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Abstract

Purpose — This paper explores international trade of the Chinese manufacturing industries through
the lenses of network analysis (NA) to visualise the world trade network of the Chinese economy,
describe its topology and better explain the international organisation of Chinese manufacturing
industries.

Design/methodology/approach — The authors built a dataset of 40,550 Chinese companies and their
107,026 subsidiaries in 118 countries from Orbis-BVD and used a NA to investigate the connection between
China and other countries. In particular, the authors studied the connections between Chinese companies and
their subsidiaries in order to build a network of Chinese industries.

Findings — The authors found that the network of Chinese companies is ramified but not wide and it can be
divided into two clusters. Moreover, the relations between China and other peripheral countries are strongly
mediated by a few leading locations (e.g. Hong Kong and the USA).

Originality/value — This paper contributes to the literature in several ways. First, the authors provide
empirical evidence on the magnitude and ramifications of Chinese enterprises in the world. The existing
studies generally focus on applying NA to sectoral insights (Mao and Yang, 2012; Shaikh ef al., 2016; Zheng
et al., 2016; Wanzenho ck, 2018; Krichene et al., 2019), whereas in this work the authors take a comprehensive
view of the entire Chinese manufacturing system. Second, this paper complements the existing literature
identifying the difference between cluster levels in Chinese manufacturing (Wu and Jiang, 2011) by
proposing a cluster centralisation method to analyse the international network of Chinese firms rather than
just the national network. Finally, the results also shed light on the international trade relationship between
China, Hong Kong and the USA.
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1. Introduction

The extraordinary performance of the Chinese economy has attracted the attention of
scholars and policymakers (Grossman and Helpman, 1991; Gereffi, 1999; McCombie ef al.,
2002; Pieper, 2003; Antras and Helpman, 2004; Magazzino and Mele, 2021).

Many academic scholars have enquired about the main key factors that have characterised
the worldwide expansion and diversification of Chinese exports in the global markets. From the
analysis of the literature, these factors can be summarised in five different points (Xing, 2016):
(1) the abundant labour endowment and corresponding comparative advantage in labour-
intensive products (Adams ef al., 2006); (2) reforms of domestic institutions, such as the transition
to a market-oriented economy, the adoption of export-led growth strategy and unilateral trade
liberalisation (Chang and MacMillan, 1991; Hu and Khan, 1997; Li and Matlay, 2006); (3) the
improved market access for China’s exports through institutional arrangements, namely
the World Trade Organisation (WTO) membership, bilateral and multilateral free trade
agreements and the abolishment of multi-fibre arrangement (Prasad, 2009); (4) the exchange rate
regime adopted by the Chinese government and an undervalued currency (Marquez and
Schindler, 2007; Thorbecke and Smith, 2010); (5) massive inflows of export-oriented foreign
direct investments (FDIs) (Zhang and Song, 2001; Whalley and Xin, 2010; Udemba et al., 2020).

From a more microeconomic perspective, other scholars have explored the role of enterprises
in China’s expansion in the global markets using traditional approaches of international
economics (Xu et al., 2015; Jones and Zeng, 2019). However, these studies underestimate the role
played by firms that are part of a corporate network, such as a business or multinational group
(Pan, 2018).

In order to fill this gap, this paper explores international trade of the Chinese
manufacturing industries through the lenses of network analysis (NA) to visualise the
world trade network of the Chinese economy, describe its topology and better explain
the international organisation of Chinese manufacturing industries. NA is, thus, particularly
suited for studying and graphically representing several socio-economic structures,
illustrating different kinds of dyadic links between the interacting participants in a
specific context (Wasserman and Faust, 1994). The main advantage of using NA to explore
the international links of Chinese firms relies on the information that networks provide. To
capture the global properties of such a system, it is important to model them as a graph whose
nodes represent the dynamic units and whose links stand for interaction between them.

We built a dataset of 40,550 Chinese companies and their 107,026 subsidiaries in 118
countries from Orbis-BVD and used a NA to investigate the connection between China and
other countries. In particular, we studied the connections between Chinese companies and
their subsidiaries in order to build a network of Chinese industries.

This paper contributes to the literature in several ways. First, we provide empirical evidence
on the magnitude and ramifications of Chinese enterprises in the world. The existing studies
generally focus on applying NA to sectoral insights (Krichene ef al,, 2019; Mao and Yang, 2012;
Shaikh et al., 2016; Zheng et al., 2016; Wanzenbock, 2018), whereas in this work we take a
comprehensive view of the entire Chinese manufacturing system. Second, this paper
complements research identifying the difference between cluster levels in Chinese
manufacturing (Wu and Jiang, 2011) by proposing a cluster centralisation method to analyse
the international network of Chinese firms and not just the national network. Finally, the results
of this study shed light on the international trade relationship between China, Hong Kong and
the USA.

The study is organised as follows: Section 2 explores the literature review on NA in
economic issues; Section 3 describes the methodology, data; and measures; Section 4 is
followed by the analysis and discussion of the empirical results; finally, Section 5 concludes
by providing a set of specific managerial and policy implications and avenues for future
research.



2. Literature review

Compared to traditional methodological approaches that use firms as the focus of their analysis,
NA takes the relationships between agents as the object of investigation and states that agents’
behaviour is influenced by the relationships that surround them (Borgatti et al, 2009).
Wasserman and Faust (1994) identified four distinctive elements of NA compared to traditional
statistical methods: (1) actors and their actions are viewed as interdependent rather than
independent; (2) relational ties between actors are channels for transfer or flow of resources
(either material or nonmaterial); (3) network model focussing on individual view the network
structural environment as providing opportunities for or constraints on individual action;
(4) network models conceptualise structure as lasting patterns of the relation amongst actors.

Social NA is thus particularly suited for studying and graphically representing several
socio-economic structures, illustrating different kinds of dyadic links between the interacting
participants in a specific context. NA is also a well-known and widely used methodology in
the field of economic analysis (Aviv et al., 2003; Borgatti et al., 2009; Carrington et al., 2005;
Wasserman and Faust, 1994). From the initial studies carried out by Freeman (1977, 1978),
scholars have focussed on analysing how different patterns of relationships amongst a
network’s members may directly or indirectly generate and affect the structural
characteristics of the network and observed performances.

The socioeconomic issues to which the tools of NA are applied can be summarised as
follows: the study of global value chains (GVC), where NA contributes to determining the
structure and complexity of the relationships created in the supply chain (Zheng et al., 2016;
Zhou et al., 2016; Amador and Cabral, 2017); the study of environmental impacts through the
analysis of the structure distribution and functional relationships within the ecosystem
(ecological NA, Hannon, 1973; Shaikh et al., 2016); the analysis of trade and economic relations
between different countries analysed from different perspectives, e.g. connections between
manufacturing sectors (Monarca ef al, 2019), linkages of different national R&D networks
(Krichene et al., 2019), the study of trade flows (Bhattacharya et al., 2008).

3. Methodology

3.1 Data and network settings

A database containing 40,550 Chinese companies and their 107,026 subsidiaries in 118
countries has been extracted from ORBIS-BVD database. All Chinese manufacturing firms
that owned at least one subsidiary abroad have been selected. Table 1 shows the distribution
of extracted firms by firms’ annual operating revenue.

Annual operating revenue (K EUR) Number of firms %

Min-1,000 865 21
1,001-5,000 3,725 9.2
5,001-10,000 13,202 326
10,001-25,000 8,723 215
25,001-50,000 6,163 152
50,001-100,000 4,386 108
100,001-500,000 1,710 42
500,001-1,000,000 889 22
1,000,000-10,000,000 837 21
10,000,001-Max 50 0.1
Total 40,550 100.0

Source(s): Authors’ elaborations on ORBIS-BVD database
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Table 1.
Distribution by firms’
annual operating
revenue (2017)
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Using such data, we made a weighted network defining the countries as nodes and the
weights as the number of different Chinese companies having branches in both the given
countries; i.e. a link between two countries existed if at least one Chinese firm had a branch in
both countries. We obtained a bi-directed, weighted network (link without a direction). Then,
we obtained an adjacency matrix with the following characteristic: N = 118 nodes, K = 1,980
links and W = 9,788 total weights. The network developed does not take into account
companies originating in other countries than China.

3.2 Network and statistical analysis

NA is particularly suited for studying and graphically representing several socio-economic
structures, illustrating different kinds of dyadic links between the interacting participants in
a specific context (Wasserman and Faust, 1994). The results of NA might be used to: identify
the countries that play central roles; discern information breakdowns, bottlenecks and
structural holes, as well as isolated countries; strengthen the efficiency and effectiveness of
existing relationships; refine strategies (Serrat, 2017).

To study different properties of the network, we split the analysis into three steps:
(1) General analysis of degree distribution and strength distribution; (2) analysis of weighted
network; (3) analysis of the binary network.

In order to perform the weighted and binary NA, we normalised our network: (1) rescaling
all weight magnitudes to the range [0,1] for the former case; i.e. dividing the whole set of
weights to the maximum one; and (2) setting all weights of network to 1 (then we have only
two possible values 1 and 0) for the latter case. In the following analysis, we compare the
weighted network with its binary version. In such a way, possible relations between
the quantitative properties of weighted links and the minimal network structure (topology of
the network) can be obtained.

In the first step, we calculated the strength and degree distribution amongst the nodes.
The strength (s;) is calculated as the sum of the nodes’ weights. In the same way, the node
degree (k;) is calculated as the sum of the weights of the binary matrix; i.e. as the possible
values are only 0/1, this corresponds to the number of links of a given node. Then, we
calculated the distribution function using the node strength and the node degree. This
analysis measures the distribution probability that a node has a given strength/degree value,
providing general information about the structure of a network. Because of the peculiar
characteristics of the scale-free network (Choromanski et al., 2013), we fit the obtained
distribution with the power-law distribution using the method of Clauset et al. (2009).

In the second step, we used a classical analysis of weighted networks (Barrat ef al., 2004),
analysing five different indicators.

(1) The dependences between the strength and node degree if the strength as a function
of degree (k) has the empirical form of s(k) = k" with p = 1, there is a linear
relationship between strength and node degree, and thus they provide the same
information on the system (Barrat et al.,, 2004).

(2) The disparity index (Y) explores the setting of weights around nodes; if all edges of
nodes tend to have the same weight values, then Y(k) = 1/k. Otherwise, if the weight
of a single link dominates, then Y(k) is independent of k (Derrida and Flyvbjerg, 1987).
Note that, from an economic point of view, the disparity index indicates whether the
weight of each nation is given by the strong presence of a bilateral relationship with
another nation (dependence; therefore, indicating relative weakness in economic keys,
such as exposure to external shocks) or if the weight is due to multiple relationships
between the country/node examined and the others (relative independence; therefore
strength index in the economic sense).



() The clustering coefficient (C) measures the global density of interconnected node triplets Economic
(ie. three fully connected nodes; the binary form considers only the topological features network
of the network) and then studies the cohesiveness of each node in the network. Further, dvnamics
for the weight network (C%), the local cohesiveness takes into account the importance of y
the clustered structure based on the weight’s intensity actually found on the local
triplets. These indices provide global information on the correlation between weights
and topology: if C¥ > C, the triplets are formed by the edges having high weight values; if 1589
CV < C the clusterised nodes are formed by edges with low weight values. More
information can be carried out by exploring the clustering coefficient (both binary and
weight version) as a function of node degree C(k). Thus, if this analysis shows an
exponential decaying behaviour (power-law decay), low-degree nodes have
interconnected communities (with a high clustering coefficient), while more connected
nodes tend to have a small clustering coefficient value. Such architecture is called
hierarchical network model (HNM) (Ravasz and Barabadsi, 2003).

(4) The weighted average nearest-neighbours degree (k,,") is a measure capable to
characterise the assortative/disassortative behaviour in a weighted network (Newman,
2002). Such an index describes the preference of nodes to have connections with others
having similar (assortative network) or dissimilar (disassortative network) strength.
As for the clustering coefficient, we compare the binary (k) and the weighted form
(k™). Then, if ky,," > ki, the edges with larger weights are pointing to the neighbours
with a larger degree; if k,,,," < k,,, then the opposite behaviour. In economic terms, the
index measures the propensity of a nation/node to connect with the weakest/peripheral
nations or with the most central and strong ones.

(5) Global and local efficiency are measures of exchanges of information efficiency
(Latora and Marchiori, 2001). In particular, global efficiency indicates the information
exchange across the whole network; while, local efficiency indicates information
exchanged by a node to its neighbours. As a general remark, a path is a particular
trajectory between two nodes not passing more than one time on each node, and then
the efficiency is the reciprocal value of the shortest path length between each network
node, indicating the minimum set of nodes in the path between two nodes. Note that,
in the case of a weighted network, the shortest path length is calculated by the lower
set of link weights between two nodes, and then the same index can feature different
results in binary and weighted networks. In particular, the global efficiency takes into
account the whole set of network nodes, while the local efficiency takes into account
the node neighbours of a given node. For example, if in a binary network going from
node A to node B, the minimum path must pass through C, D and E, the indicator is
evaluated as 1/3, because three nodes have to be passed through to make the
connection between A and B. The network is more efficient if there are a few
intermediate nodes between two randomly taken nodes. To characterise the non-
random structure of the network, we compared the efficiency indices calculated in the
real network to the same values calculated in 100 random models. Note that the
distances are calculated only on the network properties and do not take into account
the real geographical distance between countries.

In the last step, we explore the topological features of the networks. We can further subdivide
the analysis into three other phases.

(1) Inthefirst phase, we study the possible small-world architecture of the network. This
model is characterised by a high level of segregation and a high level of integration.
We calculated these quantities using local efficiency as a measure of segregation and
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global efficiency as a measure of integration (Latora and Marchiori, 2001). To prove
the statistical property of such measures, we carried out these analyses in 100
randomised matrices, and then we compared the real network values to the random
one. In the presence of small-world topology, the local efficiency has a value greater
than the random model, while the global efficiency has the same value as the random
model. In order to confirm the previous analysis, we used an alternative method to
define the small-world architecture (Humphries and Gurney, 2008). In such a way, we
calculated the clustering coefficient (the same index as the previous section) and the
average path length (APL). This last index measures the average of the path
(i.e. sequence of links connecting a sequence of nodes, which does not pass through
the same node two times) amongst all the network nodes; the greater this value is, the
more distant (and less integrated) are nodes themselves. Then, we calculated these
indices for the real network and in 100 randomised models. Consequently, a
normalised form of clustering coefficient (gamma) and APL (lambda) were performed,
and the small-worldness index (sigma) was calculated (a ratio between gamma and
lambda). In fact, it is easy to see that a segregated network has a gamma value higher
than one, while the lambda value is equal to one. Thus, in a small-world architecture,
the sigma index has value higher than one.

Furthermore, since different companies’ strategies are possible depending on
geographical factors, we explore the modularity of the network. We used the
modularity algorithm (Newman, 2006), searching for an optimal network subdivision
into non-overlapping groups of nodes. We performed 100 repetitions of calculation,
taking the best result that maximise the number of within-group links and minimise
the number of between-group links (high values of Q index). Finally, to prove the non-
randomness of our result, we compared these results to 100 times randomised models.

In the last phase, we pointed to the local properties of the network. In such a way, we
performed the centrality analysis and the functional cartography analysis. Regarding
the centrality analysis, we characterised nodes with three different centrality measures:
strength, betweenness (Freeman, 1977) and eigenvector centrality (Ruhnau, 2000;
Bonacich and Lloyd, 2001). Finally, to improve the description of local features within
the whole network characteristic, we use the functional cartography analysis (Guimera
and Amaral, 2005). In this analysis, we used the information from the previous
modularity analysis to characterise the specific role of each node in the network. In
particular, the within-degree z-score (z) and the participant coefficient (P) are calculated:
the first index measures the node degree of nodes within their own module, describing
the intra-module connectivity (since it is a standard deviation transformation, the range
of such an index is theoretically from — infinite to -+ infinite, nodes having values upper
than 2.5 are defined as a hub); the second index studies how the node connections are
distributed amongst all modules (this index ranges from 0, if all the node connections are
within own module, to 1, if node connections are distributed in all modules equally).

Consequently, on these assumptions, we set the following node classes (Guimera and
Amaral, 2005):

@)
@)

®)

R1-Ultra-peripheral nodes (with connections only within its module, z < 2.5 and P ~ 0);

R2-Peripheral nodes (having most of the connections within its module, z < 2.5 and
P < 0.62);

R3-Non-hub connectors (with circa half of the connections within its module, z < 2.5
and 0.62 < P < 0.80);



4) R4-Non-hub kinless nodes (with most of the connections outside its module and not
clearly associated with a single module, z < 2.5 and P > 0.80);

(5) R5-Provincial hubs (central nodes having most of the connections within its module,
z > 2.5 and P < 0.30);

6) R6-Connector hubs (central nodes with half connections outside it module, z > 2.5 and
0.30 <P < 0.75);

(7) R7-Kinless hubs (central nodes with few connections within its module and not clearly
associated with a single module, z > 2.5 and P > 0.75).

The random model of the network was performed preserving the degree and strength
distributions for the weighted network (Rubinov and Sporns, 2011) and preserving the degree
distribution for the binary network (Maslov and Sneppen, 2002). A set of homemade scripts
and the brain connectivity toolbox (BCT) in Matlab (Rubinov and Sporns, 2010) were used to
perform the whole analysis.

4. Results

4.1 General information on the network

The connectivity density is equal to 0.29 (total number of possible links: 6,903). The mean
degree is <k>: 33.6, with a maximum value of 118 node degree and a minimum of 1 node
degree. The sum of all weights is W = 9,788, while the mean strength is <s > 82.9, with a
maximum of 1,033 and a minimum of 1 (see Figure 1).

The degree and strength distribution shows a long-tail curve. In particular, the degree
distribution (Figure 2, left panel) has a trend for a power-law distribution (p-value: 0.057) with a
cut-off at 40 node degree SD. 5.3 and a beta value of 3.5 SD. 0.27; the strength distribution
(Figure 2, right panel) does not fit with the power-law distribution (p-value: 0.92). From the 40 node
degree (cut-off), it is possible to note a trend for the power-law distribution (Figure 2, left panel).

4.2 Network Analysis
(1) Weighted network

The study of strength/degree dependences shows a relative linear function between them
(Figure 3, left panel). The beta coefficient is equal to: 1.28 (95% confidence bounds, 1.22-1.34),
meaning that strength tends to grow faster than the degree; thus, the more connected
countries host more companies than other countries.

Moreover, the disparity analysis gives a beta coefficient of —0.77 (—0.82, —0.72) (Figure 3,
right panel). Thus, there is a trend to have an equal number of weights within each node. Note
that for the most connected nodes, this trend is less clear due to a more weight variability
amongst their links, as it is possible to note in the right panel of Figure 2; more connected
nodes tend to be more distributed around the fitted line.

In order to better understand the hierarchical structure of the network, we compare the
weighted network with a simplified binary version of the same network. As analysed above,
in the weighted network a link exists between two countries if at least one Chinese firm has a
branch in both countries, and we measure the weights of this link as the number of different
Chinese firms having branches in both the given countries. In the simplified binary version,
the link between the different countries exists under the same conditions as in the weighted
network, but the weights of this link are always one, if it exists at all, regardless of the number
of Chinese firms involved. In these two network versions, we compare the clustering
coefficient and k,,, indicators (Figure 4).
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The weighted clustering coefficient (C%) is equal to 042 (s.d. 0.09), while the C in the binarised
network is: 0.79 (s.d. 0.23). While the high value of the topological index shows a high-clusterised
network, the lower value of the weighted index is related to a structure having low link weights



amongst network triangles. Figure 4 (right panel) shows dependence between the binarised
clustering coefficient and node degree, indicating a hierarchical structure of the network.

Both networks show a negative value of slope (weighted: —0.16; binary: —0.25). Figure 4 (left
panel) shows the k,,, values as a function of the node degree: it is clear that only for the binary
network there is a negative dependence, then while central nodes tend to link less connected
nodes, the corresponding weights are not distributed in the same manner. As a result, the central
countries, i.e. those with the most connections, are evenly connected to all the other countries in
their portion of the network, thus not showing stronger connections to the peripheral countries.

Finally, we studied the organisation of weights by comparing the local and global efficiency of
the real network and the same indices of the randomised network. Figure 5 shows non-significant
differences between the real and the random network for the local efficiency index; thus, the
combination of weights around the network does not give information about their clusterisation.
Moreover, the global efficiency of the real network has a lower value than the related index in the
random model, confirming a random distribution of weights around the network.

(2) Binary networks

The previous analysis shows a particular architecture of binary networks. Thus, we explore
in-depth the topological characteristics of the network, removing the weight information.
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Figure 3.

Right panel: log-log
scatter plot between
degree and strength;
left panel: log-log
scatter plot of degree as
a function of disparity

Figure 4.

Left panel: scatter plot
of node degree and
knn; right panel:
scatter plot of node
degree and clustering
coefficient
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Figure 5.

Box-plot of weighted
efficiency measures;
left panel: local
efficiency; right panel:
global efficiency

Table 2.
Indices values of
binary network

In Table 2, we can see the local and global efficiency of a binary network; in contrast to the
weighted values, these indices describe a well-clusterised network (local efficiency of real
network upper than corresponding randomised value) and a good level of sharing
information amongst nodes (global efficiency of real network equal to the corresponding
randomised values). These characteristics together describe a small-world network; the
small-worldness index (sigma) confirms this trend (sigma: 1.090 s.d. 0.007). For a complete
description of index values, see Table 2.

Both local and global values of efficiency show an efficient exchange of information across the
whole network, as well as on local scales. The sigma value shows a good balance between the
segregation and integration level, confirming the small-world architecture of the network (Table 1).

We identify modules by maximising the modularity of the network as in Guimera and Amaral
(2005). This technique minimises the problem of finding suboptimal partitions, but more
importantly does not require specifying a priori the number of modules, which will be a result of
the algorithm. Our algorithm can reliably identify modules in a network whose nodes have up to
50% of the connections outside their module (Guimera and Amaral, 2005). The link between two
countries is detected if a Chinese company has a branch in both countries. For example, if the
Chinese firm Alfa has a branch in US and IT, the algorithm detects a link between US and IT. The
more a country is linked to others, in the way just described, the more its centrality in the network
increases, and vice versa, i.e. the fewer links a country has with others, the more peripheral it is in
the network. The modularity analysis investigates the absence of connections and identified two
modules (Table 3). The modularity analysis shows two main clusters with a Q score of 0.17.

The centrality analysis shows two main central nodes for all the centrality measures used.
These nodes have a z-score value higher than two for the node degree and the betweenness,
while eigenvector centrality has lower z-score values (higher than 1.7). In Table 4 the related
nodes and centrality values are inserted.
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Network index Values
Local efficiency 0.875 s.d. 0.187
Global efficiency 0.639
Sigma 1.090 s.d. 0.007
Gamma 1.095 s.d. 0.006
Lambda 1.005 s.d. 0.003
Assortativity —0.254

Source(s): Authors’ calculations in Matlab




The two modules can be considered two independent sub-networks. This means that Economic
countries placed in one module are connected to each other but have no direct connections to network
countries in the other module. Countries placed in two different modules could only dvnamics
communicate with each other through the presence of a possible connector node, which we try y

to identify using centrality analysis.

Finally, in order to study the role of each node in its modules, we study the functional
cartography of the network. From this analysis, the ultra-peripheral nodes are: AG, AZ, BF, 1595
EC,ET,FM, GA, GN, IR, JO,KG, LA, MH, MR, TD, TJ, VE, ZM, the connector hub is HK, while
the USA has a limit values for this category; all the remaining nodes are peripheral nodes.
Note that the ultra-peripheral nodes and the connector hubs belong to the same module.

Most nodes belong to the R2 square (peripheral nodes), indicating a well-clusterised
structure inside their module, but having a small amount of extra-module connection. A small
part of the nodes falls in the R1 square (ultra-peripheral), indicating no extra-module
connections. Only one node (HK) belongs to the R6 square (connector hubs) appearing as the
main connector between modules; the USA has a trend to be a connector hub.

A general issue about the network: we found a quasi-linear correspondence between node
degree and strengths with an equal distribution of weights amongst the node links. Moreover,
analysis of the weighted network shows an independent distribution of weights amongst the
network nodes. Then, it seems that weights are randomly distributed and do not represent the
structural characteristic of this network. Conversely, the binary network has very peculiar
features different from a random network.

In particular, it has a small-world topology, with a well-clusterised structure and well-
shared information amongst nodes at the same time. This means clustering features as a
regular network and efficient communication amongst nodes as a random network. These
characteristics together describe a complex network in which the integration—segregation
features are balanced. However, the dependence of clustering coefficient as a function of node
degree indicates a hierarchical structure in which central nodes are not well clustered, but at
the same time tend to connect nodes with a small number of links. Thus, the network studied
has a hierarchical architecture with a small-world topology.

Module 1 Module 2

AT-BD-BG-BH-BW-CH-CI-CO-DE-DK- AE-AG-AL-AR-AU-AZ-BB-BE-BF-
DZ-EG-FR-GB-GH-HU-IE-IT-JP-KR-LV BM-BN-BR-BY-CA-CD-CG-CL-CM-CY-
-MA-MD-MG-MT-MX-NA-NO-PE-PL- CZ-EC-ES-ET-FI-FM-GA-GN-HK-ID-
PT-RO-RS-SC-SE-SK-TH-TN-UZ-VN IL-IN-IR-]JO-KE-KG-KH-KW-KY-KZ-
LA-LK-LT-LU-MH-ML-MM-MN-MO -
MR -MY -MZ-NG-NL-NZ-PA-PG-PH-
PK-QA-RU-SA-SG-SI-SR-TD-TJ-TR -
TW-TZ-UG-US-UY-VE-VG-WS-ZA -

IM~ZW Table 3.
Note(s): To identify each country the “ISO standard — Codes for the representation of names of countriesand Countries belonging to
their subdivisions” has been used (see Appendix) module 1 and 2,
Source(s): Authors’ calculations in Matlab respectively
Country Node degree Betweenness Eigenvector
HK 112 2,803 0.17 Table 4.
UsS 93 815 0.17 Centrality values of

Source(s): Authors’ calculations in Matlab central nodes
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In addition, clusters of the network form two defined modules. The functional cartography
shows that the first module is formed only by peripheral nodes, sharing most of the links
within their module. Few ultra-peripheral nodes and connector hubs form the second module,
besides the peripheral nodes.

As a last comment, it is probable that the central nodes (HK and US) tend to have
connections to the ultra-peripheral nodes only, and then other peripheral nodes share their
information in an efficient way independently. Thus, a possible phenomenon between the
hubs connector and the ultra-peripheral nodes independently from the two found modules
cannot be excluded.

5. Conclusions

From a descriptive point of view, the network of Chinese firms that we have reconstructed has
two characteristics. First, the international network of Chinese firms is highly ramified, but
not very wide. The network has characteristics of a non-random network in the binary
analysis. In particular, the international network of Chinese firms has a pronounced cluster
structure, but at a lower level of node degree, as described by the hierarchical model (Ravasz
and Barabasi, 2003). At the same time, communication efficiency between nodes in
maintained indicating a good balance between integration-segregation features, in according
to the small-world model (Latora and Marchiori, 2001). Moreover, the peripheral countries
tend to be connected between them in an independent manner, while the countries located in
the ultra-peripheral nodes need the mediation of the central nodes to relate to each other and
to the rest of the network.

Second, it is possible to divide the network into two clusters. The first cluster (module 1)
contains the main European and African countries, while the second and larger cluster
contains a few European countries (mainly from the East) and countries from the remaining
continents, in particular North and South America. The division into clusters indicates that
the network of Chinese enterprises operates in the two areas almost independently.

From an economic perspective, these characteristics of the Chinese firm network lead to
important considerations. Our analysis is not dynamic but represents a snapshot of the
network that Chinese firms have built to date. We have identified the structural
characteristics of this network, which has been described as wide but not deep. These
characteristics imply that the different subsidiaries of Chinese firms scattered in different
countries have not yet created strong mutual connections. From a relational point of view, all
this means that the foreign network of Chinese firms is qualitatively poor, i.e. not able to foster
and strengthen itself through synergetic processes between the subsidiaries located in the
target countries. Without the mediation of the parent company, the subsidiaries are not able
to profitably interact with each other or open new markets.

This particular network structure could be the result of an initial phase of expansion of
Chinese enterprises abroad, a phase that focussed more on quantity, i.e. the extension of the
network to an increasingly larger number of countries, than on quality, i.e. the strengthening
of autonomous links between subsidiaries located in foreign countries. Policy measures such
as the Belt and Road Initiative can be contextualised in this analysis as instruments aimed at
closing the season of quantitative expansionism of Chinese companies and opening a new
course aimed at strengthening ties with certain foreign countries in order to generate those
network synergies that, at the moment, Chinese expansionism abroad does not seem to have
fully achieved (Mele and Magazzino, 2020). Compared to these analyses, two countries
emerge as exceptions, HK and US, which stand out as the only strong and branching nodes in
the network of Chinese enterprises abroad. These countries are in fact, in addition to China
itself of course, connectors, i.e. Chinese subsidiaries located in HK and US facilitate the
connection of other subsidiaries in the network, especially those located in countries with



fewer connections within the network (ultra-peripheral countries). The role of these two
countries is important at the moment, but their impact on the future development of the
network may be marginal. In fact, the real policy challenge will be to strengthen the
quantitative and qualitative linkages also with other countries in order to have a more
efficient network with several countries playing the role of connectors.

There are several possibilities for future research, in particular as regards the deepening of
the model by extending the research with backward-looking data. The use of data from at
least the last five years, for example, would make it possible to understand not only the
current conformation of the international network of Chinese companies (as in this article),
but also the path that has projected them so far. It is important to carry out an increasingly
detailed monitoring process, which enables a thorough assessment of Chinese industrial
dynamics as a potential threat or opportunity posed to target countries.
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Appendix

Country Code Country Code Country Code
United Arab Emirates AE France FR New Zealand NZ
Antigua and Barbuda AG Gabon GA Panama PA
Albania AL United Kingdom GB Peru PE
Argentina AR Ghana GH Papua New Guinea PG

1600 Austria AT Guinea GN Philippines PH
Australia AU Hong Kong HK Pakistan PK
Azerbaijan AZ Hungary HU Poland PL
Barbados BB Indonesia D Portugal PT
Bangladesh BD Ireland IE Qatar QA
Belgium BE Israel IL Romania RO
Burkina Faso BF India IN Serbia RS
Bulgaria BG Iran IR Russian Federation RU
Bahrain BH Italia IT Saudi Arabia SA
Bermuda BM Jordan JO Seychelles SC
Brunei Darussalam BN Japan JP Sweden SE
Brazil BR Kenya KE Singapore SG
Botswana BW Kirghizstan KG Slovenia SI
Belarus BY Cambodia KH Slovakia SK
Canada CA South Korea KR Suriname SR
Congo (Kinshasa) CDh Kuwait KW Chad TD
Congo (Brazzaville) CG Cayman Island KY Thailand TH
Switzerland CH Kazakhstan KZ Tajikistan T]
Cote d'Ivoire CI Lao PDR LA Tunisia TN
Chile CL Sri Lanka LK Turkey TR
Cameroon CM Latvia LT Taiwan ™
Colombia CcO Luxembourg LU Tanzania TZ
Cyprus CYy Morocco MA Uganda uG
Czech Republic (67 Moldova MD United States of America Us
Germany DE Madagascar MG Uruguay [0)'¢
Denmark DK Marshall Island MH Uzbekistan uzZ
Algeria DZ MAI ML Venezuela VE
Ecuador EC Malta MT British Virgin Island VG
Egypt EG Mexico MX Viet Nam VN

Table Al. Spain ES Namibia NA Samoa WS

Modularity analysis: ~ Ethiopia ET Niger NG South Africa ZA

country codes ISO Finland FI Netherlands NL Zambia ZM

3166-1-Aplha 2 Micronesia FM Norway NO Zimbabwe W
Subsidiaries Number of countries
Min-100 59
101-250 26
251-500 10

Table A2. 501-1,000 9

Distribution of 1,001-Max 14

extracted subsidiaries  10tal 118

by countries (2017) Source(s): Authors’ elaborations on ORBIS-BVD database
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