control is
usually considered to be the more comprehensive term. In addition, we refined
the key concept database model to NoSQL and relational model, as the test
search results with the term database did not discuss relational and NoSQL
models within the same paper. Furthermore, we applied different filters to the
search results, e.g. time span (2010–2023), science categories in Web of Science
such as computer science information systems and software engineering, or
reviews in Google Scholar.

� Literature sources. We searched the following sources: (1) Google Scholar, (2)
Web of Science, (3) IEEE Xplore, (4) ACM digital library and (5) SpringerLink,
combining the key concepts stated before. We scanned the sources, their references
and other relevant references suggested by the tools. We then stored them in a
Citavi [1] project, where we manage our references.

� Analysis. We analyzed the selected papers in detail, categorized them and marked
the relevant parts. We identified additional references during the detailed study and
added them.

� Results. The results of this SLR are documented in Section 3.

The studied resources have a broader focus on security in database-related aspects and only
provide an overview of authorization and access control.

2.2 SLR for RQ2
� Research question. What are the general requirements to apply fine-grained

dynamic authorization and access control in databases?
� Key concepts. (1) Requirement, (2) authorization, (3) access control and (4)

database. We merged the concepts database model and database as the distinction
was nearly irrelevant for the matches. We did not include fine-grained as it
restricted the search space too much when applied in searches considering titles and
was nearly irrelevant in full text searches.

� Literature sources. We used the same sources as with the SLR for RQ1, but
started with the Web of Science. We also followed the references in the papers and
recommendations by the tools as the identified keywords were not sufficient. All
relevant papers are stored in Citavi.

� Analysis. We categorized the papers according to the requirements and
selected the relevant ones in the context of data protection and data model. We
ignored requirements related to protecting the database schema, policies or
encryption.

� Results. In Section 4, we describe the identified requirements, which we consider in
our comparison of authorization and access control for different data models.

A systematic
literature
review

3



To study these requirements in the context of different database models, research papers
along with resources for database systems have been considered.

2.3 SLR for RQ3
� Research question. Are these requirements satisfied for the respective database

models?
� Key concepts. (1) requirement and/or details to the previously identified ones, i.e.

(i) granularity and fine-grained, (ii) content-based, (iii) context-based or context-
aware, (iv) custom and (v) separation of concerns, external or policy-based, (2)
authorization and/or access control, (3) relational, or (i) SQL, (ii) Oracle, (iii) MySQL
or MariaDB or (iv) PostgreSQL, (4) NoSQL and key-value, or (i) Redis or (ii)
Accumulo, (5) NoSQL and column-oriented, or (i) Cassandra or (ii) HBase, (6) NoSQL
and document-based, or (i) MongoDB or (ii) Couchbase, (7) graph database, or (i)
Neo4j, (ii) Microsoft Azure CosmosDB or (iii) ArangoDB

� Literature sources. (1) Our Citavi project, as it already contains many relevant
sources, (2) Google Scholar, (3) Web of Science, (4) IEEE Xplore, (4) ACM digital
library, (5) SpringerLink and (6) Google Search Engine (especially for product-
specific information). We researched each model separately with respect to the
different requirements, authorization and access control and only later got into the
details of concrete databases (e.g. Redis). These sources are managed in Citavi.

� Analysis. We analyzed the sources according to the requirement and data model.
In addition, we differentiated between research papers and database products and
thus, between latest features in products and research results.

� Results. The results are organized according to the data models. We give an
overview of the core characteristics of each model and provide a discussion of
authorization and access control requirements based on research results and/or
database products (see Sections 5–9). The findings are synthesized and compared in
Section 10.

3. Related work
Several survey works address security in databases, especially NoSQL databases. For
example, Sicari et al. (2022) is one of the very recent literature researches discussing security
and privacy in the context of NoSQL database models selecting one for each category, i.e.
Redis, Cassandra, MongoDB and Neo4j for key-value, column, document and graph,
respectively. They compared their security features and considerations with respect to
encryption, authentication, authorization and auditing. They also provided a comparison of
relational and NoSQL database systems in terms of schema, redundancy, atomicity,
consistency, isolation, durability, scalability and query language. This work also
highlighted the need for FGAC and access control models based on the semantic content of
data (refer to R1 andR2).

Another recent survey work by Samaraweera and Chang (2021) discussed not only the
relational, NoSQL and NewSQL database models, but also various database security risks
and types of attacks. Moreover, they analyzed different data protection mechanisms and
extensively compared 32 datastores from all database models in terms of authorization and
access control, authentication, auditing and logging, encryption and consistency model for
data integrity. Alotaibi et al. (2019) reviewed access control models in different NoSQL
databases, highlighting the lack of FGAC. Colombo and Ferrari (2019) focused on access

IJWIS
20,1

4



control, presenting a literature review for existing access control solutions in NoSQL
datastores. They also defined FGAC, context management and efficiency of access control
as key requirements behind the definition of an access control mechanism for big data
platforms. They classified the state-of-the-art approaches into platform-specific, platform-
independent and domain-specific big data (i.e. data stream analytics and IoT). The proposed
frameworks were analyzed in terms of the target platform, access control model, maximum
granularity, context support and efficiency. They eventually discussed some open research
issues related to big data access control.

Dindoliwala and Morena (2017) surveyed several NoSQL databases (i.e. MongoDB,
Cassandra, GemStone, db4o and Objectivity/DB) and compared their authentication,
authorization, auditing and data encryption features. The work presented in Zahid et al.
(2014) performed an assessment to evaluate the security of sharded NoSQL stores in
Cassandra, MongoDB, CouchDB, Redis and HBase. The assessment criteria were
authentication, access control, secure configurations, data encryption and auditing. The
security features of the same databases were analyzed again in Dadapeer andAdarsh (2016),
in addition to defining the main security issues in NoSQL database. Sahafizadeh and
Nematbakhsh (2015) included more NoSQL stores (i.e. HyperTable, Voldemort, DynamoDB
and Neo4j), besides the five database systems used in Zahid et al. (2014), along with
Dadapeer andAdarsh (2016).

However, these works had a broader focus on security features with little consideration
for authorization and access control. Furthermore, they selected particular datastores to
compare and analyze their features. We focus on the database model, rather than a specific
database management system (DBMS).

4. Authorization and access control requirements
Data security solutions have to meet three core requirements: confidentiality (also referred to
as secrecy), integrity and availability. Confidentiality refers to protection against
unauthorized access, integrity ensures unauthorized and improper modification of the data,
whereas availability focuses on avoiding unavailability of software and hardware, as well as
recovery from errors (Bertino et al., 2007; Ferrari, 2009).

In Section 3, we already discussed surveys on data protection support in various
databases and models. However, authorization and access control were only marginally
considered in these studies. Since authorization and access control are among the most
important means of supporting confidentiality and integrity, we consider them for our
detailed requirements, with focus on protecting the data in the datastores.

We define the following requirements for authorization and access control for datastores
(independent of their data model):

� R1 Varying granularity of protected data objects.
� R2 Content-based authorizations.
� R3 Context-based authorizations.
� R4 Custom authorizations.
� R5 Separation of concerns.

4.1 Varying granularity (R1)
For more than 20 years, the demand for protecting data at different granularity levels, i.e.
from sets of data objects to parts of a single one, has been heavily increasing (Bacon et al.,
2003; Ferrari, 2009; Bertino et al., 2011; Kulkarni, 2013; Kirrane, 2015). Access control in

A systematic
literature
review

5



databases differs fundamentally from that in file systems due to the varying levels of
granularity of the protected data objects in the specification and enforcement of
authorizations (Bertino et al., 2011). According to the data model, different entities (e.g.
tables or records in relational databases, vertices and edges in graph databases, and
documents in document stores) are considered in the authorization specification. The
granularity of these entities can be at the level of fields, attributes or data components, based
on the model structure. Fine-grained access control is a fundamental requirement today
(Bertino et al., 2007; Bertino and Sandhu, 2005; Colombo and Ferrari, 2019). However, new
challenges emerge due to heterogeneous data in schema-free NoSQL datastores, where
authorizations and their enforcement cannot rely on a known schema like in relational
databases (Okman et al., 2011; Sahafizadeh and Nematbakhsh, 2015; Colombo and Ferrari,
2017, 2019; Sicari et al., 2022). Thus, defining and enforcing fine-grained authorization
policies in NoSQL datastores is still challenging.

4.2 Content-based authorizations (R2)
Content-based access control is considered an important requirement to protect data in a
datastore (Bertino and Sandhu, 2005). Access decisions rely on data content, i.e. metadata
(Bertino and Sandhu, 2005) or any content from the datastore (Bertino and Sandhu, 2005;
Bertino et al., 2007). Therefore, not only the structure, but also the semantics of the data are
considered in authorizations and their enforcement (Bertino et al., 2011; Kulkarni, 2013;
Sahafizadeh and Nematbakhsh, 2015; Sicari et al., 2022).

Consider a document-based database, where a document is the unit of storing data. The
document consists of fields with keys and values, which can be used to specify
authorizations, e.g. a rule in an authorization policy. When the rule defines an access
condition on a specific field, only data satisfying this rule can be accessed. This requirement
not only covers the use of content-based restrictions on resources (objects), but also on
attributes of requesters (subjects), such as their job title, specific qualification or signing
authority (Bertino et al., 2007; Kirrane, 2015).

4.3 Context-based authorizations (R3)
Context information is associated with the user (subject) requesting access and/or the
resources to be accessed. The authorization policy is evaluated to decide about access. Thus,
dynamic user privileges are addressed in authorization policies to allow constraints on, e.g.
geographical locations, time or history (Bacon et al., 2003; Bertino and Sandhu, 2005; Bertino
et al., 2007; Kulkarni, 2013; Colombo and Ferrari, 2019; Sicari et al., 2022). For instance, some
resource can be only accessed if the user is in the office, within the office hours, or if the user
already performed some specific task in the past. Bacon et al. (2003) also considered more
specific contexts, such as the name of the computer or a certain relationship (e.g.
patient_under_care) between the user (e.g. a doctor) and the resource (e.g. patients and their
medical history).

Although the database model has no impact on the user context, not all database
systems, especially nonrelational ones, support context-based authorization policies and
access control.

4.4 Custom authorizations (R4)
Some databases only provide a set of built-in access controls, such as the predefined roles (i.e.
reader, editor, publisher, architect and admin) in Neo4j (Borojevic, 2017). Custom, declarative
conditions allow for much more flexibility, as they do not restrict access constraints (Bertino
and Sandhu, 2005; Bertino et al., 2007) to a predefined set of built-in rules.

IJWIS
20,1

6



The fulfillment of this requirement forms the basis to comprehensively benefit from the
solutions for the requirements R2 and R3 (Bertino et al., 2007; Kulkarni, 2013; Colombo and
Ferrari, 2019).

4.5 Separation of concerns (R5)
Our last requirement relates more to the system architecture than to the definition and
enforcement of authorizations. Separation of concerns, an important design principle in
software development, is also relevant to access control. Handling authorizations and their
enforcement within the application is not scalable and hard to maintain. Therefore, access
control should be independent of the application and the underlying datastore.

The established policy language and access control model eXtensible Access Control Markup
Language (XACML) [2], for example, supports separation of concerns. In addition, in research
prototypes like the ones presented by Bertino et al. (2001), Colombo and Ferrari (2017), Kacimi and
Benhlima (2017), Bogaerts et al. (2017) and Mohamed et al. (2022), authorization policy
management and enforcement are also independent of the application and the underlying
datastore. However, there are still many integrated and platform-dependent approaches.

The identified requirements are not only implemented differently, but also the definition
could vary from one database model to another due to the nature of the data stored in these
systems, query language and structure of the data model. For instance, the data model
hierarchy, granularity level and resource context are not the same for all database models.

We discuss the proposed requirements in the context of each database model, along with
the existing access control features in the upcoming sections.

5. Relational databases
The first relational database management system (RDBMS) evolved in the 1970s and is
based on the rigid scientific fundamentals of the relational data model developed by Edgar
F. Codd (Zugaj and Beichler, 2019). Figure 1 shows the relational model hierarchy. The data
is stored in tables, also referred to as relations. Columns and rows of the table are called
attributes and tuples, respectively. Each row has its own unique key. The foreign key is the
primary key of another table to link rows in different tables. The relation has a schema (i.e.
metadata), which defines the attribute names along with their data type in addition to the
instances representing the tuples at a given instant. The RDBMS relies on static schemas to

Figure 1.
Relational database

model

A systematic
literature
review

7



maintain data integrity. Furthermore, relational datastores support only structured data and
are managed using the common declarative query language SQL.

Access control approaches have been developed in the relational systems ever since the
first products emerged. In SQL’89, discretionary access control (DAC) is applied such that the
relation creator in an SQL database becomes its owner. However, SQL’89 lacks control over
who can create relations. The owner can give access privileges (i.e. select, insert and delete) to
other users using the grant operation in SQL, which applies to base relations and views. The
drop relation privilege is not supported in SQL’89, but included in IBM DB2. In addition, the
missing revoke operation is provided in SQL’92 with the option of cascading revocation. In
general, DAC is prone to trojan horse attacks, even if the relation access is strictly controlled.
For instance, a user with a select privilege can violate these controls by creating a copy of the
relation. Another problem is related to access rights management, as the privileges for
performing a particular task have to be granted explicitly to each user or group of users
(Sandhu, 1994).Mandatory access control (MAC) is based on security labels associated with
each user or data item. In relational databases, security classifications can be assigned to
data at different levels of granularity. In coarse-grained access control, labels are assigned to
entire relations or columns, whereas fine-grained refers to the level of tuples or elements.
Nevertheless, secret data can be leaked using devious means of communication, i.e. covert
channels (Sandhu, 1994).

5.1 Database management system features
Concerning access control in commercial relational database systems, it relies either on
creating policy-compliant views and modifying queries to reference them (e.g. MySQL and
MariaDB), or using proprietary enforcement mechanisms (e.g. Oracle, PostgreSQL and IBM)
(Bao and Clavel, 2021). For instance, MySQL supports row-level access control by creating
an abstraction of views and optionally functions to limit users’ access by a specific row
filtering (Oracle, 2023). On the other hand, theOracle Virtual Private Database (Browder and
Davidson, 2002) enforces access control at the row level by appending the expressed
content- and context-based conditions in the authorization policy to the where clause of the
SQL query.

5.2 Research works
Bertino et al. (1997) proposed an access control model for relational databases, supporting
permission delegation and negative authorization. Regarding the content-based fine-grained
access control in requirement R2, there are two categories of enforcement mechanisms:
view-based and query rewriting (Colombo and Ferrari, 2016a). In view-based mechanisms,
the views are derived according to the specified authorization policy. Access is granted to
these views, rather than to the original data resource. On the other hand, the query rewriting
enforcement approach intercepts the query to apply the specified constraints in the
authorization policy.

A FGAC at the cell level was introduced by LeFevre et al. (2004), using dynamically
generated views nullifying the unauthorized cells. Moreover, Agrawal et al. (2005) proposed a
language supporting grant command specification at the cell level (Colombo and Ferrari,
2016a). Research to enhance access control in the RDBMS is still ongoing. For instance, a recent
approach to enforce FGAC policies when executing SQL queries is proposed by Bao and Clavel
(2021). They presented a generated SQL stored-procedure executing user queries according to
fine-grained policies modeled in SecureUML (Lodderstedt et al., 2002). However, an
unavoidable performance overheadwas introduced at run-time due to the policy complexity.

IJWIS
20,1

8



5.3 Summary
Although existing authorization and access control approaches satisfy our requirements
and are advanced, compared to other database models, there are still problems concerning
the information revealed when solving subqueries, where-clauses and on-clauses in the
devised queries. Furthermore, current access control solutions in the RDBMS are inefficient,
error-prone and scale poorly (Bao and Clavel, 2021). As the performance of relational
databases degrades with joins, locks and impedance mismatch, nonrelational databases
have emerged with various data storage models to address these limitations and handle
large amounts of data (Dindoliwala andMorena, 2017).

6. Key-value databases
The key-value model uses a hash table and is the simplest one among all NoSQL models. It
is powerful and efficient in storing schema-less data in the form of data values associated to
keys, which are used as indexes for quickly finding values in large data sets (Alotaibi et al.,
2019). Data can be either stored as rows, like structured data, or JSON objects. Redis [3] and
Accumulo [4] are examples of native key-value databases.

Redis is an advanced open-source datastore, where each key-value is a pair of binary
strings for managing different types of binary data (e.g. XML documents, images, arrays
and bytes). It provides hashes to store and query the database objects. In Accumulo, data is
stored in a distributed sorted map. The keys are logically divided into a row key to uniquely
identify the row, a column and an automatically generated timestamp used for versioning
(Moreno et al., 2018). Each column is further divided into a family (i.e. the logical grouping of
the key), a qualifier as a more specific key attribute, and a visibility tag, which stores a
logical combination of security labels.

According to the key-value model represented in Figure 2, the hierarchy consists of a
collection of records identified by their unique keys. The finest granularity in this model is
the value of a particular key.

6.1 Database management system features
The Accumulo database applies FGAC at the cell level. Security labels are assigned to key-
value pairs by adding an element to the key called column visibility. If these labels are
satisfied at query time, the respective key and value are included in the response of the user
request. On the contrary, Redis can restrict access to specific commands and keys. Role-
based access control (RBAC) is supported only in the Redis Enterprise Cloud service, but
permissions are assigned to the users directly in the open-source version (Gupta et al., 2023).

Figure 2.
Key-value database

model

A systematic
literature
review

9



6.2 Research works
Moreno et al. (2018) proposed a model to describe who can access the values of specific data
cells in a key-value database system. The labels may define rules for access matrix, RBAC
or multilevel models. In this work, enforcement of the specified authorizations was not
addressed. There are also proposals to use key-value datastores to manage authorization
policies. For example, Colombo and Ferrari (2018) implemented an access control
enforcement mechanism on top of key-value databases. However, this work did not
conceptually address authorization and access control in the database model.

6.3 Summary
When matching the requirements in Section 4 with the available access control features, we
find that the requirement R1 is satisfied because the model hierarchy is simple (i.e. a table
and key-value entries). Requirement R2 is not satisfied for this model, as the access to the
fine-grained element is based on its security label or the assigned role, rather than content.
We consider the key-value database model satisfying requirement R4, because at least one
database system has the option to specify custom authorization policies. For instance,
custom security labels can be specified in Accumulo using the column visibility element of
the key. Finally, no demonstration cases have been presented for context-based policy (R3)
and external authorization (R5) in key-value databases so far.

7. Column-oriented databases
The column-oriented database is also referred to as column-family store. It is considered as
an evolution of key-value datastore, where data is also represented as hash maps, but with
more than one indexing level (Abadi et al., 2009). The meta model for column-oriented
databases is illustrated in Figure 3. Each column consists of a key and a value. The column-
family is a set of rows equivalent to a table in the relational databases. A set of column-
family is defined as a key space. This model is typically used in data mining and web
applications because of its ability to deal with massive data and complex datasets in
distributed systems (Nayak et al., 2013). However, it is less flexible than key-value and
document-based models, because the column-family needs a schema at the application level.
Examples of column-oriented databases are Cassandra [5] andHBase [6].

According to the column-oriented database model, authorization policies should specify
constraints at the level of key space, column-family, row and column. FGAC should allow to
limit access to specific column values within a row.

7.1 Database management system features
Cassandra supports RBAC at the key space or column-family level, according to the user’s
role(s) and privileges. It uses the grant/revoke security paradigm to manage permissions on
resources, which are assigned to roles (Dindoliwala and Morena, 2017). The resource could
be key space, role, table, index or function. In Cassandra, access control at the object level is
not available (Dadapeer and Adarsh, 2016). HBase enforces authorization using access
control lists.

7.2 Research works
Kulkarni (2013) proposed a fine-grained key-value access control model, where authorization
policies can be specified at the level of column-family, key space, column or row. However,
this model was implemented as a library and restricted to Cassandra and HBase. Shalabi
and Gudes (2017) presented a schema for cryptographic enforcement of RBAC policies in

IJWIS
20,1

10



Cassandra. This approach is platform-specific and the enforcement overhead is not
discussed (Colombo and Ferrari, 2019). In addition, fine-grained, content-based and context-
aware policies are not supported.

7.3 Summary
Column databases allow to specify custom authorization policies at different levels (R1 and
R4). In addition, the work in Kulkarni (2013) claimed to enforce content-based FGAC (R2). It
also provided three examples to apply context-based access control (R3), by describing user
location and time of the day in the authorization policy. Nevertheless, the proposed model
was implemented on a small-sized patient information system and has not been changed
over the last 10 years [7]. Because existing policy languages have no direct support for
column-oriented data structures, this database model fails to meet the requirementR5.

8. Document-based databases
The document-based database model is the most commonly used NoSQL model, as it can
manage structured, semi-structured and unstructured data. Data is stored as schema-less
documents with one or more fields in key-value pairs or nested documents (see Figure 4).
Documents are analogous to records in the RDBMS and collections are equivalent to tables,
but without a predefined schema. Each document is identified by a unique key, which is
used to manipulate (i.e. insert, delete and update) document data and for linking documents.
For fast data retrieval, fields can be indexed. Document datastores are typically used for
blog software and content management systems, due to their flexibility, high performance
and horizontal scalability. Examples areMongoDB [8] and Couchbase [9].

MongoDB is a distributed general-purpose database that stores data in the form of BSON
documents, without schema definition. It uses collections as an additional organization level
to group similar documents and provides its own query language, i.e. MongoDB Query
Language. MongoDB is the first ranked NoSQL database due to its strengths, including the

Figure 3.
Column-oriented
database model

A systematic
literature
review

11



support of all indexing techniques in relational databases for data sorting and faster
searching (Sicari et al., 2022). Besides the pure document-based datastores, there are
multimodel database systems relying on the document structure in its core. For instance,
ArangoDB is a multimodel database, storing data as documents, which are organized in
collections and databases.

The access control model should allow the specification of authorization policies at the level
of database, collection, document and field. Database/Collection level policies regulate access to
all documents in a database/collection, whereas document level policies cover the entire set of
fields included in a document. The finest granularity in this database model is at the level of
document fields. A field can be of a simple datatype, a document (i.e. nested document) or even
an array of fields (Colombo and Ferrari, 2015a).

8.1 Database management system features
Document datastores support RBAC. Couchbase implements 46 predefined roles with
specific privileges on the entire collection [10]. Most of these roles are exclusive to the
enterprise version, while only three roles can be used in the community version. MongoDB
has built-in and user-defined roles that grant privileges for actions on a resource (i.e.
database, collection, set of collections or cluster). Users have no access to the system if they
are not assigned to at least one role. The first user created in the database should be a user
administrator with privileges to manage other users [11]. Although MongoDB is adopted in
many solutions due to its dynamic structure, there is no standardization of authorization
and access control. In ArangoDB, external authorization can be applied using Foxx
microservices [12], which allow enforcing fine-grained permissions directly on the database
using APIs.

Figure 4.
Document-based
database model

IJWIS
20,1

12



8.2 Research works
In Colombo and Ferrari (2015b), the RBAC model in MongoDB was enhanced to support
purpose-based policy specification at the document level. The same authors presented a
research roadmap for integrating context-aware fine-grained access control features into
MongoDB (Colombo and Ferrari, 2015a). Subsequently, they refined the granularity level of
access control in MongoDB to support content- and context-based policies at the field level
(Colombo and Ferrari, 2016b). However, the proposed approaches are limited to MongoDB.
They eventually generalized the concept to enforce ABAC into document datastores at the
document or field level without prior knowledge of the document structure (Colombo and
Ferrari, 2017). This is achieved by introducing SQLþþ as a unifying query language for
NoSQL, with a query rewriting step to apply fine-grained authorizations. Nevertheless,
SQLþþ is not widely used in practice, as it needs adaptations to work with the different
languages and data models of NoSQL databases (Gupta et al., 2023).

Kacimi and Benhlima (2017) presented an architecture applied to MongoDB for purpose-
based access control policies in XACML. It uses a policy language to express the
authorization policy, but the enforcement is application-specific. Although they provided an
implemented access control as a service approach using XACML with MongoDB, further
implementation is needed to map the defined policy attributes to database values. Gupta
et al. (2023) introduced a framework to specify and enforce field-level permissions. Their
concept was based on intercepting a proxy server, which uses the MongoDB wire protocol
(MongoDB, 2023) and communicates with the database server on behalf of the clients.

8.3 Summary
According to the existing access control features for the document-based database model,
we can say that at least one research work addressed each of our requirements. However, the
currently proposed approaches still have flaws and need further investigation to be used in
practice. Current document datastores support custom authorizations (i.e. roles) (R4).
Moreover, we consider separation of concerns (R5) as a supported feature in the document-
based database model, because there are database systems (e.g. the multimodel datastore
ArangoDB) having a framework to specify and enforce authorization policies externally.
However, such frameworks are specific to a particular datastore and cannot be reused in
others, even with the same database model. Because most document-based datastores
support coarse-grained RBAC, the granularity (R1), content (R2) and context (R3)
requirements are not met.

9. Graph databases
The data is stored in graphs as object nodes (vertices) connected by relationships (edges). A
graph database has no predefined schema and can be seen as a special kind of document-
based database, where both nodes and relationships are represented by documents (Sicari
et al., 2022). It is scalable and uses shortest path algorithms for improving the efficiency of
data queries, but is more complex to manage. There are different graph models, but the
property graph (see Figure 5) is the most commonmodel in graph databases.
Graph databases are mainly used in recommendation systems and social networks;
however, there is no standard query language for manipulating data and traversing graphs
yet. Neo4j (2023) is the top ranked native graph database [13] with its declarative query
language Cypher.

FGAC in the context of graph-structured data is to protect vertices and edges, along with
their properties (i.e. attributes). However, one of the key problems is how to describe the
object of a permission (Kalajainen, 2007). Vertices and edges are not isolated and even

A systematic
literature
review

13



contexts in the graph model can be an object of a permission. Thus, it is not sufficient to
protect a single element, but to consider its context, i.e. the path (or parts of it) to the
protected element. There could be several paths from a subject to a resource, but not all of
them are authorized. In this case, the subject can be denied from accessing this resource
because of an unauthorized path. Therefore, the context of resources should be considered
when specifying and enforcing authorizations.

9.1 Database management system features
Currently, native (e.g. Neo4j) and non-native (e.g. Microsoft Azure CosmosDB [Weiss et al.,
2022] and ArangoDB [Oasis, 2019]) graph databases provide access control based on roles.
Neo4j supports RBAC with predefined roles (i.e. reader, editor, publisher, architect and
admin), in addition to subgraph and property-level access control (Borojevic, 2017). It also
has a special database (i.e. system database) for storing the privileges. Regarding the
multimodel database systems supporting graph structures, access control features apply the
same way like in other models.

9.2 Research works
Morgado et al. (2018) introduced a model-based approach using metadata with
authorization rules to control access in applications that use graph databases. It provides
a predefined schema for the graph nodes in addition to data definition language and data
manipulation language operations. This model only allows specifying positive
permissions on individual nodes. The work did not show how the model handles
conflicts. In Valzelli et al. (2021), the authors proposed an initial solution to protect
knowledge graphs. A knowledge graph contains the main entities in a certain domain,
along with their relations. They introduced a property graph model to specify open and
closed policies, using authorization edges between subjects (i.e. user and user group) and
resources (or resource category). However, they focused only on DAC, MAC and RBAC,
which cannot enforce FGAC. Both papers provided conceptual approaches that need to be
implemented on top of the graph model.

Relationship-based access control (ReBAC) and attribute-based access control (ABAC)
are examples of content-based models. ReBAC is an access control model based on
evaluating relationships between accessing subjects and target resources, e.g. the friendship
relation in social network applications. ReBAC approaches are either based on hybrid logic,

Figure 5.
Property graph
database model

IJWIS
20,1

14



like Bruns et al. (2012) and Fong et al. (2013), or path regular expressions on edges (e.g. type
or depth), like Crampton and Sellwood (2014). During the past decade, different ReBAC
models have emerged, e.g. Giunchiglia et al. (2008), Fong (2011) and Cheng et al. (2016). Clark
et al. (2022) compared representative ReBAC models and derive ReBAC policy language
features, which are formalized in their ReBAC query language ReLOG. They considered
ReBAC policies as graph queries over graph databases. Currently, there is no common
definition of ReBAC, but a number of domain-specific models with rather ad-hoc
enforcement models and implementations. However, ReBAC generally does not support
specification of fine-grained constraints on the protected entities.

On the contrary, there is ongoing research based on the ABAC model, to define and
apply fine-grained constraints in the authorization policy on the level of vertex and edge
attributes. For instance, Bertolissi et al. (2019) presented an access control policy
framework extending the ABAC model with the notion of path condition. This is because
the ABAC model does not consider the specific relationships that might exist between
subjects and resources. The approach uses the extensibility points of XACML to add a
module for resolving path queries and references the user-defined function in the policy.
The mechanism of access constraints resolution is decoupled from the XACML
implementation. Thus, the approach requires minimal implementation effort to evaluate
path constraints in XACML. A disadvantage of this approach is that the semantics of
graph paths – including attributes of vertices and edges, vertex labels and edge types –
are encoded within the user-defined function, which could be nested. Thus, the
expressiveness of the policy is limited, as only the function is referenced, while the path-
related constraints are not specified in the policy. This implies modifying the user-
defined functions upon changing the policy. In addition, each edge type, subpaths and
custom conditions require a new function.

A recent work by Hofer et al. (2022) contributed to enhancing access control in object
graph mappers to support FGAC at the level of attributes. This is done by intercepting the
communication between the database and the mapper framework, providing a central
authorization point where additional filters can be applied. The authors highlighted the need
for a general fine-grained approach that is implementation-independent. Mohamed et al.
(2021) coupled ABAC with a new declarative language for fine-grained, attribute-based
authorization policy, named XACML for Graph-structured data (XACML4G). The same
authors proposed an extension to the XACML language and architecture in Mohamed et al.
(2022) to specify and enforce fine-grained constraints on graph paths. Even though
additional path-specific constraints in terms of graph patterns can be described, the policy
rules require specialized processing and the enforcement mechanism needs to be adapted to
work in a specific graph datastore (Sicari et al., 2022).

9.3 Summary
Current access control features in graph databases do not meet requirement R1, but there
are several recent research works toward enhancing ABAC to support relationships and
ReBAC to apply FGAC. The RBAC privileges in Neo4j are limited to reading/updating the
database, managing resources (i.e. databases, users, roles and privileges) as well as editing
node labels, relationship types and property names. To the best of our knowledge, content-
based FGAC cannot be applied in the existing graph databases (R2). The achieved
authorization in the enterprise edition of Neo4j specifies privileges using static commands in
terms of actions to be performed (e.g. traverse, read and match) on particular node labels or
relationship types within graphs. These privileges are then granted (or denied) to roles. The
proposed XACML-based approaches are examples to apply content-based access control

A systematic
literature
review

15



using the ABAC model for graph-structured data. The other works, relying on the ReBAC
model, also consider content-based authorizations. Existing graph databases and literature
research including the policy language XACML4G did not show rule specification and
enforcement taking user context information, e.g. access time and location of the user, into
account (R3). Custom authorizations (R4) are supported in graph DBMS and literature. For
instance, custom roles can be defined in the enterprise edition of Neo4j. According to the
research works presented earlier in this section, custom attributes and user-defined
functions can be added. Finally, separation of concerns (R5) is satisfied, because
authorization policies can be specified and enforced in the database layer (e.g. system
database in Neo4j) as well as externally (e.g. Foxx microservices in ArangoDB).
Furthermore, there are recent research works addressing this requirement, such as Bertolissi
et al. (2019) andMohamed et al. (2021). However, these approaches are datastore-specific.

10. Discussion
In the previous sections, we provided the current state of the art of authorization and access
control features, supported within database systems or introduced by research works in
relational as well as NoSQL database models. We now relate the requirements defined in
Section 4 with the previously discussed features, taking into consideration that the data
model hierarchy is structured differently and the term fine-grained is defined differently for
each database model.

To address RQ3, we summarize the assessment of the requirements in Table 1. For each
database model, we indicate whether a requirement is satisfied in at least one DBMS and
research work with a �, addressed in the literature only with a ol, or not at all with a �.
Features supported in a NoSQL database or addressed in a research do not necessarily apply
to other datastores of the same database model. Furthermore, approaches proposed in
research works should be studied in detail before being applied in practice as they can be
still work in progress, need further evaluation, have an outdated implementation or are even
limited to a specific datastore/application.

The relational model has the most sophisticated authorization and access control
mechanisms in comparison to all NoSQL models. However, it is not scalable to deal with big
interconnected data. The ABAC model can be enforced in relational databases to apply
FGAC based on content taking environmental conditions into account. Moreover, custom
rules can be specified at different levels within the database (e.g. using views) or externally
using a policy language, such as XACML. However, there are still performance, scalability
and information leakage limitations.

NoSQL databases trade consistency and security for performance and scalability
(Dindoliwala and Morena, 2017). The access control approaches available in the
literature are specific to certain database models or even datastores. This is due to
the lack of a reference model. Furthermore, the same database model can have multiple
implementations (Colombo and Ferrari, 2016a).

Table 1.
Satisfied
requirements for
each database model

Database model R1 R2 R3 R4 R5

Relational � � � � �
Key-value � � � � �
Column-oriented ol ol ol � �
Document-based ol ol ol � �
Graph ol ol � � �

IJWIS
20,1

16



The key-value model is the simplest in terms of structure and hierarchy; however, it has the
least information security support. For now, only basic authorization using labeling or roles
is supported. Current research works focus on enforcing policies using key-value databases,
rather than enhancing their authorization and access control features (e.g. content-based,
context-based and separation of concerns).

For the column-oriented database model, only custom authorization is supported in some
datastores (e.g. roles in Cassandra). The only research work to enhance access control for
this model addresses fine-grained, content-based and context-aware access control.
Nevertheless, further investigation is needed in terms of applicability in real cases and
deprecation of source code.

The document-structured database model received the most attention among the NoSQL
ones. The access control features of datastores, together with the research works, addressed
our authorization and access control requirements. Pure and multimodel document
datastores only provide coarse-grained RBAC, but custom roles can be created in some
DBMS products (e.g. MongoDB). There are many research works addressing the rest of our
requirements. However, a general approach satisfying these advanced requirements is still
missing for the document-based model. Therefore, research-based solutions have to be
carefully selected not only according to the requirements of the access control system, but
also while considering their limitations.

Regarding access control for graph databases, Neo4j is more advanced than other graph
databases, e.g. custom roles and separate permission management. However, existing
access control features still need to be enhanced to not only provide access control for nodes
and relationships based on content (e.g. attributes), but also for protecting the graph while
traversing it. Accordingly, recent research works focus on fine-grained authorization policy
specification and enforcement using the ReBAC and ABAC models. The proposed
approaches have three main drawbacks:

(1) not generally applicable because graph datastores have different query languages;
(2) extra implementation is required upon changing or adding new policies; and
(3) context information is not considered.

It is still challenging to meet the missing requirements and come up with an authorization
policy language and enforcement model that fits within one or more nonrelational database
models. There is no common query language and database features are not consistently
supported in the different datastores, even those relying on the same database model. This
makes it hard to switch from one NoSQL datastore to another. Thus, an access control
solution that applies to all database models is still missing.

11. Conclusion
NoSQL database models, such as key-value, document-based, column-oriented and graph,
found their way into practice in addition to the relational one. The focus of NoSQL models
has not been on security, but rather on efficiency in processing huge amounts of data or
traversing heavily interconnected ones. However, they are now used in security-relevant
areas, which demand sophisticated data protection.

Access control ensures information security and protection by enforcing authorizations,
in terms of which users are permitted (or denied) to perform what operations on which
resources. For the relational model, robust access control approaches and mechanisms to
protect sensitive information are established in the current RDBMS. However, RDBMS are

A systematic
literature
review

17



inefficient in storing and handling big data. For the NoSQLmodels, authorization and access
control are still challenging.

In the traditional relational model, data is structured into tables with a fixed schema,
where each data entry is equivalent to a row having values for the columns. The NoSQL
models have different forms. First, the key-value model is represented as a hash table with
key-value entries. In the column-oriented model, records hold a collection of dynamic
columns that are grouped into column families within a key space. The document-based
model consists of collections having document entries in the form of key-value pairs or
nested documents, whereas the graph data structure is solely based on vertices and edges.

In this paper, we address authorization and access control, with respect to requirements
and features within existing database systems or research works, for all these database
models. We start our research with a SLR on survey works addressing authorization and
access control to answer RQ1. None of the works only focus on authorization and access
control in detail, but rather on security in databases (mostly NoSQL databases) or data
security in general (cp. Section 3).

In our systematic literature research, we additionally focus on the identification of
requirements to generally apply fine-grained dynamic authorization and access control for
different database models, regardless of the application scenario (see RQ2). We identified
five requirements: (R1) varying granularity of protected data objects with focus on fine-
grained authorizations, (R2) content-based, (R3) context-based, (R4) custom authorizations
and (R5) separation of concerns. Due to the different data models and definitions of FGAC,
we discuss each of the data models in general and with respect to our authorization and
access control requirements to answer RQ3. We provide an overview of the current state of
the art in research and practice for each of the models using sources about database
products as well as research papers. Finally, we match the features of the discussed models
and products with our defined requirements in the summary Table 1 in Section 10.

All of our requirements are currently only met by the relational data model and its
implementations, but with drawbacks in performance, scalability and vulnerability in
revealing information used to reach the final result of the executed query. Customized
authorizations and their enforcement (R4) are available with the NoSQL models. FGAC (R1)
is also supported with key-value datastores in practice, however in research, they are
discussed with the column-oriented, document-based and graph models. Content-based (R2)
and context-based authorizations (R3) are not considered with NoSQL products so far.
However, content-based authorizations are intensively studied in the research community
with column-oriented, document-based and graph models. Context-based authorizations for
NoSQL datastores are not the main focus in the current research. We only found
contributions in the context of column-oriented and document-based models. Separation of
concerns (R5) is currently not a priority in the context of access control for NoSQL
datastores. ArangoDB considers external authorizations on the product side and only a few
research results are dealing with external authorizations, policy languages as well as access
control frameworks and architectures for NoSQLmodels.

Still more research is needed on authorization and access control for the NoSQL models
to achieve a maturity level similar to that in the relational one. A lot of research and
development is already focusing on more sophisticated authorization and access control for
specific NoSQL platforms, but also platform-independent approaches such as common
query languages like SQLþþ. However, Colombo and Ferrari (2019) emphasized that a
unifying access control framework for NoSQL datastores is still missing. They considered
the heterogenous schemaless data in the key-value, column and document databases as the
main reason. Thus, they proposed a tree-structured meta-model as a basis for implementing

IJWIS
20,1

18



the general access control mechanism. From our perspective, graph and relational models
should also be considered in such a unifying approach. As graphs have a more general
structure than trees, we will continue our work on authorization and access control for
graph-structured data, focusing on platform independence and performance. In addition,
research on a graph-structured meta-model integrating several other NoSQL models seems
promising.

Notes

1. www.citavi.com/en

2. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

3. https://redis.io

4. https://accumulo.apache.org/

5. https://cassandra.apache.org

6. https://hbase.apache.org/

7. https://github.com/devdattakulkarni/KVAC

8. www.mongodb.com/

9. www.couchbase.com/

10. https://docs.couchbase.com/server/current/rest-api/rbac.html

11. www.mongodb.com/docs/manual/core/authorization

12. www.arangodb.com/docs/stable/foxx.html

13. https://db-engines.com/en/ranking/graphþdbms

References
Abadi, D.J., Boncz, P.A. and Harizopoulos, S. (2009), “Column-oriented database systems”, Proceedings

of the VLDB Endowment, Vol. 2 No. 2, pp. 1664-1665, doi: 10.14778/1687553.1687625. issn: 2150-
8097.

Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan, S. and Rjaibi, W. (2005), “Extending relational
database systems to automatically enforce privacy policies”, 21st International Conference on
Data Engineering (ICDE’05), pp. 1013-1022, doi: 10.1109/ICDE.2005.64.

Alotaibi, A., Alotaibi, R. and Hamza, N. (2019), “Access control models in NoSQL databases: an
overview”, Journal of King Abdulaziz University (JKAU), Vol. 8 No. 1, pp. 1-9.

Bacon, J., Moody, K. and Yao, W. (2003), “Access control and trust in the use of widely distributed
services”, Software: Practice and Experience, Vol. 33 No. 4, pp. 375-394, doi: 10.1002/spe.511.

Bao, H.N.P. and Clavel, M. (2021), “A model-driven approach for enforcing fine-grained access control
for SQL queries”, SN Computer Science, Vol. 2 No. 5, p. 370, doi: 10.1007/s42979-021-00712-7.

Bertino, E. and Sandhu, R. (2005), “Database security - concepts, approaches, and challenges”, IEEE
Transactions on Dependable and Secure Computing, Vol. 2 No. 1, pp. 2-19, doi: 10.1109/
TDSC.2005.9.

Bertino, E., Byun, J.-W. and Kamra, A. (2007), “Database security”, in Petkovi�c, M. and Jonker, W.
(Eds), Security, Privacy, and Trust in Modern Data Management, Data-Centric Systems and
Applications, Springer-Verlag, Berlin, Heidelberg, pp. 87-101. isbn: 978-3-540-69860-9,
doi: 10.1007/978-3-540-69861-6_7.

A systematic
literature
review

19

https://www.citavi.com/en
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://redis.io
https://accumulo.apache.org/
https://cassandra.apache.org
https://hbase.apache.org/
https://github.com/devdattakulkarni/KVAC
https://www.mongodb.com/
https://www.couchbase.com/
https://docs.couchbase.com/server/current/rest-api/rbac.html
https://www.mongodb.com/docs/manual/core/authorization
https://www.arangodb.com/docs/stable/foxx.html
https://db-engines.com/en/ranking/graph&hx002B;dbms
http://dx.doi.org/10.14778/1687553.1687625
http://dx.doi.org/10.1109/ICDE.2005.64
http://dx.doi.org/10.1002/spe.511
http://dx.doi.org/10.1007/s42979-021-00712-7
http://dx.doi.org/10.1109/TDSC.2005.9
http://dx.doi.org/10.1109/TDSC.2005.9
http://dx.doi.org/10.1007/978-3-540-69861-6_7


Bertino, E., Castano, S. and Ferrari, E. (2001), “Securing XML documents with Author-X”, IEEE
Internet Computing, Vol. 5 No. 3, pp. 21-31, doi: 10.1109/4236.935172. issn: 10897801.

Bertino, E., Ghinita, G. and Kamra, A. (2011),Access Control for Databases: Concepts and Systems, Now
Publishers.

Bertino, E., Samarati, P. and Jajodia, S. (1997), “An extended authorization model for relational
databases”, IEEE Transactions on Knowledge and Data Engineering, Vol. 9 No. 1, pp. 85-101,
doi: 10.1109/69.567051. issn: 10414347.

Bertolissi, C., den Hartog, J. and Zannone, N. (2019), “Using provenance for secure data fusion in
cooperative systems”, Proceedings of the 24th ACM Symposium on Access Control Models and
Technologies. SACMAT ‘19, Association for Computing Machinery, Toronto ON, Canada,
pp. 185-194, isbn: 9781450367530, doi: 10.1145/3322431.3325100.

Bogaerts, J., Lagaisse, B. and Joosen, W. (2017), “SEQUOIA: scalable policy-based access control for
search operations in data-driven applications”, in Bodden, E., Payer, M. and Athanasopoulos, E.
(Eds), Engineering Secure Software and Systems, Springer International Publishing, Cham,
pp. 1-18. isbn: 978-3-319-62105-0, doi: 10.1007/978-3-319-62105-0_1.

Borojevic, I. (2017), “Role-based access control in Neo4j enterprise edition”, available at: https://neo4j.
com/blog/role-based-access-control-neo4j-enterprise (accessed April 2023).

Browder, K. and Davidson, M.A. (2002), “The virtual private database in oracle9ir2”, Oracle Technical
White Paper, Oracle Corporation, Vol. 500 No. 280.

Bruns, G., Fong, P.W., Siahaan, I. and Huth, M. (2012), “Relationship-based access control: its
expression and enforcement through hybrid logic”, Proceedings of the Second ACM Conference
on Data and Application Security and Privacy. CODASPY ‘12, Association for Computing
Machinery, San Antonio, TX, pp. 117-124, isbn: 9781450310918, doi: 10.1145/2133601.2133616.

Cheng, Y., Park, J. and Sandhu, R. (2016), “An access control model for online social networks using
user-to-user relationships”, IEEE Transactions on Dependable and Secure Computing, Vol. 13
No. 4, pp. 424-436, doi: 10.1109/TDSC.2015.2406705.

Clark, S., Yakovets, N., Fletcher, G. and Zannone, N. (2022), “ReLOG: a unified framework for
relationship-based access control over graph databases”, Proceedings of Data and Applications
Security and Privacy XXXVI: 36th Annual IFIP WG 11.3 Conference, DBSec 2022, Newark, NJ,
USA, July 18–20, 2022, Springer-Verlag, Newark, NJ, USA, pp. 303-315, isbn: 978-3-031-10683-5,
doi: 10.1007/978-3-031-10684-2_17.

Colombo, P. and Ferrari, E. (2018), “Access control enforcement within MQTT based internet of things
ecosystems”, Proceedings of the 23nd ACM on Symposium on Access Control Models and
Technologies. SACMAT ‘18, Association for Computing Machinery, Indianapolis, IN,
pp. 223-234, isbn: 9781450356664, doi: 10.1145/3205977.3205986.

Colombo, P. and Ferrari, E. (2019), “Access control technologies for big data management systems:
literature review and future trends”, Cybersecurity, Vol. 2 No. 1, pp. 1-13.

Colombo, P. and Ferrari, E. (2015a), “Enhancing MongoDB with fine grained context-aware access
control”, 3rd International IBMCloud Academy Conference - ICACON 2015, p. 7.

Colombo, P. and Ferrari, E. (2015b), “Enhancing MongoDB with purpose-based access control”, IEEE
Transactions on Dependable and Secure Computing, Vol. 14 No. 6, pp. 591-604, doi: 10.1109/
TDSC.2015.2497680.

Colombo, P. and Ferrari, E. (2016a), “Fine-grained access control within NoSQL document-
oriented datastores”, Data Science and Engineering, Vol. 1 No. 3, pp. 127-138, doi: 10.1007/
s41019-016-0015-z.

Colombo, P. and Ferrari, E. (2017), “Towards a unifying attribute based access control approach for
NoSQL datastores”, 2017 IEEE 33rd International Conference on Data Engineering (ICDE),
IEEE, pp. 709-720, isbn: 978-1-5090-6543-1, doi: 10.1109/ICDE.2017.123.

IJWIS
20,1

20

http://dx.doi.org/10.1109/4236.935172
http://dx.doi.org/10.1109/69.567051
http://dx.doi.org/10.1145/3322431.3325100
http://dx.doi.org/10.1007/978-3-319-62105-0_1
https://neo4j.com/blog/role-based-access-control-neo4j-enterprise
https://neo4j.com/blog/role-based-access-control-neo4j-enterprise
http://dx.doi.org/10.1145/2133601.2133616
http://dx.doi.org/10.1109/TDSC.2015.2406705
http://dx.doi.org/10.1007/978-3-031-10684-2_17
http://dx.doi.org/10.1145/3205977.3205986
http://dx.doi.org/10.1109/TDSC.2015.2497680
http://dx.doi.org/10.1109/TDSC.2015.2497680
http://dx.doi.org/10.1007/s41019-016-0015-z
http://dx.doi.org/10.1007/s41019-016-0015-z
http://dx.doi.org/10.1109/ICDE.2017.123


Colombo, P. and Ferrari, E. (2016b), “Towards virtual private NoSQL datastores”, 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pp. 193-204, doi: 10.1109/ICDE.2016.7498240.

Crampton, J. and Sellwood, J. (2014), “Path conditions and principal matching: a new approach to access
control”, Proceedings of the 19th ACM Symposium on Access Control Models and Technologies.
SACMAT ‘14, Association for Computing Machinery, London, Ontario, Canada, pp. 187-198,
isbn: 9781450329392, doi: 10.1145/2613087.2613094.

Dadapeer, N.I. and Adarsh, G. (2016), “A survey on security of NoSQL databases”, International Journal
of Innovative Research in Computer and Communication Engineering, Vol. 4 No. 4.

Dindoliwala, V.J. and Morena, R.D. (2017), “Survey on security mechanisms in NoSQL databases”,
International Journal of Advanced Research in CS, Vol. 8 No. 5.

Ferrari, E. (2009), “Database security”, in Ozsu, M.T. and Liu, L. (Eds), Encyclopedia of Database
Systems, Springer Reference, Springer, New York, NY, pp. 728-732. isbn: 978-0-387-35544-3, doi:
10.1007/978-_0-_387-_39940-9_111, available at: https://rdcu.be/c9PLH

Fong, P.W. (2011), “Relationship-based access control: protection model and policy language”,
Proceedings of the First ACM Conference on Data and Application Security and Privacy.
CODASPY ‘11, Association for Computing Machinery, San Antonio, TX, USA, pp. 191-202,
isbn: 9781450304665, doi: 10.1145/1943513.1943539.

Fong, P.W., Mehregan, P. and Krishnan, R. (2013), “Relational abstraction in community-based secure
collaboration”, Proceedings of the 2013 ACM SIGSAC Conference on Computer
Communications Security. CCS ‘13, Association for Computing Machinery Berlin, Germany,
pp. 585-598, isbn: 9781450324779, doi: 10.1145/2508859.2516720.

Giunchiglia, F., Zhang, R. and Crispo, B. (2008), “RelBAC: relation based access control”, 2008 Fourth
International Conference on Semantics, Knowledge and Grid, Beijing, China, pp. 3-11, doi:
10.1109/SKG.2008.76.

Gupta, E., Sural, S., Vaidya, J. and Atluri, V. (2023), “Enabling attribute-based access control in NoSQL
databases”, IEEE Transactions on Emerging Topics in Computing, Vol. 11 No. 1, pp. 208-223,
doi: 10.1109/TETC.2022.3193577.

Hofer, D., Nadschläger, S., Mohamed, A. and Küng, J. (2022), “Extending authorization capabilities of
object relational/graph mappers by request manipulation”, in Strauss, C., Cuzzocrea, A., Kotsis,
G., Tjoa, A.M. and Khalil, I. (Eds), Database and Expert Systems Applications, Springer
International Publishing, Cham, pp. 71-83. isbn: 978-3-031-12426-6.

Kacimi, Z. and Benhlima, L. (2017), “XACML policies into MongoDB for privacy access control”,
Proceedings of the Mediterranean Symposium on Smart City Application. SCAMS ‘17,
Association for Computing Machinery, Tangier, Morocco, isbn: 9781450352116, doi: 10.1145/
3175628.3175

Kalajainen, T. (2007), “An access control model in a semantic data structure: case process modelling of
a bleaching line”, Department of CS and Engineering.

Kirrane, S. (2015), “Linked data with access control”, Dissertation, National University of Ireland,
Galway.

Kulkarni, D. (2013), “A fine-grained access control model for Key-Value systems”, Proceedings of the
Third ACM Conference on Data and Application Security and Privacy. CODASPY ‘13,
Association for Computing Machinery, San Antonio, TX, pp. 161-164, isbn: 9781450318907, doi:
10.1145/2435349.2435370.

LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y. and DeWitt, D. (2004), “Limiting
disclosure in hippocratic databases”, 30th International Conference on Very Large Databases,
VLDBEndowment,Toronto, Canada, pp. 108-119.

Lodderstedt, T., Basin, D. and Doser, J. (2002), “SecureUML: a UML-based modeling language for model-
driven security”, in J�ez�equel, J.-M., Hussmann, H. and Cook, S. (Eds),�UML� 2002— the Unified
Modeling Language, Springer, Berlin, Heidelberg, pp. 426-441. isbn: 978-3-540-45800-5.

A systematic
literature
review

21

http://dx.doi.org/10.1109/ICDE.2016.7498240
http://dx.doi.org/10.1145/2613087.2613094
http://dx.doi.org/10.1007/978-_0-_387-_39940-9_111
https://rdcu.be/c9PLH
http://dx.doi.org/10.1145/1943513.1943539
http://dx.doi.org/10.1145/2508859.2516720
http://dx.doi.org/10.1109/SKG.2008.76
http://dx.doi.org/10.1109/TETC.2022.3193577
http://dx.doi.org/10.1145/3175628.3175
http://dx.doi.org/10.1145/3175628.3175
http://dx.doi.org/10.1145/2435349.2435370


Mohamed, A., Auer, D., Hofer, D. and Küng, J. (2021), “Extended authorization policy for graph-
structured data”, SN Computer Science, Vol. 2 No. 5, pp. 1-18.

Mohamed, A., Auer, D., Hofer, D. and Küng, J. (2022), “Extended XACML language and architecture for
access control in graph-structured data”, The 23rd International Conference on Information
Integration and Web Intelligence. iiWAS2021. Association for Computing Machinery, Linz,
Austria, pp. 367-374, isbn: 9781450395564, doi: 10.1145/3487664.3487789.

MongoDB, I. (2023), “MongoDB wire protocol”, MongoDB, Inc, available at: www.mongodb.com/docs/
manual/reference/mongodb-wire-protocol/ (accessed April 2023).

Moreno, J., Fernandez, E.B., Fernandez-Medina, E. and Serrano, M.A. (2018), “A security pattern for
key-value NoSQL database authorization”, Proceedings of the 23rd European Conference on
Pattern Languages of Programs. EuroPLoP ‘18, Association for Computing Machinery, Irsee,
Germany, isbn: 9781450363877, doi: 10.1145/3282308.3282321.

Morgado, C., Baioco, G.B., Basso, T. and Moraes, R. (2018), “A security model for access control in
graph-oriented databases”, 2018 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 135-142, doi: 10.1109/QRS.2018.00027.

Nayak, A., Poriya, A. and Poojary, D. (2013), “Type of NOSQL databases and its comparison with
relational databases”, International Journal of Applied Information Systems, Vol. 5 No. 4,
pp. 16-19.

Neo4j, I. (2023), “Neo4j documentation”, Neo4j, Inc, available at: https://neo4j.com/docs/ (accessed April
2023).

Oasis (2019), “Access control in ArangoDB”, available at: www.arangodb.com/docs/stable/oasis/
access-control.html (accessed April 2023).

Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E. and Abramov, J. (2011), “Security issues in NoSQL
databases”, 2011IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications, IEEE, pp. 541-547, isbn: 978-1-4577-2135-9, doi: 10.1109/
TrustCom.2011.70.

Oracle, I. (2023), “MySQL documentation: access control and account management”, available at:
https://dev.mysql.com/doc/refman/8.0/en/access-control.html (accessed April 2023).

Sahafizadeh, E. and Nematbakhsh, M.A. (2015), “A survey on security issues in big data and NoSQL”,
In: Advances in Computer Science: An International Journal, Vol. 4 No. 4, pp. 68-72.

Samaraweera, G.D. and Chang, J.M. (2021), “Security and privacy implications on database systems in
big data era: a survey”, IEEE Transactions on Knowledge and Data Engineering, Vol. 33 No. 1,
pp. 239-258, doi: 10.1109/TKDE.2019.2929794.

Sandhu, R. (1994), “Relational database access controls”, Handbook of Information Security
Management, Auerbach Publications, Boston, 95, pp. 145-160.

Shalabi, Y. and Gudes, E. (2017), “Cryptographically enforced role-based access control for NoSQL
distributed databases”, in Livraga, G. and Zhu, S. (Eds), Data and Applications Security and
Privacy XXXI, Springer International Publishing, Cham, pp. 3-19. isbn: 978-3-319-61176-1.

Sicari, S., Rizzardi, A. and Coen-Porisini, A. (2022), “Security & privacy issues and challenges in NoSQL
databases”, Computer Networks, Vol. 206, p. 108828, doi: 10.1016/j.comnet.2022.108828, issn:
1389-1286.

Tankard, C. (2012), “Big data security”, Network Security, Vol. 2012 No. 7, pp. 5-8, doi: 10.1016/S1353-
4858(12)70063-6, issn: 1353-4858.

Valzelli, M., Maurino, A., Palmonari, M. and Spahiu, B. (2021), “Towards an access control model for
knowledge graphs”.

Weiss, T., Brown, M., Assaf, W., Dale, K., Gunda, S., Sharkey, K., Robbins, M.F., Howell, J.,
Coulter, D., Lyon, R., Kanshi, G. and Nehme, R. (2022), “Azure role-based access control in
azure cosmos DB”, Microsoft, available at: https://docs.microsoft.com/en-us/azure/cosmos-
db/role-based-access-control (accessed April 2023).

IJWIS
20,1

22

http://dx.doi.org/10.1145/3487664.3487789
https://www.mongodb.com/docs/manual/reference/mongodb-wire-protocol/
https://www.mongodb.com/docs/manual/reference/mongodb-wire-protocol/
http://dx.doi.org/10.1145/3282308.3282321
http://dx.doi.org/10.1109/QRS.2018.00027
https://neo4j.com/docs/
https://www.arangodb.com/docs/stable/oasis/access-control.html
https://www.arangodb.com/docs/stable/oasis/access-control.html
http://dx.doi.org/10.1109/TrustCom.2011.70
http://dx.doi.org/10.1109/TrustCom.2011.70
https://dev.mysql.com/doc/refman/8.0/en/access-control.html
http://dx.doi.org/10.1109/TKDE.2019.2929794
http://dx.doi.org/10.1016/j.comnet.2022.108828
http://dx.doi.org/10.1016/S1353-4858(12)70063-6
http://dx.doi.org/10.1016/S1353-4858(12)70063-6
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control


Zahid, A., Masood, R. and Shibli, M.A. (2014), “Security of sharded NoSQL databases: a comparative
analysis”, 2014 Conference on Information Assurance and Cyber Security (CIACS), pp. 1-8,
doi: 10.1109/CIACS.2014.6861323.

Zugaj, W. and Beichler, A. (2019), “Analysis of standard security features for selected NoSQL systems”,
American Journal of Information Science and Technology, Vol. 3 No. 2, pp. 41-49.

Corresponding author
Aya Khaled Youssef Sayed Mohamed can be contacted at: aya.mohamed@jku.at

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

A systematic
literature
review

23

http://dx.doi.org/10.1109/CIACS.2014.6861323
mailto:aya.mohamed@jku.at

	A systematic literature review of authorization and access control requirements and current state of the art for different database models
	1. Introduction
	2. Research method
	2.1 Systematic literature review for RQ1
	2.2 SLR for RQ2
	2.3 SLR for RQ3

	3. Related work
	4. Authorization and access control requirements
	4.1 Varying granularity (R1)
	4.2 Content-based authorizations (R2)
	4.3 Context-based authorizations (R3)
	4.4 Custom authorizations (R4)
	4.5 Separation of concerns (R5)

	5. Relational databases
	5.1 Database management system features
	5.2 Research works
	5.3 Summary

	6. Key-value databases
	6.1 Database management system features
	6.2 Research works
	6.3 Summary

	7. Column-oriented databases
	7.1 Database management system features
	7.2 Research works
	7.3 Summary

	8. Document-based databases
	8.1 Database management system features
	8.2 Research works
	8.3 Summary

	9. Graph databases
	9.1 Database management system features
	9.2 Research works
	9.3 Summary

	10. Discussion
	11. Conclusion
	References


