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Abstract
Purpose – The purpose of this paper is to propose and evaluate the method for grasping a defined set of objects in an unstructured environment. To
this end, the authors propose the method of integrating convolutional neural network (CNN)-based object detection and the category-free grasping
method. The considered scenario is related to mobile manipulating platforms that move freely between workstations and manipulate defined
objects. In this application, the robot is not positioned with respect to the table and manipulated objects. The robot detects objects in the
environment and uses grasping methods to determine the reference pose of the gripper.
Design/methodology/approach – The authors implemented the whole pipeline which includes object detection, grasp planning and motion
execution on the real robot. The selected grasping method uses raw depth images to find the configuration of the gripper. The authors compared the
proposed approach with a representative grasping method that uses a 3D point cloud as an input to determine the grasp for the robotic arm
equipped with a two-fingered gripper. To measure and compare the efficiency of these methods, the authors measured the success rate in various
scenarios. Additionally, they evaluated the accuracy of object detection and pose estimation modules.
Findings – The performed experiments revealed that the CNN-based object detection and the category-free grasping methods can be integrated to
obtain the system which allows grasping defined objects in the unstructured environment. The authors also identified the specific limitations of
neural-based and point cloud-based methods. They show how the determined properties influence the performance of the whole system.
Research limitations/implications – The authors identified the limitations of the proposed methods and the improvements are envisioned as part
of future research.
Practical implications – The evaluation of the grasping and object detection methods on the mobile manipulating robot may be useful for all
researchers working on the autonomy of similar platforms in various applications.
Social implications – The proposed method increases the autonomy of robots in applications in the small industry which is related to repetitive
tasks in a noisy and potentially risky environment. This allows reducing the human workload in these types of environments.
Originality/value – The main contribution of this research is the integration of the state-of-the-art methods for grasping objects with object
detection methods and evaluation of the whole system on the industrial robot. Moreover, the properties of each subsystem are identified and
measured.
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1. Introduction

Mobile manipulating platforms become popular in industry
(Dömel et al., 2017). They also find application in homes and
hospitals to support people in daily activities (Jain and Argall,
2016). Mobile manipulating platforms combine the positive
properties of mobile robots and industrial robotic arms. They
can transport goods and manipulate objects at the same time.
However, to obtain full autonomy of such robots in a real
industrial environment or continuously changing domestic
surroundings the robot should use algorithms for autonomous
navigation (Droeschel et al., 2017), motion planning (Huang et
al., 2000) and grasping (Morrison et al., 2018; Mahler et al.,
2019).

Typical mobile-manipulating robots in the industry are
precisely docked and positioned in the workspace before they
start objects manipulating. They can be docked mechanically
with the workstation (gon Roh et al., 2008) or they can use visual
markers to determine the pose of the robot with respect to the
pose of the workstation (Andersen et al., 2013). In this research,
we are interested in different scenarios. We assume that the
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workspace does not have artificial markers and the environment
is unstructured. Thus, the objects are not positioned by external
tools and their poses are a priori unknown.
In this article, we consider the following scenario. The robot

moves autonomously in the environment. It can move between
workspaces and on the given position the robot should perform
the manipulation tasks. We focus on the pick-and-place tasks
where the robot has to grasp objects and place them in the given
position. The example scenario is presented in Figure 1. We
consider two types of grasping tasks. In the first type of task, the
robot cleans the table and does not know the category of
objects. The robot grasps all objects from the table and places
them in the container (Figure 1). In the second scenario, the
robot should know the category of the objects and should grasp
the objects which are related to the task. In this case, the robot
should recognize the objects on the scene and then grasp them.
The practical aspect of this work is related to grasping various

objects. We are looking for methods that allow the robot to
grasp both known and unknown categories of objects. The
robot should be able to move freely in the environment and
manipulate objects related to the tasks. If the robot is asked to
bring the object from the given category, the robot should be
able to find and grasp the found object.
To grasp the object of the given category, we verified two

approaches. The first method uses point clouds to find the
objects on the scene and determine the configuration of the
gripper which allows grasping the object. In the second
approach, we use state-of-the-art Convolutional Neural
Network-based (CNN-based) methods for grasping. We
combine the CNN-based object detection and grasping
methods to obtain the new system which can be used to grasp
objects from the given categories related to the tasks performed
by the robot. In this approach, the robot does not have to be

precisely positioned with respect to the workstation. The visual
feedback allows finding and grasping objects independently on
the pose of the objects with respect to the robot.

2. Related work

The example mobile manipulating platforms used in research
are Rollin’ Justin (Dietrich et al., 2016), Cosero (Stückler et al.,
2016), Armar (Berns et al., 2000), PR2 (Bohren et al., 2011),
Centauro (Klamt et al., 2020) and Little Helper (Hvilshøj et al.,
2009). Also, many commercial platforms like Apas, Tiago,
Talos and Fetch Mobile Manipulator robots are available. The
extended review of the mobile manipulating platforms is
available in Klamt et al. (2020). The researches on these
platforms focus on localization (Droeschel et al., 2017),
mapping (Droeschel et al., 2017), objects detection (Huang
et al., 2017), objects pose estimation andmanipulation (Mahler
et al., 2019).
In this article, we focus on grasping objects by a robot

equipped with a two-fingered gripper and an RGB-D sensor for
3D perception. To grasp the objects, the robot should detect
the objects in the environment. Current state-of-the-artmethods
for object detection are based on the CNN. The YOLO
detector predicts the position of the bounding boxes on the
image and classifies the object inside this region (Redmon and
Farhadi, 2020). The Single Shot Detector (Liu et al., 2016)
uses more convolutional layers than YOLO to operate on
feature maps with various resolutions using additional
computational resources. Additionally, the Mask R-CNN (He
et al., 2017) performs segmentation inside the bounding box to
determine which pixels belong to the detected objects. Pose
estimation of objects in the 3D space is also solved using CNN.
Because the estimation of the object orientation is more
challenging than the estimation of the translation these
problems are decoupled (Xiang et al., 2018). Also, using depth
data helps with the 6Dpose estimation of objects.
Most of the perception systems of the robots, which enables

the robot to adapt to the changing state of the environment and
configuration of the objects, are vision-based. These methods
use RGB, depth images, point clouds or 3Dmeshes (Fischinger
and Vincze, 2012; Kootstra, 2012; ten Pas and Platt, 2014).
The 2D representations like images are efficient in searching
the grasping points but the 3D models like point clouds or 3D
meshes allow searching for kinematically feasible, collision-free
configurations of dextrous robotics hands (Kopicki et al.,
2019). In this article, we compare two methods. The first
method uses a 3D point cloud to determine the configuration of
the griper. The secondmethod uses depth images only.
Most research is focused on grasping various objects

independently on the categories of the objects. These methods
might be represented by probabilistic inference using point
cloud (Kopicki et al., 2015). The grasping algorithm uses local
geometric properties (features) of the objects to define grasping
points. The algorithm also takes into account the configuration
of the hand and collisions with the objects. Further
clusterization of the data and grasps allows inferring about the
configuration of the robotic hand from a single viewpoint
without direct reconstruction of the object (Kopicki et al.,
2019). The main advantage of the probabilistic-based methods
is that they require a few examples only to train the robot (Song

Figure 1 Robot collecting objects using CNN for object detection and
grasping
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et al., 2015). It is also straightforward to incorporate the
uncertainty of the data in the model (Johns et al., 2016). Other
grasping frameworks utilize searching methods like graph
search (Hang et al., 2017) or sampling-based search (Liu and
Carpin, 2015) to find the force-closure stable grasps.
Recently, CNN-based grasping methods became popular.

The neural network can find the relation between the input
image and the grasping point directly from the training data.
The main problem with these methods is data collection. To
collect the training data synthetic models can be sampled
(Mahler et al., 2017; Satish et al., 2019). The latest version of
the Dex-Net 4.0 used to collect objects from the container
achieves reliability greater than 95% (Mahler et al., 2019).
Also, real robots can be used to collect training data (Levine et
al., 2017; Pinto and Gupta, 2016) but this approach is time-
consuming and costly. The time needed to collect the data and
the cost might be significantly reduced by using physics
simulators (Johns et al., 2016).
Our work is based on the Generative Grasping

Convolutional Neural Network (GG-CNN) proposed by
Morrison et al., 2018). The Cornell dataset with real images
annotated with grasp poses for a two-fingered gripper is used to
train the neural network (Lenz et al., 2015). In contrast to the
Dex-Net (Mahler et al., 2017), which requires sampling the
objects, the GG-CNN computes a grasp quality factor, grasp
angle and grasp width for each pixel of the input depth image.
The GG-CNN is used to provide on-line feedback for the arm
controller and can be used to grasp static andmoving objects.
Grasping objects is much easier with mechanical feedback.

Soft grippers adapt to the shape of the objects (Shepherd et al.,
2011; Deimel and Brock, 2014). This approach compensates
the inaccuracies of the perception system and grasps planning
methods. Adaptive grippers allow gentle manipulation of soft
objects like fruits without destroying the objects (Abeach et al.,
2017). Also, feedback from the tactile sensors allows adapting
the configuration of the gripper to the state and shape of the
objects (Hogan et al., 2018; Tian et al., 2019). In this research,
we use force feedback only during grasping objects. This
approach is slower than mechanical feedback, but the grasping
is more precise and the success depends mainly on the
performance of the visual-based grasp planning investigated in
this research.
The CNN-based methods for object detection are relatively

new and developed independently. A set of state-of-the-art
general object detection methods is available. Most accurate
and efficient are YOLO (Redmon and Farhadi, 2020), SDD
(Liu et al., 2016) or Mask R-CNN (He et al., 2017). Also,
generic methods for object grasping are well studied. Among
them we can find the GG-CNN (Morrison et al., 2018), Dex-
Net (Mahler et al., 2019), multi-object grasp detection (Chu
et al., 2018), probabilistic-based methods (Kopicki et al., 2015)
or reinforcement learning-based methods (Levine et al., 2017).
The object detection and pose estimation methods are rarely
developed together or integrated into a single system that
allows grasping defined types of objects. First implementations
use traditional techniques for object detection and grasping. In
Wei and Chen (2020) the contours of objects are utilized to
find them on the RGB image. Then, the detected contours are
matched with the template model to estimate the pose of the
object and determine the grasping points. The previous work

by Ferran Rigual et al. investigates the problem of object
detection for object manipulation (Rigual et al., 2012). In this
case, the method that uses local descriptors and matching the
model to the current view (Collet et al., 2009) is applied for
object detection. Even though the object detectionmethod also
returns the pose of the object, the grasping point is determined
using data from a depth camera and assuming that objects have
a cuboid shape. This assumption is not always valid in a real-life
scenario. The realistic application of the CNN-based Masked
R-CNN method for object detection and pose estimation is
presented by Shin et al. (2019). The gripper position is
determined using obtained masks. The obtained success rate
varies from 50 to 90%. However, little work has been done to
integrate CNN-based object detection methods with CNN-
based general grasping algorithms.

2.1 Approach and contribution
In this article, we investigate the role of the object detection and
grasping modules in the perception system of a mobile-
manipulating platform. Despite the number of general object
detection methods, a little work is related to tasks when a robot
has to grasp defined types of objects. This scenario is closer to
industrial applications where the robot has to manipulate
objects related to the given task. In this article, we integrated
the category-independent GG-CNN method with a CNN-
based object detector. The obtained system is used to detect
and grasp objects defined by the user. For comparison, we
implemented a method that determines the grasp pose of the
gripper using operations on the point clouds. We compare both
approaches to show the properties of the CNN and point
cloud-based methods for grasping objects. We determined the
advantages and disadvantages of both methods which are
important for the autonomy of mobile manipulating industrial
robots.

3. Grasping detected objects

3.1 System architecture
The proposed system’s architecture is presented in Figure 2.
The method is designed for our mobile manipulating platform,
but it can be also used on the stationary robotics arm. Our
robot is equipped with a mobile differential-drive base which
allows the robot to move autonomously between workstations.
We use the SLAMTEC Mapper 2D localization system (Nitta
et al., 2020) to localize the robot in the environment.
SLAMTECMapper is more accurate and reliable than Hector
SLAM (Nitta et al., 2020). Our experience shows that it also
works better than GMapping software (Grisetti et al., 2007)
running with Hokuyo UTM-30LX laser rangefinder. We also
use Dynamic Window Approach motion planner (Fox et al.,
1997) for robot navigation. The robot is equipped with the
Universal Robots UR5 arm and the OnRobot RG6 gripper for
manipulating objects on the workstation. The robot is
equipped with three RGB-D sensors. The first sensor (Kinect
Xbox One) is mounted on the base of the robot and is used
mainly for collision avoidance. The second sensor (Kinect
Xbox One) is mounted on the head of the robot and is used to
build a 3Dmodel of the scene. The third RGB-D camera (Intel
RealSense D435) is mounted on the gripper and is used to

Mobile manipulating robot

Bartłomiej Kulecki, Kamil Młodzikowski, Rafał Staszak and Dominik Belter

Industrial Robot: the international journal of robotics research and application

Volume 48 · Number 5 · 2021 · 688–699

690



precisely measure the position of the objects on the
workstation.
The calibration of the perception system is important in the

presented system.We use the dedicated software provided by the
vendor to perform the internal calibration of two Kinect Xbox
One sensors. We also use this software to find the transformation
between the RGB and depth camera. The transformation
between the camera which is located on the gripper and the
camera in the head of the robot can be found using easy hand-eye
calibration software from Robot Operating System that
implements the method presented in Tsai and Lenz (1989).
However, we applied our implementation which uses artificial
marker (checkerboard) and gradient-based optimization with the
Adam algorithm (Kingma and Ba, 2015) to find the
transformations between the cameras, the robot frame (base of
the arm) and the frame associated with the localization system
(SLAMTECMapper) (Piasek et al., 2019).
The RGB-D data from the Intel RealSense D435 mounted

on the gripper are used to detect objects and determine the
grasping pose of the gripper. First, we use an object detection
module to find objects on the table (Figure 2). Then, the grasp
planning module determines the pose of the gripper which
allows grasping the selected object. Finally, the motion
planning module, which is based on the MoveIt! software,
plans and executes the motion of the arm. The system is
implemented in the Robot Operating System.

3.2 Objects detection
Having a precise knowledge about the objects’ representation is
a key element in the proposed pipeline. The objects visible in
the scene have to be extracted from the background which
constitutes redundant information. Therefore, a Single Shot
Detector (SSD) based on the neural network Inception V2
architecture (Szegedy et al., 2014) has been used to find
bounding boxes of the objects that are required to perform the
given task. The detector has been trained and adjusted to detect
a set of articulated objects using weights pre-trained on the MS
COCOdataset (Lin et al., 2014).
In the experiment, there is an established set of objects that

the module recognizes: stand type 1, stand type 2, ring, sumo
figurine, plastic probe, tape, button, dispenser, sponge, plastic
shaft. For that reason, we have collected a data set consisting of
1,500 samples and manually labeled the images in terms of
object bounding boxes and object classes. The scenes
containing objects have been diversified to allow more robust
performance when it comes to object detection in various
conditions.
Right upon RGB-D data acquisition the object detection

module determines where the objects are located in the 2D

image. The next step is to pass the obtained color data to the
object detection module and retrieve both bounding boxes and
object classes present in the image. Ultimately, the constrained
areas containing object representations are extracted from the
whole captured images and passed to the grasp planning
module.

3.3 Grasping with the point cloud
The point cloud obtained from a single perspective does not
contain enough information about the shape of the object. The
RGB-D camera acquires information about the front side of the
objects and information about full 3D shape is missing. To
obtain a reliable model of the objects, the robot performs the
scanning procedure. The robot moves a camera to various pre-
defined positions around the objects. In these positions, the
input point clouds are accumulated to obtain a complete
representation of objects on the table. The procedure is time-
consuming but allows us to obtain a full model of the objects.
The example configurations of the robot during scanning the
objects on the table are presented in Figure 3.
Grasp planning method based on the point cloud requires

processing the input data from the RGB-D camera. The goal of
the proposed methods is to extract objects from the scene,
detect instances of the objects, estimate their pose and define
the pose of the gripper that allows grasping the selected object.
We use the Point Cloud Library to process the point cloud. The
results of the point cloud processing procedures are illustrated
in Figure 4. In Figure 4(a) we show the raw point cloud data
from the sensor. The first step of processing is cropping data to
the Region of Interest (ROI) to remove points in the
background [Figure 4(b)]. Then, the RANSAC method is
applied for detecting the table plane [Figure 4(c)]. The
RANSAC algorithm fits the plane model to the data to find the
surface of the table. Finally, we extract points representing
objects [Figure 4(d)] by removing the detected plane from the
filtered input cloud.
In the next stage, the instances of objects are found in the

point cloud. We use the Euclidean segmentation method to
cluster the data and separate each object. The clustering

Figure 2 Architecture of the proposed controller of the robot

Figure 3 Example configurations of the robot during scanning the
objects on the table
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procedure uses the Euclidean distance as a threshold so the
objects which are close to each other form the same cluster.
Then, the robot estimates the pose of the objects. First, the
centroids are calculated for each cluster (object). Then, the
Oriented Bounding Box (OBB) fitting is performed. To obtain
the best fit of the OBB, we use the Principal Component
Analysis method (PCA), which finds three directions of objects
point cloud with the greatest variance. These directions
correspond to the edges of OBB. An example result of this
process is presented in Figure 5.
The estimated poses of the bounding boxes give us

information about the position and alignment of the object in
the 3D space. This information is utilized for the grasp
planning process. The centroid of the object is used as a gripper
target position. The orientation of the gripper is determined
depending on the dimensions of the bounding box. If the height
of the box is smaller than the width and length of the box, the
robot tries to grasp the object from the top. If the height of the
box is larger than the remaining dimension, the reference
orientation of the gripper is horizontal. This approach stabilizes
the grasp and increases the success rate of the method in
experiments on the real robot.

3.4 Grasping with convolutional neural network
As a representative object-independent grasp synthesis
method, we have chosen the Generative GG-CNN (Morrison
et al., 2018). In contrast to the previous state of the art CNN-
based grasping methods, the GG-CNN predicts grasp quality
and gripper configuration for each pixel. This approach allows
for avoiding time-consuming sampling of the input space
(image). Moreover, the GG-CNN is fast and can be used to re-
compute the gripper configuration during the motion of the
robot and graspmoving objects (Morrison et al., 2018).

In this research, we modified the original software so it can
work with the Universal Robots UR5 arm and the Intel
RealSense D435 RGB-D camera. We use the information
about the gripper’s opening (gripper width) at the end of
the sequence only to avoid its unnecessary motions. Instead, we
open the gripper at the beginning of the procedure and we close
the gripper at the end of the motion. While closing the gripper,
we use force feedback. The gripper stops the motion if the
reaction force is larger than the threshold. This strategy
compensates for the inaccuracies of the perception system,
stabilizes the grasp and increases the success rate of the
graspingmethod.
On top of the GG-CNN and arm controller, we have built a

procedure, which closes the loop from the perception systems
and allows grasping the selected object. This procedure is
presented in Figure 6. In the beginning, the robot moves to the
initial configuration. In this configuration, the camera is tilted
down and observes the environment in front of the robot.
Because the GG-CNN is designed to work in three-
dimensional space (GG returns horizontal motion of the
gripper and planar rotation) the controller keeps the gripper
and the camera tilted down during the execution of the
reference motion. The motion of the gripper is limited by the
predicted height of the table to prevent damaging the gripper
caused by an inaccurate output from the neural network.
We divided the behavior of the procedure according to the

distance to the grasping object. If the camera and the gripper
are far from the object, we repeat the object detection and
grasping methods 10 times and we compute the average output
from the GG-CNN. Our experience from the experiments

Figure 4 Input point cloud processing

Figure 5 Results of the (b) segmentation and (c) bounding box fitting
procedures for the (a) example input point cloud

Figure 6 Block diagram visualizing the grasping procedure with the
GG-CNNmethod
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shows that this approach stabilizes the results from the module
and increases the success rate. The robot stops the procedure
and moves to the initial configuration if the object is not
detected at least five times in a sequence of 10 measurements.
The controller works in the loop and executes the part of the
reference motion. Then, the perception procedure is repeated.
If the camera is closer to the object and the distance to the table
is less than 20cm, we repeat the perception procedure 20 times
to increase the accuracy. Then, we execute the robot’s last
motion to the goal position. The threshold set to 20 cm comes
from the camera field of view and the minimal range of the
sensor (0.1m).

3.5 Integration of the generative grasping convolutional
neural network with a convolutional neural network-
based object detector
The crucial modification of the GG-CNN is presented in the
blue box in Figure 6. The current image from the camera is
provided to the input of the Single Shot Detector to find the
objects on the image. Independently, the depth image is
provided to the input of the GG-CNN. The GG-CNN is
general and provides grasp candidates for all objects on the
scene. To grasp the selected object, we apply the mask
(bounding box for the selected object) from the SSD to the
output from the GG-CNN to find the best grasp candidate for
the object.
Alternatively, we verified the second method of integrating

results from object detection with the GG-CNN method. In the
second approach, the object interesting for the given task is
cropped from the depth image. The remaining pixels in the depth
image are set to 0. The modified depth image is provided as an
input of the GG-CNN to find the best candidate grasp. The
example result for this method is presented in Figure 7(c). For
the comparison, the output from the GG-CNN obtained with
the method used in this research is presented in Figure 7(d). The
best grasping points (green points in the image) are almost in the
same place for both cases. However, when the bounding box
from the object detector is used to crop the depth image, theGG-
CNN returns candidate grasp on the edges of the bounding box.
The cropping operation on the depth image introduces edges
which might cause improper behavior of the method. Thus, in
the experiments on the real robot, we run GG-CNN on the
whole depth image and select the best grasping point inside the
bounding box given by the SSD.
The example sequence of grasping an object is presented in

Figure 8. First, the camera observes the scene from the initial
configuration of the robot. Then, the robot gradually executes
the planned path and repeats the perception procedures (SSD
and GG-CNN). When the distance between the table and the
camera is smaller than 20 cm, the robot executes the final
trajectory to the goal position given by theGG-CNNand closes
the gripper. In the visualization presented in Figure 8 the robot
moves to the initial configuration after a successful grasp.

4. Results

In the first experiment, we verified the accuracy of the
procedure which estimates the position and dimensions of the
objects on the table [1]. During experiments on the real robot,
the ground truth position of the objects is unknown so we

obtained quantitative results in the Gazebo simulator. In the
experiment, the four objects (a ball, a can, a box and a wooden
box) are randomly located on the table and the proposed
method is used to estimate their position and dimensions. The
results are presented in Table 1. The experiment is performed
20 times and the mean error values and standard deviation are
computed. The average position error for all objects is smaller
than 6mm. The average dimension error of the objects is
smaller than 9mm. The standard deviations for both values

Figure 7 Example output for two methods of integrating object
detection results with the GG-CNN

Figure 8 Example sequence of grasping the defined object using GG-
CNN

Table 1 Results of the point cloud-based object pose and dimensions
estimation: average MSE for the position ep and dimensions ed and
corresponding standard deviations sp and sd

Parameter Ball Can Box Wooden box Average

ep [m] 0.0062 0.0067 0.0055 0.0046 0.0057
rp [m] 0.0009 0.0024 0.0010 0.0008 0.0013
ed [m] 0.0055 0.0029 0.0069 0.0198 0.0088
rd [m] 0.006 0.0012 0.0037 0.0105 0.0040
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remain small (below 2mm for the position of the objects and
4mm for the dimensions of the objects).
The results presented in Table 1 are obtained in the

simulation environment with the perfect depth sensor. The
errors result from the geometrical properties of the perception
system and the incomplete model of the objects obtained after
the scene scanning phase. We expect that these error values are
larger if the real RGB-D camera is used.Moreover, the position
and dimension errors accumulate and might cause collisions
during grasp execution. We deal with this problem during the
experiments on the real robot by increasing the opening of the
gripper and using force feedback while closing the gripper. By
this relatively simple strategy, we deal with small inaccuracies of
the estimated pose and dimensions of the objects.
Subsequently, we performed the same experiment on the real

robot with data from the Intel RealSense D435. The example
results are presented in Figure 9. Because the objects’ real poses
are unknown, we evaluate results by using the whole pipeline
for perception and grasping. We performed 46 trials. The goal
was to detect the object given by the operator, grasp the object,
and place the object in the given position. The average success
rate for all objects is 73.91% taking into account the whole task.
However, the average success rate for grasping the object
is 93.88%. The success rate for the yellow foam and black case
is 100% and drops to 81.82% for the sumo figurine. This is
caused mainly by the dimensions of this object. The sumo
figurine is narrow on the top and the gripper misses the object.
In this case, the sensor error and pose estimation error
accumulate and cause a smaller success rate.
In some trials, the robot failed because the robot hit the table

despite the fact that we use OctoMap (Hornung et al., 2013) to
detect collisions between the robot and the environment. In
some cases, the trajectory planning using MoveIt for the robot
failed and as a result, the robot performs strange motions of the
arm and collides with the objects in the environment. The
example execution of the motion of the robot is presented in
Figure 10. Another interesting property of the method which
comes from these experiments is the way the robot grasps the
objects. In Figure 9, two example bottle poses are presented.
When the bottle pose is horizontal the robot grasps these
objects from the top. If the pose of the bottle is vertical, the
reference pose of the gripper is horizontal.
In the course of the data collection process, we have selected

a set of data to evaluate the efficacy of the detection system.
Testing data have not been used in the training phase allowing
us to validate the reliability of the detection module as a part of
a robotic system. We follow the standard methodology of
calculating Average Precision and mean Average Precision,

widely described as AP and mAP, respectively. We calculate
the aforementioned metrics based on 282 test images including
14 classes. The Average Precision metric is strongly dependent
on the type of object. The more explicit and distinct the object
is in terms of color or shape, the more precisely it can be
detected by the neural network. It is clearly visible in Figure 11,
where objects with characteristic features achieve a better AP
score. On the other hand, the objects that do not have distinct
features (white dispenser, transparent probe) turn out to be
detected properly in less number of cases. In some of the cases,
we might face a false positive detection, which occurs mostly
when the objects are similar to each other or to the
environment. Hence, the classes stand_1, stand_2, and probe
happen to have more incorrect detections, as it can be observed
in Figure 12. The achievedmAP of 77.96% satisfies the need in
our use case, where we can carry out the detection based on
multiple frames and make sure that no object is missed in the
grasping phase.
In the first experiment with the GG-CNN, the goal of the

robot was to collect the objects from the table and put them in
the box. The example configurations of the objects are
presented in Figure 13. For the configuration of the objects
presented in Figure 13(a) the robot collected all objects in 7

Figure 10 Robot grasping and moving the object detected using the
point cloud-based method

Figure 9 Example bounding boxes found during experiments on the
real robot

Figure 11 AP and mAP score across 14 classes based on the test data
set

Mobile manipulating robot

Bartłomiej Kulecki, Kamil Młodzikowski, Rafał Staszak and Dominik Belter

Industrial Robot: the international journal of robotics research and application

Volume 48 · Number 5 · 2021 · 688–699

694



trials. It means that the GG-CNN failed in three attempts. For
the configuration presented in Figure 13(b) all grasping trials
were successful. We conclude that with the GG-CNN, the
robot can clean the table successfully without the knowledge
about the objects’ categories. In contrast to the point cloud-
based method, the objects can occlude each other. However,
raw GG-CNN cannot be applied to the tasks where the
category of objects is important.
In the next experiment, we show the output from the modules

used during grasping objects with the GG-CNN. In Figure 14(a),
we show the experimental set. The objects are on the table and the
camera is facing down. The objects detected by the SSD are
presented in Figure 14(b). Then, the proposed method crops and
selects the object from the image [Figure 14(c)]. The output from
the GG-CNN is presented in Figure 14(d). The grasping point is
indicated by the green dot. In this scenario, the robot follows the
defined objects and grasps the objects according to the output
provided by theGG-CNN.
The example execution of the grasp planned with the use of

GG-CNN is presented in Figure 15. The robot repeats the
object detection and the grasp planning in the loop until it
reaches the minimal distance depending on the sensor range
and at the end grasps the object. Finally, the controller adjusts
the gripper’s orientation according to the orientation of the
selected object (tube in Figure 15). In contrast to the original
GG-CNN, the algorithm ignores the remaining objects on the
scene.

In the last experiment, we compare the point cloud and GG-
CNN-based approaches to grasping. The algorithms are used
to grasp the same set of objects. The selected objects are
presented in Figure 16. In the experiment, the robot tries to
grasp the objects (single object on the table for each trial) using
defined methods. The results are presented in Table 2. The
compared methods perform the best for the box-like object, so
we selected objects which are problematic for both methods.
The CNN-based and point cloud-basedmethods have a similar
success rate. The point cloud-basedmethod performs better for
the dispenser bottle. The GG-CNN tries to grasp this object
always from the top which is difficult if the bottle is standing. In
contrast, the point cloud-based method adapts the orientation
of the gripper depending on the orientation of objects. The
black ring is also problematic for the GG-CNN. The neural
network prefers points that are on the edges of the object. As a
result, the GG-CNN returns the grasping point on the edge of
the ring. In the successful scenario, one finger of the gripper is
outside the ring and the second finger is in the center of the
ring. Unfortunately, the opening of the gripper is very often
inaccurate. The error related to the grasping point and the error
related to the opening of the gripper accumulate. In this case,
the finger which is inside the ring causes collisions and the grasp

Figure 12 Results of the detection carried out against the collected
test dataset

Figure 13 Example configurations of the objects during the “cleaning
the table” task

Figure 14 Example output from the modules used while grasping
objects using GG-CNN

Figure 15 Experiment with the GG-CNN: the robot detects the tube
and successfully grasps the object
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attempt fails. On the other hand, the point cloud-based method
fails when the ring is horizontal. The height of the ring is within
the noise range of the sensor and the object is hardly visible on
the depth image. The plane segmentation in most cases
removes this object from the scene which results in only one
successful grasp from 20 trials.
We also analyze the execution time for both methods. The

average segmentation time for the point cloud-based method is
74.5ms. The average value is obtained for 1,000
measurements. The time required for generating bounding
boxes depends on the number of objects in the scene. The
average time needed to generate bounding boxes is 38.7ms
when four objects are observed by the robot. This time
decreases to 22.9ms when two objects only are detected on the
scene. Finally, the computation of the reference gripper pose
takes an average of 50ms. However, the point cloud-based
method suffers from the scene scanning procedure. The
scanning procedure varies from 95 to 105 s and 79 to 82 s when
the speed of the robot is set to 35 and 50% of the maximal
speed, respectively. All these procedures are performed in a
single step when GG-CNN is applied. The GG-CNN does not
require environment scanning or scene segmentation. The
whole perception, which computes the grasping point, takes
32.8ms only for the GG-CNN (inference takes 7.6ms, and
searching for the maximum inside the bounding box takes
25.2ms on average). For both methods, the execution time
takes less than 30 s, but we do not use the full speed of
the robot. Our robot works in the fully autonomous mode in

the experiments presented in the article and for safety reasons
(of the robot and people in the environment), we reduce speed
to 35–50%of themaximal available speed.

5. Conclusions

In this article, we focus on the RGB-D based grasp planning for
robotic arms. We used two category-free grasping methods
which are based on different principles. The first method uses a
3D point cloud to extract objects from the background,
estimate the poses of the objects and determine the pose of the
gripper. The second method based on the GG-CNN uses
depth image only to find the optimal grasping point and
configuration of the gripper. We integrated the grasping
methods with the CNN-based object detection method to
obtain a system for grasping defined objects. We closed the
loop from the perception system of the robot and performed a
comparative study to investigate the properties of both
methods. We determine the benefits and drawbacks of the
obtained systems.
The properties of the point cloud-based method for grasping

the objects depend on the assumptions made during
implementation. The segmentation of the objects depends on
the Euclidean distance so the objects which are close to each
other create a single segment. As a result, the robot tries to
grasp a few objects at once. Also, small objects can’t be grasped
by these methods. This comes from the fact that the depth
measurements are noisy. If the dimensions of the objects are
comparable with the sensor noise, they are removed from
the scene during segmentation. Despite these drawbacks, the
implemented method is efficient and the robot can deal with
grasping various objects. Moreover, thanks to the visual
feedback, even if a single grasp fails, the robot repeats the
procedure until the objects are successfully moved to the goal
position.
The CNN-based method is much faster than the method

that the point cloud-based method. This comes from the fact
that the method does not segment the scene directly nor
extracts objects. TheGG-CNN looks for all points on the scene
which are good grasp candidates. We limit this behavior by
integrating GG-CNN with the object detection method and
looking for grasping points inside the bounding box related to
the found object. The main drawback of the GG-CNN is
related to the produced output. The method looks for the good
local grasping points and ignores the whole shape of the object.

Figure 16 The objects used to compare point cloud-based method
with the GG-CNN: sponge, dispenser bottle, sumo figurine, tape, plastic
probe, tape, ring, I-shape part and plastic shaft

Table 2 Comparison of grasping efficiency for the point cloud-based and GG-CNN methods

PCL GG-CNN

Object name
Successful
attempts

Total
attempts Efficiency [%]

Successful
attempts

Total
attempts Efficiency [%]

Sponge 17 20 85 16 20 80
Dispenser bottle 13 15 86.7 6 15 40
Sumo 14 20 70 16 20 80
Tape 15 20 75 18 20 90
Ring (vertical) 16 20 80 14 20 70
Ring (horizontal) 1 20 5 8 20 40
I-shape part 12 20 60 15 20 75
Plastic shaft 2 20 10 8 20 40
ALL 90 155 58.1 101 155 65.2
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This situation is well visible during experiments with the rings
and results in many failures grasps. However, similarly to the
point cloud-based method, collecting the objects from the table
is performed with a reasonable success rate due to the feedback
and capability of the system to repeat the failure trial.
In this article, we focus on the integration of grasping and

object detection methods. The main contribution of this work
lies in:
� Integration of the category-free grasping methods with

CNN-based object detection – the new system allows
grasping objects detected on the scene depending on the
task.

� Implementation of a reference method that defines the
grasping position of the gripper using operations on the point
cloud – the method also extracts objects from the scene and
determines the pose of the objects on the scene. The
implemented method is used as a reference for the proposed
CNN-based grasping and object detection method and used
for comparison.

� Implementation of the perception, grasping and motion
execution methods on the real robot to show the
properties of the system in various scenarios.

� Comparison of the grasping methods in the experiments
on the mobile manipulating robot.

In the future, we are going to work on the identified limitations
of the presented methods. The point cloud-based grasping
methods require careful scanning of the environment to build
the model of the scene. We are going to develop methods that
reconstruct the scene from a single camera image (Piaskowski
et al., 2019). We are also going to use the information about the
object category to improve theCNN-based graspingmethod.

Note

1 Short video from experiments is available at https://youtu.
be/hkBHKmyCXqw
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