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Abstract

Purpose – This survey explores the application of real options theory to the field of health economics. The
integration of options theory offers a valuable framework to address these challenges, providing insights into
healthcare investments, policy analysis and patient care pathways.
Design/methodology/approach –This research employs the real options theory, a financial concept, to delve
into health economics challenges. Through a systematic approach, three distinct models rooted in this theory are
crafted and analyzed. Firstly, the study examines the value of investing in emerging health technology, factoring
in future advantages, associated costs and unpredictability. The second model is patient-centric, evaluating the
choicebetween immediate treatment switch andwaiting formore clarity,while alsoweighing the associated risks.
Lastly, the research assesses pandemic-related government policies, emphasizing the importance of delaying
decisions in the face of uncertainties, thereby promoting data-driven policymaking.
Findings – Three different real options models are presented in this study to illustrate their applicability and
value in aiding decision-makers. (1) The first evaluates investments in new technology, analyzing future benefits,
discount rates and benefit volatility to determine investment value. (2) In the second model, a patient has the
option of switching treatments now or waiting for more information before optimally switching treatments.
However, waiting has its risks, such as disease progression. By modeling the potential benefits and risks of both
options, and factoring in the time value, this model aids doctors and patients inmaking informed decisions based
on a quantified assessment of potential outcomes. (3) The third model concerns pandemic policy: governments
can end or prolong lockdowns.While awaitingmore data on the virus might lead to economic and societal strain,
the model emphasizes the economic value of deferring decisions under uncertainty.
Practical implications – This research provides a quantified perspective on various decisions in
healthcare, from investments in new technology to treatment choices for patients to government decisions
regarding pandemics. By applying real options theory, stakeholders can make more evidence-driven
decisions.
Social implications – Decisions about patient care pathways and pandemic policies have direct societal
implications. For instance, choices regarding the prolongation or ending of lockdowns can lead to economic and
societal strain.
Originality/value – The originality of this study lies in its application of real options theory, a concept from
finance, to the realm of health economics, offering novel insights and analytical tools for decision-makers in the
healthcare sector.
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Paper type Research paper

1. Introduction
Health economics operates within an environment characterized by uncertainty, in which
decision-makers face various risks and unknown outcomes. Traditional economic models
often struggle to capture the complexities of decision-making under uncertainty. The

Strategic
flexibility in
healthcare

177

JEL Classification — C61, H12, I18
© Felipa de Mello-Sampayo. Published by Emerald Publishing Limited. This article is published

under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute,
translate and create derivative works of this article (for both commercial and non-commercial purposes),
subject to full attribution to the original publication and authors. The full terms of this licence may be
seen at http://creativecommons.org/licences/by/4.0/legalcode
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decisions should be based on expected net benefit (NB), so that when comparing mutually
exclusive treatment strategies for a particular disease, the optimal strategy is simply the one
with the greatest expected NB (Claxton, 1999). Nevertheless, decisions based on expected NB
are appropriate only if there is also some consideration of whether current evidence is
sufficient for allocating health-care resources, based on an assessment of the consequences of
decision uncertainty. If the decision uncertainty and the consequences of adopting a
suboptimal strategy are large, the decision-maker may wish for additional evidence on which
to base the adoption decision (Sculpher and Claxton, 2005). This article explores the
application of real options theory as developed by Dixit and Pindyck (1994), in healthcare
decision-making, examining its implications for healthcare investments, policy analysis, and
patient outcomes.

Options theory is a branch of finance that focuses on valuing and analyzing financial
derivatives known as options. Options provide the holder with the right, but not the
obligation, to buy or sell an underlying asset at a predetermined price within a specified time
period. Dixit and Pindyck (1994) expanded options theory to address the complexities of
economic decision-making under uncertainty. They recognized that economic agents face
uncertain future outcomes and have the flexibility to make strategic choices based on
evolving market conditions. Their approach allows for evaluating the value of project
opportunities, taking into account the flexibility to exercise or delay projects based on
uncertain outcomes. Real options analysis captures the value of waiting, abandoning, or
expanding projects, providing a more accurate assessment of economic decision-making.

Real options theory provides an assessment of the value of investing in medical
technologies, research and development, infrastructure, and capacity expansion (Palmer and
Smith, 2000). By incorporating the flexibility to exercise or delay the option to invest based on
uncertain outcomes, it provides a more accurate assessment of the value of healthcare
investments. Here, there is special focus on Technology Assessment, since it evaluates the
value of adopting new medical technologies, considering the flexibility to exercise or delay
adoption based on evolving evidence and market conditions. This approach provides a more
comprehensive understanding of the economic value and impact of new healthcare
technologies (Fornaro et al., 2021).

The real options theory framework can also be applied to the analysis of patient outcomes
under uncertainty. It allows for the evaluation of treatment options, considering the flexibility
to adapt treatments based on evolving patient conditions and uncertain outcomes. By
incorporating the value of waiting, switching treatments, or exploring alternative therapies, it
provides insights into optimal patient care pathways and resource allocation (Driffield and
Smith, 2007). Uncertainty plays a significant role in healthcare policy choices. Real options
theory assesses the value of policy flexibility and the impact of uncertain policy changes on
health outcomes and healthcare costs (Attema et al., 2010). It helps to determine the optimal
timing and design of policies, such as insurance reforms, healthcare regulations, and public
health interventions, accounting for the strategic behavior of stakeholders.

Three different real options models are presented in this study to illustrate their
applicability and value in aiding decision-makers to assess investment opportunities, medical
decisions, and public health decisions. The first model is applied to investment in a new
technology, and by inputting potential future benefits, discount rates, and the variability
(volatility) of these benefits, the model can help to assess the value of the option. In the second
model a patient has the option of switching treatments now or waiting for more information
before optimally switching treatments. However, waiting has its risks, such as disease
progression. By modeling the potential benefits and risks of both options and factoring in the
time value, the model aids doctors and patients in making informed decisions based on a
quantified assessment of potential outcomes. In the third model, a government has the option
to leave lockdown during an ongoing pandemic. Alternatively, they can wait for more
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information about the virus, but incur the risk of the negative effects that the lockdown
measures have on the economy and social well-being. The theoretical model argues that in the
presence of uncertainty the possibility of deferring the decision until some later time when
better informationmay become available has an economic value. By delaying it can provide a
quantified assessment of whether to leave lockdown now orwait, helping policymakersmake
evidence-based decisions. Thus, by incorporating strategic behavior and options analysis,
the real options approach offers valuable insights into healthcare investments, policy
formulation, and patient outcomes. One can make more-informed assessments and
recommendations, leading to improved decision-making and outcomes in the ever evolving
field of healthcare.

This paper is organized as follows. Section 2 discusses the literature that has applied
real options to healthcare decision-making. Section 3 puts forward three formal real
options models applied to the healthcare sector. Section 4 examines the implications of the
real options approach for healthcare decision-making. Concluding comments are in
Section 5.

2. Real options theory in health economics
This section provides an overview of the adaptation of real options theory to the healthcare
decision-making. Several studies demonstrate the application of real options analysis across
various aspects of healthcare decision-making, encompassing investment evaluations,
treatment strategies, cost-effectiveness assessments, and the optimization of vaccination
programs, among others.

There are two seminal manuscripts that apply real options theory in healthcare. Palmer
and Smith (2000) used a cost-benefit framework, introducing the concept of net social benefit
(NSB) to evaluate investments in healthcare technologies, which had not been previously
explored; andDriffield and Smith (2007) conducted the first study to apply real options theory
in medical decision-making. The authors applied real options theory to the concept of
watchful waiting, demonstrating how real options analysis can guide decisions regarding
when to pursue a watchful waiting strategy for specific patients.

Following Palmer and Smith (2000), who analyze healthcare technologies using the
cost-benefit framework and the concept of net social benefit, there is a group of studies
that focus on analyzing investments in machines, technologies, pharmaceuticals stocks,
health insurance plans, public health initiatives, new treatments, infrastructure, and
health systems. These studies represent traditional applications of real options, wherein
investors analyze whether investing their capital in a particular project yields returns
that are expected to be greater than the company’s cost of capital. Smyth and Swinand
(2002) apply real options theory to evaluate capital investment opportunities, capturing
the value of flexibility. They emphasize that managerial flexibility is particularly
valuable in high-risk investment opportunities. (Williams et al., 2007) discuss the
application of real options to support investment decisions for a hospital’s new imaging
department. (Levaggi and Michele, 2004) analyze optimal investment decisions in new
healthcare technologies in uncertain environments. Pertile (2008) uses real options theory
to analyze the timing of investment in new technologies by healthcare providers,
considering competition for patients and alternative payment systems. Pertile et al. (2009)
present an economic evaluation from a hospital’s perspective on the investment in
positron emission tomography (PET). Levaggi et al. (2009) employ a real options
framework to evaluate investments in new technologies and Pertile (2009) incorporates
option values into the economic evaluation of PET.

Following Driffield and Smith (2007), the group of studies addressing watchful waiting
and switching patient therapies aids physicians in deciding whether to initiate treatment
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immediately or delay it until a future time. This approach incorporates the patient’s health
condition as part of the risk equation. The authors highlight the potential benefits of
postponing decisions to gather more relevant information and avoid irreversible or risky
treatments.When analyzing situations inwhich current treatment decisions have irreversible
implications for the treatment of future diseases, and decision-makers are choosing between
competing interventions with differing temporal consequences, Zivin and Neideill (2009) find
that irreversibility raises the value of treatment modalities that preserve future treatment
options. However, introducing some reversibility can either increase or decrease the option’s
value, depending on the distribution of patient types. These authors also examine the
relationship between option values and the biological and economic parameters that
characterize any given set of technologies. Grutters et al. (2011) examine the adoption of
proton therapy compared to stereotactic body radiotherapy for the treatment of inoperable
stage I non-small cell lung cancer. Meyer and Rees (2012) analyze the treatment decision at a
general level. They determine optimal threshold values for initiating the intervention, and
derive comparative statics results with respect to the model parameters. In particular, an
increase in the degree of uncertainty over the patient’s health state makes waiting more
attractive in most cases. However, this may not hold if the patient’s health state has a
tendency to improve. Forster and Pertile (2013a) use real options theory to decide whether to
adopt a new health technology instead of an existing one in patient treatment. de Mello-
Sampayo (2015) explores the timing of switching to second-line antiretroviral therapy (ART)
under health uncertainty and in the absence of viral load monitoring. de Mello-Sampayo
(2022) finds that under irreversibility of time spent in treatment, low-risk patients must use
teledermatology as soon as possible, which is precisely when it is least valuable.

Related to public health decision-making, Attema et al. (2010) apply real options theory to
assess the value of stockpiling antiviral drugs as a precautionary measure against potential
influenza pandemics. Their analysis incorporates the option to defer action. Favato et al.
(2012) apply the payoff method to determine the real options values of four different human
papillomavirus vaccination (HPV) strategies. According to the authors the payoff method
offers distinct advantages in assessing the cost-effectiveness of competing healthcare
interventions. Pertile et al. (2014) present a Bayesian sequential economic evaluation model
for health technologies, allowing flexibility in the decisions regarding the timing to cease
research. Park (2016) analyzes the optimal vaccination strategy for pandemic diseases,
considering the stochastic diffusion process of the disease.

Real options theory has been applied in other areas of healthcare. Sengupta and Kreier
(2011) develop a dynamic framework for analyzing individual choices between Preferred
Provider Organizations (PPOs) and Health Maintenance Organizations (HMOs) using real
options theory. Their approach evaluates the benefits and flexibility associatedwith different
healthcare provider options. Smith and Yip (2016) highlight the importance of option pricing
theory in developing treatable methods that address the complexity and interconnectedness
of health systems. Regardless of whether the real options concept is applied to patient
treatment, public health strategy analyses, investment analyses, or other areas, the central
idea remains consistent: reducing uncertainty pertaining to decisions made at present.

Finally, Smith (2007) evaluates the value of option contracts that provide the right to use
specific drugs in the future. This analysis focuses on the option value and the potential future
health benefits. This type of option assists decision-makers in managing risks arising from
uncertainties surrounding health conditions and treatment availability. More recently,
(Garrison et al., 2017) emphasize the significance of considering real options in cost-
effectiveness analyses and Lakdawalla et al. (2018) demonstrate that real options are
considered an essential element in healthcare value assessment. The fundamental objective
underlying these operations is to reduce future uncertainty and maximize results, such as
saving patients’ lives, extending their life expectancy, or improving survival conditions.
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3. Real options models
First, we present a very simple stylized model within a cost-benefit framework to analyze
investment in health technology. Then we present its application to the medical decision-
making and finally to the public health decision-making.

3.1 Real options model applied to investment
Following Palmer and Smith (2000), we present a very simple stylized model within a cost-
benefit framework in order to highlight some ideas underlying the real options model, i.e.
irreversibility and the ability to invest in the future.We begin with a simple example in which
investment decisions are made at two discrete moments at time. Consider an investment
opportunity in a new healthcare technology that costs an initial amount (C) which yields
expected benefits (B) in perpetuity. Uncertainty in real options models is treated as a
stochastic process [1] in which the variable affected by uncertainty evolves over time
randomly. Usually the stochastic process is modelled by Brownian motion or by a Poisson
process, depending on the nature of the variable of interest. If we are modelling a
continuously varying variable such as the prevalence of a disease or price of a technology, the
Brownian motion is applied where the random variable, or Wiener process [2], varies
incrementally with known variance (σ) in each time period. Usually the Wiener process has a
“drift” or a systematic trend (α), e.g. trend in the price of a technology, independent of the
random element. If we are modelling a discrete variable, e.g. emergence of a new technology,
the Poisson process is applied in order to model uncertainty. Here the random variable
usually takes only two values and has a fixed probability in each time period of changing
from one to the other.

We assume the benefits of the technology (B) to evolve over time according to the
geometric Brownian motion, such as:

dB ¼ αBdt þ σBdz; (3.1.1)

where the increment of the Wiener process is z ¼ εt
ffiffiffiffi
dt

p
and εt Nð0; 1Þ;Eðεt; εsÞ ¼ 0for s≠ t.

Here, B is the state variable (the benefit of the technology), dB is itsmovement in small time dt,
α is the drift of B, and σ is the standard error of the random change per unit time period.

The value of the technology is expressed in terms of net benefits, i.e. the value of benefits
at time t ðBkÞ, minus the cost of that technology ðCkÞ. The net benefit is:

NBt ¼ Bt � Ct: (3.1.2)

Under uncertainty, the decision to adopt a particular technology is based on expected present
discounted value (PDV) of the net benefit, so that when comparing mutually exclusive
strategies, the optimal strategy is simply the one with the highest expected PDV.

Proposition 3.1.1. Uncertainty increases the expected Net Benefits (NB) associated with
the technology.

Proof: See Online Appendix A.
The expected NB is positively proportional to B and as a result, uncertainty affecting the

benefits increases expected NB, i.e. the higher the value of σ; the greater the value of waiting.
3.1.1 Option value of the investment. The decision as to whether or not to invest in a new

technology constitutes an optimal stopping problem for which the relevant Bellman
equation is:

FðB; tÞ ¼ Max

�
NB; lim

dt→0

1

dt
EB½dF�

�
(3.1.3)
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where FðB; tÞ is the option value of investment,NB accounts for the expected NB that results
from opting for investment, and the second term in curly brackets yields the time-discounted
expected increment in the value of the option that arises from keeping the option unexercised
for an additional period of time, dt. The range of values for which the second term in curly
brackets is greater than the first defines the continuation region, where it is optimal not to
invest (i.e. not to exercise the option). This is an optimal stopping problem, and so we must
find the threshold at which the value of investment is optimum.

Proposition 3.1.2. Investment in the new technology occurs only if the benefits exceed
the costs.

Proof: See Online Appendix A.

B ¼ β1
β1 � 1

C; (3.1.4)

Bas given by Equation (3.1.4) is the critical value, i.e. once B exceedsB, the technology should
be implemented. Since β1 > 1, Equation (3.1.4) implies that B > C, meaning that the decision-
maker will engage in investment only if the expected benefit after investing exceeds its costs.
Put differently, contrary to what the PDV principle would suggest, the set of parameters’
values for which the decision-maker is indifferent between engaging in, and abstaining from,
investment yields a benefit after investment strictly greater than its costs. The critical value,
B, and the size of the divergence between B and C, depends on the value of β, which is itself
determined by the discount rate ρ, the drift parameter α and the stochastic variance
parameter σ. In order to illustrate the importance of this result, consider the perfectly
reasonable situation in which the annual discount rate is 5% (ρ5 0.05), there is no drift5 0),
and the estimated value of B has an annual standard deviation of 5%. This implies that
σ5 0.05. Then it can be readily shown that β5 6.8, and the critical value B becomes 1.17 C.
That is, estimated benefits must be 17% higher than costs before immediate implementation
is optimal. The higher the amount of uncertainty σwill result in a higherB, given ρ5 0.05 and
α5 0, i.e. a greater value to waiting.

From the comparative statics shown in Online Appendix A, if the uncertainty (σ2) affecting
benefits is high, the decision-maker tends to prefer to hold the option. The higher the drift (α)
affecting the benefits, the less the investment option is worth. The reason is the more the
investment is worth, the lower the uncertainty that results from engaging in investment. With
regard to thediscount rate (μ, a higher timepreference increases the decision-maker’s opportunity
cost of not immediately investing. The reduced form of Equation (3.1.4) can bewritten as follows:

Investment
¼ f σ2 α μ

� þ þ
� �

.
The model presented gives clear indications regarding investment decisions under

uncertainty. It predicts that the higher the volatility of the benefits, the more valuable the
option to invest will be and so the fewer investments will be observed. Conversely, the higher
the trend of the benefits and the higher the discount factor, the less valuable the option to
invest will be and so the more investments one would expect to observe.

3.1.2 The timing and probability of investment. It would be interesting to ascertain, from
any point within the continuation region, the likelihood that investment will become optimal
in the future. It is important for the decision-maker to know the expected time that will
transpire until the decision of investing becomes optimal.

Using standard properties of the Brownian motion and the lognormal distribution (see
Dixit (1993)), closed-form solutions for the probability QðBÞ and expected time TðBÞ for the
process B to hit the barrier B from any point inside the continuation region, are given by:
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QðBÞ ¼

1 if α≤
1

2
σ2

e

2
664ðα−12σ2ÞlnðB=BÞσ2

3
775

if α >
1

2
σ2

;

8>>>>>>>><
>>>>>>>>:

(3.1.5)

TðBÞ ¼

8>>>><
>>>>:

∞ if α≥
1

2
σ2

lnðB=BÞ
α� 1

2
σ2

if α <
1

2
σ2

; (3.1.6)

where α− 1
2
σ2 and σ2 are respectively, the drift and variance parameters of the process ln ðBÞ.

Equations (3.1.5) and (3.1.6) indicate that the probability and expected time until the
investment becomes optimal depend on the variability and trend of the benefits. The greater
is the variability, σ2, the higher is the likelihood that Bdiverges away from the threshold that
triggers the investment, and so the lower the probability that investment will ever become
optimal. Similarly, the higher the drift, α, the more likely long excursions of B away from the
critical ratio become, and so, the more time the system is expected to take until hitting the
threshold beyond which using the second-line treatment is optimal.

Investment will become optimal with certainty provided that α < 1
2
σ2 and it is expected to

occur sooner the higher is B. For the limiting case in which α ¼ 1
2
σ2, even though the

probability is 1, the expected time for it to occur is infinite. The intuition behind this
paradoxical result is that if the drift of B is zero, long diversions away from the barrier might
occur. Thus, since the probabilities for successively longer hitting times do not fall
sufficiently quickly, the expectation, which is the average of the possible hitting times
weighted by their respective probabilities, diverges. This argument is presented in
(Dixit (1993)).

For the set of parameters for which B has a positive drift, i.e. when α > 1
2
σ2, there is still a

positive probability that investment will become optimal at some time in the future, as given
by Equation (3.1.5). This is because, in spite of B drifting away from the critical ratio, there is
the possibility that a combination of positive shocks might just bring the system toward the
threshold barrier. However, the expected time for this event is infinite, as seen in
Equation (3.1.6), given that there is a positive probability that B never reaches B that drives
the expectation into diverging.

The real options model presented above evaluates the optimal timing and probability
for making an investment in health technology, considering uncertainty and
irreversibility. The results of the model reveal that optimal investment should take
longer the higher the uncertainty regarding the future benefits of the new technology. By
waiting, one avoids the risk of investing heavily in a technology that might not yield the
expected benefits. If there is a positive trend in the technology’s benefits (i.e. the benefits
are increasing over time), the model suggests that it is better to invest sooner. This is
because capturing these benefits early can provide significant value, especially if they are
growing rapidly. A higher discount rate implies that future benefits are worth much less
in today’s terms. Thus, if the discount rate is high, it is better to invest sooner to realize the
benefits before they are heavily discounted. Delaying investment would mean that even if
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the technology’s benefits are realized in the future, their present value (due to the high
discount rate) would be much diminished.

3.2 Real options model applied to medical decision
We follow de Mello-Sampayo (2014) to illustrate the role that uncertainty and irreversibility
can play in determining the decision regarding whether to move a patient to the next
treatment in a sequence. First, a sector model is set up that allows health capital to be
augmented through public investment. Here, it is assumed there are two lines of treatment in
treating a chronic disease, denoted byL1 andL2, respectively. The first-line treatment consists
of using exclusively one technology denoted by T1. The second-line treatment consists of
using a higher dosage of T1 and then starting with a different technology, denoted by T2.
Then, we determine the net benefit of using Ti; i ¼ f1; 2g. Finally, we define each line of
treatment and show that when the patient is using L1 the decision as to whether or not to use
the second-line treatment, L2, constitutes an optimal stopping problem.

Assume a one-sector model that allows health capital to be augmented through public
investment. An individual’s health status is determined by public health measures such as
provision of clinical facilities, sanitation, inoculation, and disease control programs (see
Chakraborty (2004)). Population individuals are endowed with one unit of labor which is
inelastically supplied to firms and receive wage income at the rate wt. Public health
expenditure in period-t is financed through a constant tax τ∈ ð0; 1Þ on labor income so that
health investment per person equals τw. Such investment adds to private health capital
through a constant returns technology:

ht ¼ τwt: (3.2.1)

Decision-makers observe and decide the viability, utility, and characteristics of healthcare
goods and services only after using those products or services. Thus, the quality of a
healthcare good or service can be ascertained only upon its consumption. In such cases, a
drop in price is often interpreted by the prospective consumer as a drop in quality or utility of
the product or service. Indeed, it is possible for the demand curve for medical care to be
upward sloping [3], even though medical care is a non-inferior good, a relationship that has
some empirical support (Hoi and Robson, 1981; Hau, 2008; Dusansky and Cagatay, 2010).
Under this condition the demand for medical care is given by:

Ti ¼ Bhwt ; (3.2.2)

whereTi; i ¼ f1; 2g is the total quantity demanded of healthcare good or service at time t,B is
the benefit gain at time t, andw is the parameter for the elasticity of demand.We consider that
medical care operates where patient’s demand for treatments is inelastic, 0 < w < 1. From
Equation (3.2.2), the benefit function of a representative patient is given by:

B ¼ Ti

hwt
: (3.2.3)

The benefit increases with the number of healthcare goods or services demanded (Ti), but it is
inversely related with the per capita health investment. The higher patient’s health capital,
the fewer healthcare goods or services he needs for the same benefit.

The cost of the technology, C; i ¼ f1; 2g, is a nonlinear function of patient’s particular
characteristic, x, that evolves over time:

C ¼ rkx2t ; (3.2.4)
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where r is the interest rate, k is the capital invested in the technology, and x is the level of the
state variable that represents the random shock of the cost side at time t. For analytical
tractability, the state variable is assumed to evolve according to a geometric Brownian
motion:

dx ¼ αxdt þ σxdz; (3.2.5)

where dz ¼ εt
ffiffiffiffi
dt

p
is the increment of a Wiener process and εt Nð0; 1Þ;Eðεt; εsÞ ¼ 0for s≠ t.

Equation (3.2.5) implies that the current value of the random shock is known, but the future
values are log-normally distributed with a variance growing linearly with the time horizon.

Proposition 3.2.1. Treatment switch occurs only if the relative benefit associated with T2

exceeds the present value of the relative cost of T2.

Proof: See Online Appendix B.

ex ¼
2
664 β1
β1 � δ

3
μ� αδ� δðw�2Þ

2w
σ2

π
1
w � f

1�w
w

�
e−μðetÞ� 3

π
1
wθ

1�θ
θ ð1� θÞτ

wð1� wÞ1�w
w

3
ICQALY

μ

	
1� e−μ t

∼

3775

1
δ

; (3.2.6)

where β1 is given by Equation (B18) in Online Appendix B, f is the relative cost ofT2, π is the
relative benefit ofT2, μ is the discount rate, and δ ¼ 2ðw− 1Þ=w. Equation (3.2.6) is the trigger
value separating the region in x space where the patient’s option of using L2 remains
unexercised from the one where immediate exercise of that option is perceived as optimal.

It follows from Equation (3.2.6) and the assumptions on the parameters that the value of x

is greater than zero if π
1
w > f

1−w
w ½e−μðtÞ� implying that the decision-maker will switch to second-

line treatment only if the relative benefit associated with T2 exceeds the present value of the
relative cost of T2 weighted geometrically by the elasticity of demand, which is due to the
uncertainty of treatment’s cost.

Following the comparative statics shown in Online Appendix B, the model presented
gives clear indications regarding treatment switch (TS) decisions under cost uncertainty. It
predicts that the higher the volatility (σ2) of the patient’s particular characteristic, the sooner
T2 is used, the higher the tax rate (τ) and the higher the relative cost (f) of T2, the more
valuable the option of using the second-line treatment will be, and so the fewer switches of
treatment will be observed. Conversely, the higher the trend (α) of the patient’s particular
characteristics, the higher the discount factor (μ) and the higher the relative benefit (π) of T2,
the more switches of treatment one would expect to observe. Thus, for empirical testing
purposes, the reduced form of equation (3.2.6) can be written as follows:

TS ¼ f
σ2 α μ t τ π
� þ þ � � þ

f
�

� �

Where TS stands for treatment switch. These results are confirmed using simulations (de
Mello-Sampayo, 2014). The simulations are performed against a benchmark case. The data in
the present application consist of the cost-effectiveness of imatinib for gastrointestinal
stromal tumors (Meyer and Rees, 2012). The data are described in detail in Online
Appendix B.

Figures 1 and 2 illustrate, respectively, the impact of σ and xon the expected probability of
treatment switch and on the expected time of optimal treatment switch, as given by
Equations (B20) and (B21) in Online Appendix B.
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Figure 1 illustrates the probability that ex will be hit in the future is increasing in x and
decreasing in σ2. This is because, first, the lower is σ2, the less valuable is the option to switch
treatment, and so the more treatment switches will be observed, and second, the higher is x,
the more likely it is that the process will be “thrown off-course” by a sequence of positive
shocks toward the optimality threshold.

Figure 1.
Expected probability
for health uncertainty
and critical values

Figure 2.
Expected time for
health uncertainty and
critical values
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In Figure 2, our simulation benchmark values are expressed in year terms so that the
simulations for the expected time for optimal treatment switch can be read in years. Figure 2
shows that the lower is σ2 and the higher is x, the sooner the treatment switch is expected to
occur. However, the further away x is from the trigger value, the greater is the impact of an
increase of σ2 on the delay expected before treatment switch becomes optimal.

Viewed from the perspective of real options theory, themodel presented above sheds new light
on some debates about switching treatments. de Mello-Sampayo (2014)’s theoretical model
suggests that cost uncertainty discourages switching treatments. The stochastic model also
illustrates that as technologies become less cost competitive, the cost uncertainty becomes more
dominant. With limited substitutability, higher quality of technologies will increase the demand
for those technologies disregarding the cost uncertainty. Several key insights emerge.
Irreversibility raises the value of the option-preserving treatment. The existence of an option
valuemeans that a seeminglypoorer treatmentmaybe the better choicewhen considering lifetime
welfare. Optimal decision-making requires a careful comparison of the “costs” of a less effective
treatment for a condition today with the “benefits” of more effective treatments in the future.

3.3 Real options model applied to public health
In this section we develop an epidemiological-based real options model based on de Mello-
Sampayo (2024) to illustrate the role that uncertainty can play in determining the decision
regarding when to exit the lockdown without provoking a resurgence of the disease.

3.3.1 Epidemiological model. A simple epidemiological model for a COVID-19 pandemic for
which there is a considerable post-infection incubation period in which the exposed person is
not yet contagious, is the Susceptible-Exposed-Infected-Removed (SEIR)model (Hethcote, 2000;
Li and Muldowney, 1995; Avery et al., 2020a, b; Blackwood and Childs, 2018). Ignoring births
and deaths fromnon-COVID-19 causes, the population at the start of the epidemic is normalized
to 1, and at each time t, the population is compartmentalized based on their infection status:
susceptible (S) to infection; exposed (E), i.e. likely to be infected when exposed to the virus, but
not yet contagious; infected (I) and contagious; and removed (R), who have recovered or died
from the disease. The interaction between the susceptible and infected is permitted through the
productive contact SI. Definingβas the rate of susceptible to become infected, the increase in the
number of infected individuals is given by the product of the per capita rate at which a
susceptible contracts infection times the number of susceptible individuals, i.e. βIS. The
progression rate from exposed (latent) to infected is given by δ and the removal rate is γ.

Initially, under certain common assumptions (Jones, 2007), i.e. individuals who are infected
remain infectious until they recover or die, infected individuals who recover acquire complete
immunity, and ignoring uncertainty, the SEIR model translates into a system of four
differential equations to relate the rates at which the population moves from one stage to
another, and in which the time unit is one day:

dS

dt
¼ −βIS; (3.3.1)

dE

dt
¼ βIS � δEθ; (3.3.2)

dI

dt
¼ δEθ � γI ; (3.3.3)

dR

dt
¼ γI ; (3.3.4)
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where β gives the transmission coefficient of the infected cases to the susceptible; 1/δ is the
mean incubation period; γ is the rate at which infected individuals cease to be infectious or die;
and θ is the degree of the social distancing measure taken by the government.

At the optimum, the government uses social distancing or mitigation measures to stop the
infected population from increasing, i.e. dI

dt
¼ 0, Equation (3.3.3) is now given by:

It ¼ δEθ
t

γ
; (3.3.5)

where the parameter that captures the flattening effect of the curve due to the social
distancing measures is assumed to be θ, 0 < θ≤ 1. If θ is equal to 1, there are no mitigation
measures, whereas if it is close to zero, the population has to stay at home.

3.3.2 Uncertainty in the spread of the disease. There is uncertainty in the future levels of
infection due to environmental and demographic noise associated with the transmission
process for infection. The decision-maker is facedwith the following choice: shouldmitigation
measures be stopped immediately, or should the decision-maker wait to learn more about the
progression of the epidemic? Waiting allows the decision-maker to determine whether the
level of infection worsens or improves over time.

To include uncertainty into the decision-making, we assume that the level of exposed, E,
can be described by a stochastic process. Traditionally, the geometric Brownian motion,
which assumes that the mean level of infection grows exponentially, has been used to
characterize stochastic processes (Dangerfield et al., 2018). While such an assumption is a
good approximation in the early stages of the epidemic, it does not capture the slowing in the
rate of infection as the level of infection becomes large due to the limited number of
susceptible individuals. Thus, we assume the exposed population follows a Driftless
stochastic process, i.e. our best guess of the exposed population for tomorrow iswhatwe have
at the present.

Suppose that the government applies the lockdown (L) as the social distancing measure
(θ), i.e. a mandate for citizens to stay at home (h), and for citizens who because of the nature of
their work (e.g. nurses, doctors, refuse collectors) cannot stay at home, the government
mandates the use of masks (m) in closed spaces, out-of-doors crowded spaces, and in public
transportation. Since the factors that affect the exposed population behave differently
between stay-at-home to not-stay-at-home citizens, we must characterize exposed citizens
who stay at home and those using masks differently. As our best guess of the exposed
population at time tþ1 (Etþ1) is what we have at time t (Et), we assume that E follows a
Driftless stochastic process (also called Martingale [4]) by which:

dEh ¼ σhEhdzh; (3.3.6)

dEm ¼ σmEmdzm; (3.3.7)

where the subscripts h andm denote stay-at-home and use-of-masks measures, respectively.
The increment of the Wiener process is εt

ffiffiffiffi
dt

p
and εt Nð0; 1Þ;Eðεt; εsÞ ¼ 0for s≠ t. Exposed

population’s variability, σ, can be interpreted as the uncertainty affecting the Exposed
population, with σh; σm ≥ 0, Eðdzkh; dzmÞ ¼ ρdt and ρ is the correlation coefficient between
the random shocks affecting Exposed citizens subject to stay-at-home measure and use-of-
masks measure.

The exposed population under lockdown becomes an average of both exposed at home
and using masks weighted by the share of population assigned to each group:

EL ¼ E
f
h E

ψ
m; (3.3.8)
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where EL denotes the exposed population under lockdown, f and ψ are the shares of
population of stay-at-home and not-stay-at-home, respectively, with fþ ψ ¼ 1.

Now, assume that the government is searching for a way to exit the lockdown without
provoking a resurgence of the disease. For that we analyze the timing and probability of
exiting the lockdown under uncertainty.

Proposition 3.3.1. The government will end the lockdown when the expected Exposed
population staying at home is higher than that attained when just
using masks.

Proof: See Online Appendix C.
The decision-maker will choose to relax the measures only if the Exposed population

associated with staying at home exceeds that of a situation of only using masks, i.e.

eEheEm

¼

8><
>:
μ� θ

2

�
fðθf� 1Þσ2

h þ ψðθψ � 1Þσ2
m þ 2θρfψσhσm

�
μ� θðθ�1Þ

2
σ2
h

3 i

9>=
>;

1
θψ

; (3.3.9)

where μ is the discount rate. For values of the ratio Eh

Em
lower than

eEheEm

it is optimal not to relax

the measures. Conversely, if the value of the ratio is greater than the critical value, the
government should end the lockdown. It follows that Equation (3.3.9) defines the line that
divides the ðEkh;EmÞ space into two regions: one in which it is optimal to exercise the change
of measures option and the other in which it is not. Following the comparative statics shown
in Online Appendix C, the reduced form of Equation (3.3.9) can be written as follows:

Exit Lockdown f
σ2 α μ f θ
� þ þ � þ

� �
.

Thus, the model presented gives clear indications regarding the exit of lockdown decision
under uncertainty. It predicts that the higher the uncertainty (σ2) affecting the exposed
population, the later the exit of lockdown is made, the higher the correlation (ρ) between the
exposed population staying at home and using masks, the less valuable the option of exiting
lockdown will be, and so the more exits of lockdown will be observed. With regard to the
discount rate (μ, a higher time preference increases the decision-maker’s opportunity cost of
not immediately stopping the stay-at-home measure. Conversely, the higher the share of
population staying at home (the lower the share of population just using masks) and the
higher the effect of the mitigation measure (low θ), the fewer exits of lockdown one would
expect to observe. This is because change of policy always includes some degree of
irreversibility such that an increase in the share of population just using masks (not staying
at home) raises the society’s overall risk of exposure.

These results are confirmed using simulations. The simulations are performed using
Portuguese data on COVID-19 between 2020 and 2021 from various sources. Table C1 in
Online Appendix C presents the range and the base value of each parameter.

Figures 3 and 4 illustrate the impact of σm and Eh

Em
on the expected probability and on the

expected time of changing themitigationmeasures, respectively, as given by Equations (C15)
and (C16) in Online Appendix C.

Figure 3 illustrates the impact of σ2h and
Eh

Em
on the probability of optimal policy change. The

probability that
eEheEm

will be hit in the future is decreasing in both σ2h and
Eh

Em
. This is because,

first, the lower is σ2h the less negative is the drift of the process
Eh

Em
, and second, the higher is Eh

Em
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the more likely is that process to be “thrown off-course” by a sequence of positive shocks
toward the optimality threshold.

Figure 4 simulates the effect of changes in σ2h and
Eh

Em
on the expected time for optimal

policy change. It shows that the lower is σ2
h and the lower is Eh

Em
, the sooner the policy

change is expected to occur. However, the more the change of policy option is worth, the
greater is the impact of an increase of σ2h on the delay expected before the policy change
becomes optimal.

Figure 3.
Expected probability
for exposed
uncertainty and critical
values

Figure 4.
Expected time for
exposed uncertainty
and critical values
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In summary, the lower the uncertainty affecting the exposed population subject to
lockdown, the more likely policy change is to become optimal and the sooner it is expected to
occur. Moreover, exiting lockdown becomes likelier and is expected sooner, the closer the two
processes are, i.e.Eh ≈Em, and so the lower the uncertainty that results from the switch from a
situation in which measures of staying at home and using masks to one in which the
population can live freely and just use masks in closed spaces and public transportation.

This model extends the literature by applying the real options theory, a framework for
decision-making under uncertainty, to an epidemiological model of disease spread. By
incorporating uncertainty into the analysis, the study aims to determine the optimal
timing for exiting lockdown. The real options approach allows for the evaluation of the
economic value of deferring the decision to exit lockdown until more information becomes
available.

4. Discussion
This paper presented a mapping of the studies published to date applying the real options
theory to various areas of healthcare. Real options theory relates to decision-making under
uncertainty and specifically to the value of deferring uncertain unrecoverable decisions to a
later time. In the evaluation of healthcare technologies and programs, this dimension of value
originates from the possibility of delaying a decision if there is an expectation that better
information will become available in the future. The seminal paper of Palmer and Smith
(2000) argues that, in the presence of uncertain, irreversible decisions, the possibility of
deferring the decision until some later time, when better information regarding costs and
benefits may become available, has an economic value that is not accounted for in traditional
economic evaluations based on net expected values.

The real options approach has been widely employed in the healthcare sector with a
focus on optimizing outcomes. It finds application in diverse areas, investment analysis
(Smyth and Swinand, 2002;Williams et al., 2007; Levaggi et al., 2009; Levaggi andMichele,
2004; Pertile, 2008, 2009; Pertile et al., 2009), technology assessment (Eckermann and
Willan, 2008; van Loon et al., 2012; Thijssen and Bregantini, 2017; Oliveira and Zambujal-
Oliveira, 2018; Tolga, 2020; Chalkidou et al., 2008), decision-making in public health
(Favato et al., 2012; Pertile et al., 2014; Park, 2016; Attema et al., 2010; Megiddo et al., 2019),
and medical decision-making (Driffield and Smith, 2007; Grutters et al., 2011; Meyer and
Rees, 2012; Forster and Pertile, 2013b; de Mello-Sampayo, 2014, 2015; Shechter et al., 2008;
Zivin and Neideill, 2009). These earlier studies applying real options theory to decision-
making in the healthcare sector often use the option to defer (Fornaro et al., 2021). This
option is commonly employed in investment analyses to decide whether to adopt new
technologies for treatments, as well as in cases involving the postponement of vaccination
or in cases to decide whether, when, and if a treatment should occur, i.e. watchful waiting.
Investment analyses in the healthcare sector follow a similar logic to that applied in other
sectors, wherein the investor seeks to maximize the expected present value of the payoff.
Similarly, in healthcare scenarios such as watchful waiting, the same logic applies due to
the presence of irreversibility and risk. For instance, the decision to initiate treatment is
irreversible, as the resources allocated cannot be utilized for any other purpose. However,
the option to defer treatment remains reversible. For example, Grutters et al. (2011)
examine the adoption of proton therapy compared to body stereotactic radiotherapy in
the treatment of inoperable stage I non-small cell lung cancer, highlighting the relevance
of information in selecting the best treatment at a specific time. The value of information
is crucial, particularly due to the technical uncertainty involved in certain treatments,
which may lead decision-makers to choose treatment options that are not necessarily the
most effective. More information mitigates risks and enhances expected returns.
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In this study, we began by introducing a straightforward stylized model that applies
option pricing principles to assess investments in new technologies, within a cost-benefit
framework (Palmer and Smith, 2000). The aimwas to highlight the main ideas underlying the
real optionsmodel, i.e. uncertainty, irreversibility, and the ability to invest subsequently. This
type of model has been applied to analyzing investments in diverse areas such as machines,
technologies, pharmaceuticals stocks, health insurance plans, public health initiatives, new
treatments, infrastructure, and health systems. Those studies represent traditional
applications of real options, wherein investors analyze whether investing their capital in a
particular project yields returns higher than the company’s cost of capital. The options to
expand and abandon are particularly relevant when evaluating technology investments. For
instance, (Levaggi et al., 2009) illustrate how real options can be used to expand investments
strategically, thereby optimizing returns while minimizing the associated risks. In another
vein, (Pertile et al., 2014) discuss how the real options approach can be used to evaluate the
option to abandon a project when conditions are unfavorable or when better
opportunities arise.

To illustrate a real optionsmodel applied tomedical decision-making, we used a stochastic
dynamic model of sequential therapeutic regimes that underscores the importance of
characterizing uncertainty (de Mello-Sampayo, 2014). Cost fluctuations, among other factors,
render the outcome of any treatment switch uncertain, so that decision-makers might have to
wait for more information before optimally switching treatments, especially when the
incremental cost per Quality-Adjusted Life Years (QALYs) gained cannot be fully recovered
later on. Since in most cases decision-makers are not compelled to switch treatments at any
specific moment, they hold an option to switch treatments that should only be exercised when
it is optimal to do so. The intuition for these results is deepenedwhenwe recognize that one of
the principal features driving our results is that patients have particular characteristics that
make technology’s cost uncertain. Thus, under irreversibility, low-risk patients must begin
the option-preserving treatment as soon as possible, which is precisely when the second-line
treatment is least valuable. As the costs of reversing current treatment impacts fall, it
becomes more feasible to provide the option-preserving treatment to these low-risk
individuals later on. The study builds upon previous studies such as Driffield and Smith
(2007) and Meyer and Rees (2012), acknowledging the unique nature of medical decision-
making. These studies address the issue of time-related decisions made by risk-averse
individuals and examine how an increase in uncertainty regarding a patient’s health state
often makes waiting more attractive. Unlike traditional investment portfolios, medical
treatments cannot be diversified simultaneously, i.e. there is an inherent limitation in medical
treatment strategies that prevent applying multiple different treatments at the same time for
a single patient or condition, in contrast to financial investment strategies. In this context, the
option to switch treatments becomes critical as discussed by de Mello-Sampayo (2015). Since
treatments cannot be diversified simultaneously, decision-makers (like doctors or patients)
hold the option to switch from one treatment to another at the most opportune time, based on
evolving information about the patient’s condition and the effectiveness of the current
treatment.

To exemplify how a real options model can be applied to public health decision-making,
we derived an options model from a Susceptible-Exposed-Infectious-Recovered (SEIR)
framework to analyze the probability and optimal timing of lockdown exit (de Mello-
Sampayo, 2024). This analysis was conducted in the context of an ongoing pandemic inwhich
the decision to exit lockdown is uncertain because it depends on the progression of the virus
and the effectiveness of control measures. The theoretical model argues that in the presence
of uncertainty the possibility of deferring the decision until some later time when better
information may become available has an economic value. This concept is especially relevant
to the context of the COVID-19 pandemic, in which crucial decisions regarding lockdown
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measures affect public health, the economy, and societal well-being. In the fight against the
pandemic the value of deferring the decision to exit lockdown is underscored by the
availability of information related to the disease’s transmission dynamics. Key factors
contributing to a reduction in uncertainty include a better understanding of how the virus
spreads, the dissemination of clear and evidence-based public health guidance, and the
development and distribution of vaccines. Information about how the disease spreads, clear
public health guidance, and vaccines, decreases the uncertainty regarding exposure and
transmission of COVID-19. This study aligns with the findings of related research
(Chalkiadakis et al., 2021; Varghese et al., 2021; Abrams and Greenhawt, 2020), which
emphasize the role of information and knowledge in reducing uncertainty related to the
exposure and transmission of COVID-19. By leveraging a real options model within a SEIR
framework, our research contributes to the scientific understanding of how decision-makers
can navigate the complex landscape of public health decisions during a pandemic
characterized by high levels of uncertainty.

Growth in the availability of treatments for chronic diseases that require permanent
intervention, along with general increases in life expectancy, suggests that the impact of
omitting option values from evaluations will only become greater. While it is difficult to
systematically assess the magnitude of the bias induced from ignoring option values, the
only empirical study in the health domain reported an increase in consumer willingness-
to-pay of approximately 53% when option values were considered (Smith, 2007).
Extending one’s life through medical technology provides patients with the option to
potentially benefit from future advances in healthcare (Lakdawalla et al., 2018). This real
options value emerges when a health technology not only prolongs life but also opens up
opportunities for patients to access forthcoming innovations in medicine (Cook et al.,
2011). The importance of considering real options when discussing value in healthcare
has recently been highlighted (Lakdawalla et al., 2018; Kr€uger and Svensson, 2009;
Garrison et al., 2017; Smith and Yip, 2016). While the economic literature has previously
identified real options value as an additional component of value for specific medical
products (Smith, 2007; Eckermann and Willan, 2008), it is typically not accounted for in
the conventional projections of QALYs gained. These QALYs typically consider expected
survival and health-related utility over a patient’s remaining lifetime. Investing in life-
extending medical technology can be seen as buying an option to benefit from future
advances in healthcare. Other things being equal, a technology that extends life in an area
with promising innovations holds greater value (Li et al., 2022).

Implementing real options theory in healthcare decision-making faces several
limitations. Firstly, the intrinsic uncertainty and complexity of healthcare outcomes
challenge the accurate assessment of option values. Unlike financial markets, where
assets have readily quantifiable values, the outcomes in healthcare, such as patient health
or disease progression, are not easily quantified. Secondly, the dynamic and often
unpredictable nature of healthcare policy and regulation can invalidate the assumptions
underpinning real options analysis, rendering the conclusions less reliable. Lastly, there’s
a moral and ethical dimension in healthcare decision-making that is not typically present
in financial decision-making. Balancing financial considerations with ethical obligations
to patients adds a layer of complexity that real options theory may not adequately
address. These limitations suggest that while real options theory can provide valuable
insights, it must be applied with caution and in conjunction with other decision-making
frameworks in the healthcare sector.

While real options theory offers a valuable approach for decisions under uncertainty
and where the timing of decisions is crucial, other models like Cost-Effectiveness Analysis
(CEA), decision trees, Markov models, and Bayesian decision models have their
respective strengths in different scenarios. The choice of model depends on the specific
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decision context, the nature of the healthcare problem, the availability of data, and the
need for dynamic versus static analysis. For instances, CEA provides a static comparison
based on current data but may not fully capture the value of deferred decisions or
evolving scenarios and decision tree analysis presents an intuitive way to visualize
decision paths, integrating probabilities and potential outcomes. This method is most
effective when dealing with a limited set of discrete outcomes (Vassolo et al., 2021).
Bayesian Decision Models dynamically update probabilities with new information,
suitable for evolving healthcare scenarios, yet they require extensive initial data and are
computationally intensive (Luce et al., 2001).

5. Conclusion
Our study shows the versatility of the real options model, demonstrating its applicability in
diverse fields in healthcare, where it aids decision-makers in assessing investment
opportunities, medical decisions, and public health decisions, among others. By
considering strategic decision-making and the value of flexibility, real options theory
enhances the evaluation of healthcare investments, policy analysis, patient outcomes, and
resource allocation. These applications contribute to amore comprehensive understanding of
decision-making under uncertainty in the field of health economics, leading to improved
decision-making and outcomes in the ever-evolving healthcare industry.

Notes

1. Stochastic process, also known as a randomprocess, accounts for certain levels of unpredictability or
randomness.

2. Wiener process is a stochastic process. The initial value of all Wiener processes is 0; past values of
these processes do not influence any future changes in their value (this is what makes the processes
stochastic).

3. In this model set-up, the mechanism that leads health to be a Giffen good also involves a wealth
consideration. When the price of treatment falls, the patient is effectively wealthier, he can afford
more treatments generally, and so he needs fewer treatments of this kind. Housing is another
example of a non-inferior good whose own-demand can be upward sloping (see Dusansky and Koç
(Dusansky and Koç (2007)).

4. Martingale process: the fluctuations in exposed population are a sequence of random variables for
which, at a particular time, the conditional expectation of the next value in the sequence is equal to
the present value, regardless of all prior values.
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