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Abstract
Purpose – The occurrence and unpredictability of speculative bubbles on financial markets, and their
accompanying crashes, have confounded economists and economic historians worldwide. The purpose of this
paper is to diagnose and detect the bursting of shipping bubbles ex ante, and to qualify the patterns of
shipping price dynamics and the bubble mechanics, so that appropriate counter measures can be taken in
advance to reduce side effects arising from bubbles.
Design/methodology/approach – Log periodic power law (LPPL) model, developed in the past
decade, is used to detect large market falls or “crashes” through modeling of the shipping price
dynamics on a selection of three historical shipping bubbles over the period of 1985 to 2016. The method
is based on a nonlinear least squares estimation that yields predictions of the most probable time of the
regime switching.
Findings – It could be concluded that predictions by the LPPL model are quite dependent on the time
at which they are conducted. Interestingly, the LPPL model could have predicted the substantial fall in
the Baltic Dry Index during the recent global downturn, but not all crashes in the past. It is also found
that the key ingredient that sets off an unsustainable growth process for shipping prices is the positive
feedback. When the positive feedback starts, the burst of bubbles in shipping would be influenced by
both endogenous and exogenous factors, which are crucial for the advanced warning of the market
conversion.
Originality/value – The LPPL model has been first applied into the dry bulk shipping market to test a
couple of shipping bubbles. The authors not only assess the predictability and robustness of the LPPL model
but also expand the understanding of the model and explain patterns of shipping price dynamics and bubble
mechanics.
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1. Introduction
Financial bubbles have gained substantial attention of academic researchers and industry
over centuries. What characterizes a bubble is a rise in valuations of some types of assets,
and the collapse of these valuations always cripples the economy and leads to subsequent
pain (Filimonov and Sornette, 2013). Thus, many economists make attempts to diagnose the
formation of bubbles and to detect the bursting of bubbles ex ante, so that appropriate
counter measures can be taken in advance to reduce side effects arising from bubbles. The
problem is however extremely difficult.
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Superficially, financial bubbles are easily defined as transient upward acceleration of the
observed price above a fundamental value, see Suzuki (1993), Shiller (2000), Kindleberger
(2000), Sornette (2003, 2009), Shi (2005), Galbraith (1997), among others. The paradox is that
the determination of a bubble requires a precise determination of what is the fundamental
value. But the fundamental value is in general poorly constrained, so that it is not possible to
distinguish bubbles from time-varying fundamentals. This drawback is however
circumvented in studies of Johansen and Sornette (1999), Johansen et al. (1999), Johansen
et al. (2000) and Sornette (2003), who propose the Log Periodic Power Law (LPPL) model,
where a quantification is presented of the asset price dynamics leading up to a crash. The
authors propose that a bubble is defined as a faster-than-exponential increase explained by
the concept of positive feedback, see Sornette et al. (2013). When the positive feedback
becomes dominant, the result is a self-reinforcing loop driving the market out of equilibrium.
This loop continues until the bubble reaches its critical point. Based on this description, it
seems possible to predict the bursting of speculative bubbles.

As regards the prediction of bubbles, Shiller (2000) is one among the few who have
successfully predicted the bursting of bubbles ex ante, e.g. the crash of the dot-com bubble in
2000 and that of the housing bubble in 2007. However, Shiller and many others face the
same fundamental drawback: using their methods they are unable to consistently and
accurately predict the end date of a bubble (Gustavsson et al., 2016). The LPPL model
provides a framework to detect bubbles and forecast their most probable end, reported by
Sornette (2003). This approach has been applied to make a series of real-life tests and has
been proven useful in predicting bubbles both ex post and ex ante in various markets, see
Sornette and Zhou (2006), Sornette et al. (2009) and Zhou and Sornette (2003, 2005, 2008,
2009).

However, most previous studies present results that reinforce the theory, and only a few
have highlighted both the potential and the limitations of the LPPL-model. The LPPL model
is empirically appealing, as it provides a forecast of the date by which a financial crash
might occur (Laloux et al., 1999). This is an important attribute relative to other methods of
financial risk assessment. Furthermore, the LPPLmodel contains a component that captures
the market’s excessive volatility prior to a crash. This feature is consistent with several
theoretical models of financial crashes as well as with empirical results, see for instance
Levy(2008) and Choudhry(1996). Gustavsson et al. (2016), who apply the model to time series
of eight bubbles, chosen based on their historical context, argue as well that the predictions
of the LPPL-model in most cases are quite accurate. The robustness, however, can be
questioned, as the precision seems to be dependent on when they are conducted.

Furthermore, several critical considerations merit our attention associated with fitting an
LPPL model to financial data. First, Johansen et al. (2000) show that the parameter estimates
of the LPPL model are confined within certain ranges and that it is these ranges that are the
indicators of market crashes. This approach considerably restricts the number of classes of
permissible LPPL fits to just those fits with parameters that fall within the specified ranges
rather than to LPPLs with any values for their parameters. Second, the mechanism
underlying the LPPL model is such that prices must be expected to increase throughout the
bubble, which is largely in line with the rational bubbles literature, instead of what has been
found in early empirical fits of the LPPLmodel.

When it comes to the international dry bulk shipping market, it is widely accepted that
this market, as the major component of the world shipping industry, has been recognized as
highly risky and volatile, as it is subject to a number of uncertainties, ranging from
geopolitical shocks and the ever-changing world economy to fleet changes and the sensitive
market sentiment (Chen et al., 2014). During highly risky and volatile shipping market,
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topics like the investment timing and market entry/exit decisions have attracted much
attention of researchers, as the asset prices may vary enormously, see for instance, Alizadeh
and Nomikos (2007), Bulut et al. (2013), Goulielmos et al. (2012) and Merikas et al. (2008). In
particular, the exit before the burst of a bubble would be of vital importance for investors, as
the burst of a shipping bubble will erode net worth and cause businesses to fail, touching off
a devastating effect for both individual investors and the whole industry. Against this
backdrop, the study on shipping bubbles counts for much.

Although the research on shipping bubbles remains one of hot topics for both
researchers and practitioners, only a handful of studies qualify shipping bubbles when
discussing investment timing or decisions [Barberis et al. (1998), Duru (2013) and
Greenwood and Hanson (2014) among others], largely as a result of the difficulties in
detecting, defining and quantifying bubbles in shippingmarket.

Barberis et al. (1998) explain shipping bubbles as the over-extrapolation of current profit
levels. Merikas et al. (2008) introduce the relative price ratio between second-hand/
newbuilding values as an investment indicator and the indictor of detecting shipping
bubbles as well. Greenwood and Hanson (2014) analyze the value of Panamax second-hand
vessels from 1976 to 2011 with their own intrinsic value measure, and bubbles arise when
firms over invest during good times.

All of these studies center on qualifying and explaining bubbles, instead of quantifying
them. It is the first time, to our knowledge, the LPPL model has been first applied into the
dry bulk shipping market to test a couple of shipping bubbles. We not only assess
the predictability and robustness of the LPPL model but also expand the understanding of
the model and explain patterns of shipping price dynamics and bubble mechanics. The
examination of shipping asset bubbles’ mechanics and the prediction of possible market
regime switching, as a warning sign relating to market entry/exit, therefore, are of vital
importance to both researchers and practitioners.

The remaining sections of this paper are as follows. Section 2 presents the model, the
fitting procedure and the data. The empirical analysis of three bubbles in the dry bulk
shippingmarket will be demonstrated in Section 3, and the final one summarizes the results.

2. Methodology
The LPPL model was developed to describe the dynamics of financial markets during
bubbles and crashes. It is assumed that there are rational traders and noise traders who
exhibit herding behavior that can destabilize the asset price (Filimonov and Sornette, 2013).
In a bubble, the price undergoes certain oscillations that can reflect human grouping
patterns (Sornette and Cauwels, 2015), and these social hierarchies manifest themselves in
log periodic oscillations of the price with decreasing amplitudes, argued by Zhou et al.
(2005).

These oscillations are superposed onto the super-exponential growth in a bubble. Super-
exponential growth is however not sustainable and is bound to undergo a regime change
before the singularity in finite time as an infinitely large price is not sensible in reality
(Kaizoji and Sornette, 2010). The regime of unsustainable growth due to social imitation is
described by the LPPLmodel.

2.1 The log periodic power law model
This model is first presented by Sornette et al. (1996) and the equation is defined as:
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p tð Þ ¼ Aþ B tc � tð Þa þ C tc � tð Þacos v log tc � tð Þ þ fð Þ (1)

where p(t) is the logarithmic price at time t, A is the value that p(t) would have if the
bubble was to last until the critical time tc; B is the decrease in p(t) over the time unit
before the crash if C is close to zero, and controls the growth rate of the magnitude. C is
the magnitude of the fluctuations around the exponential growth as a proportion; tc is
the critical time; t < tc is any time into the bubble preceding tc; a is the exponent of the
power law growth; v is the frequency of the fluctuations during the bubble; f is a shift
parameter.

Filimonov and Sornette (2013) present a modification of the equation where they expand
the cosine term of the original equation and rewrite the equation (1) as follows:

p tð Þ ¼ Aþ B tc � tð Þa þ C1 tc � tð Þacos v log tc � tð Þð Þ þ C2 tc � tð Þasin v log tc � tð Þð Þ
(2)

where

C1 ¼ C cosw (3)

C2 ¼ C sinw (4)

The modification leads to two important implications, as explained by Filimonov and
Sornette (2013).

First, the dimensionality of the nonlinear optimization problem is reduced from a four-
dimensional space to a three-dimentional space. This significantly decreases the complexity
of the problem.

Second, the cost function to be minimized now contains a single minimum instead of
multiple minima, as long as the model is appropriate for the empirical data. The stability of
the model is thereby significantly improved. Due to this transformation the need for
complex search algorithms such as a taboo search is eliminated, and more simple
algorithms, e.g. a Gauss–Newton algorithm, can be used without any reduction in the
robustness of the estimation.

Taking into account all of these reasons, the methods in this article are based on
equation (2) to investigate shipping bubbles.

2.2 Fitting procedure
Based on equation (2), there are four linear parameters (A, B, C1, C2) and three non-linear
parameters (tc, a, v ). To reduce the fitting parameters, equation (2) should be rewritten
simply as:

f tð Þ ¼ tc � tð Þa
g tð Þ ¼ tc � tð Þacos v ln tc � tð Þð Þ
h tð Þ ¼ tc � tð Þasin v ln tc � tð Þð Þ
p tð Þ ¼ Aþ Bf tð Þ þ C1g tð Þ þ C2h tð Þ

8>><
>>:

(5)

By using an estimate of the non-linear parameters, these four linear parameters can be
solved via:
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where yi = p(ti), fi= (tc – ti)
a, gi = (tc – ti)

acos (v ln (tc – ti)) and hi= (tc – ti)
asin (v ln (tc – ti)).

Then there are only three non-linear parameters needed to fit. As the chosen values of
these parameters should be the ones that minimize the root mean squared error between the
data and the predicted value of the model, the optimal function is:

F ¼
X

Aþ Bf tið Þ þ C1g tið Þ þ C2h tið Þ � p tið Þ� �2
(7)

The generic algorithm is then adopted to fitting equation (7). The generic algorithm is a
search heuristic that mimics the biological evolution process of natural selection and is
routinely used to solve both constrained and unconstrained optimization problems. This
algorithm is allowed to optimize parameters after encoding them into chromosomes without
the limit constrains, and the search space starts at a set of problem solutions rather than a
single individual with a characteristic of the parallel search. The solution with the best
fitness, i.e. minimal optimal function, is taken as the solution.

The optimization procedure operates on the parameter space of the variables a and v ,
using a rolling window technique, as explained by Filimonov and Sornette (2013). In this
article, we use a moving window [t1, t2] with a length of 10 months, scanning the whole
range of dates. The start and end date of the analyzed period is changed in between
iterations, consistent with the recommendations of Sornette et al. (2013) to make the
predictions more statistically robust.

The ranges of values given for both a and v are based on the observed parameters of
crashes for many stock markets (Johansen, 2003). a must lie between 0 to 1, else we are
dealing with some other types of process and not a power law characterized by the faster-
than-exponential growth; v empirically takes on values between 3 and 15, see Johansen and
Sornette (2010). Researchers tend to rely on established ranges for a and v , rather than any
goodness-of-fit test, to identify the bubbles that precede crashes.

We constrain B to only take on negative values as well. In addition, we introduce
constraints on the augmented Dickey–Fuller and Phillips–Perron values to filter out
stationary fits which have no explanatory power in predicting the critical points, and only
the non-stationary fits are accepted at a 1 per cent significance level (Gustavsson et al., 2016).

3. Empirical analysis
Shipping markets can be treated as a complex network of interacting traders. Under this
theory, the aggregate behavior of all traders and investors can be modeled as a complex
physical network. This network of traders transitions between the state of idiosyncratic
behavior and herd behavior. During the state of irrational herd behavior, the shipping prices
may demonstrate an exponential growth. When the market displays exponential growth,
they may not always display signs of periodic oscillations of increasing frequency. These
increasing periodic patterns only occur shortly before the rupture, or market crash.

In the dry bulk shipping market, there are three boom-burst cycles since 1980s, as
proposed by Chen et al. (2014). Thus, the LPPL model is used to investigate the exponential
growth of prices and the possible periodic oscillations of increasing frequency. In addition,
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we examine as well the predictive ability of the LPPL model to forecast the burst of bubbles
through modeling of price dynamics on a selection of historical bubbles. This paper fits
parameters for daily logarithmic Baltic Dry Index (BDI) by making use of the LPPL model,
based on a rolling window with a length of 10 months, as explained in the Section 2,
Methodology.

The daily BDI is the weighted average of voyage rates and time charter rates on major
trading routes by four major ship types of dry bulk carriers carrying a range of commodities
including coal, iron ore and grain. It is the aggregate index and provides an assessment of
the price of moving the major raw materials by sea. It can be served as an indicator of dry
bulk shippingmarket and the world economy as well.

Since this index was first published on January 4, 1985, we check the time series of BDI
and make an attempt to identify bubbles in the dry bulk shipping market over the period of
January 1985 to November 2016. The trend of BDI can be observed in Figure 1. All the data
were retrieved from Baltic Exchange. Descriptive statistics, shown in Table I, reveal that the
mean values of logarithmic changes of the BDI are significantly different from zero. Both
skewness and excess kurtosis are significant such that the Jarque–Bera test rejects the null
of normality at a 1 per cent level.

We identify a peak as one initiating a crash based on the criterion proposed by Johansen
et al. (2000). First, there exists a peak for which there is no value higher than the peak during
the previous one trading year (262 weekdays); second, the price trend continues to increase
in general for at least six months; third, the drop in price, a drop in price of 25 per cent, i.e.
down to 0.75 of the peak price, needs to occur over a period of 60 weekdays.

Figure 1.
Trends of BDI over

the period of January
4 1985 to November

20 2016
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Table I.
Descriptive statistics
of logarithmic first
differences of BDI
over the period of
January 1985 to
November 2016

N Mean Std. Dev. Skewness Kurtosis J-B

BDI returns 8000 0.000027 0.015 0.113464 12.3773 29343.07

Notes: � All series are measured in logarithmic first differences; � N is the number of observations; �
Figures in square brackets [.] indicate exact significance levels; � Skew and Kurt are the estimated
centralized third and fourth moments of the data; their asymptotic distributions under the null are
Tâ3

0
â3=6�x 2 1ð Þ and T â4 � 3ð Þ0 â4 � 3ð Þ=24�x 2 1ð Þ, respectively
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Based on this selection criterion, and due to the lack of previous thorough empirical
examination, we select three bubbles to base our analysis upon: the bubble in 1995, when the
shipping market was negatively affected by severe overcapacity; the bubble of 2004, when
the market was heavily hit by the influx of massive fleet capacity growth and heavy
deliveries, as well as the crash of 2007-2008, one of the most spectacular and speculative
bubbles since 1970s.

Then the LPPL model will be used and the fitting procedure is translated into a code
working in MATLAB to accurately predict the end of speculative bubbles through
modeling of asset price dynamics on these three bubbles (matlab coding for the fitting
procedure can be acquired from authors). Highlighted in dark gray in each figure of the
subsections below is the 50 per cent confidence interval of the critical points tc, the results
of the fitting procedure described above. The confidence intervals are plotted with the
motivation that the date of the regime shift is a highly stochastic process and that the
prediction of one specific crash date in fact might be misleading, and the 50 per cent
confidence interval indicates the most probable period when bubbles are going to burst
(Gustavsson et al., 2016). The median date of the critical points is marked in the corner of
each figure and gives guidance to where it is more likely for the regime shift to occur. In
each figure, the last observed date is illustrated as well, which indicates where the ex ante
prediction is assumed to be conducted.

In each graph, only a dozen of the resulting LPPL fits are plotted, regardless of how
many resulting fits are produced. We do this for the sake of visibility, while the total number
of fitted curves is given in the upper corner of each figure. Due to there, in most cases, being
a lot of fitted curves we, instead of presenting the parameter values for each fit, present the
parameter means based on all fits. These values are demonstrated for each estimation
conducted one month prior to the peak.

3.1 Back test of the shipping bubble in 1995
The world economy moved into recession in 1992, but the dry bulk shipping market was not
heavily influenced because it had not much burden from tonnage supply. After a brief dip
freight rates recovered, reaching a peak in 1995. These years of relatively firm market had
triggered heavy investment in dry bulk carriers leading to a huge orderbook, which went up
to the peak in 1996. As deliveries were continuing up, the dry bulk market dropped since the
second half of 1995 andmoved into recession in 1996.

In this subsection, the time interval covers a moving window [t1, t2] with a length of 10
months, as explained in the Methodology section. The initial starting date is t1 = 4 March
1994, when the index was the lowest one year before the peak in 1995, while the end date t2
runs form 13 January 1995 to 23 March 1995 in steps of five (trading) days. In these time
intervals, the price of the index performed a faster-than-exponential increase. Means of
parameters for LPPL equations can be found in Table II.

Figure 2 illustrates last three fitting results of a prediction conducted one month prior to
the peak. The results are promising. The actual market peak date is 1 May 1995. The median
is exactly the peak date, and the actual peak date is captured by the 50 per cent confidence

Table II.
Means of parameters
for LPPL equations
of predicting the
bubble in 1995

Period A B C1 C2 a v

The bubble in 1995 7.9837 �0.0184 �0.00085 0.0021 0.6832 5.8664
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interval. The dark shadow box in the figure indicates a nearly two-month range of the actual
market crash date. It can be observed that last three predicted crash dates tc lie in the range
using only data before themarket crashes.

3.2 Back test of the negative bubble from 2004
Since 2002, the world economy recovered and continued to grow rapidly. Stimulated by the
sound growth of the world economy, the seaborne trade gained a consecutive annual
increase, especially for shipments of main bulk commodities. One-year time charter rate for
a Panamax soared from an average of $7,499 per day in 2001 to a historic peak in 2004. The
buoyant freight market brought a rocketing increase of orderbook, achieving 67.8 million
dwt in 2004 from 33.5 million dwt in 2000 (Clarksons Shipping Intelligence Network, 2016).
The tremendous construction of new buildings since 2002 also gave rise to large deliveries
from 2004, which dragged down the dry bulk shippingmarket.

The time interval window is rolling with an initial start date t1 = 2 January 2002 with the
end date t2 increasing from 13 November 2002 to 4 January 2004 in steps of five (trading)
days. Excluding stationary time series, 225 curves are produced by the model. In these time
intervals, the price of the BDI performed a faster-than exponential decrease. All the
parameters can be seen in Table III.

From Figure 3, it is apparent that BDI prior to the slump in 2004 follows the
characteristic pattern as proposed by the LPPL model; the prices seem to oscillate around a
faster-than-exponential growth where the oscillations become smaller closer to the peak.
These price movements act as they are expected to during a speculative bubble, according to

Figure 2.
The LPPLmodel

fitted to the BDI prior
to the bubble in 1995
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Table III.
Means of parameters
for LPPL equations

of predicting the
bubble in 2004

Period A B C1 C2 a v

The bubble in 2004 8.6990 �0.0477 �0.00219 �0.00193 0.5993 12.9406
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the LPPL framework. It can also be seen from Figure 3 that the actual first peak date of
February 4, 2004 is encapsulated by the 50 per cent confidence interval, and the median
appears only 9 days ahead of the actual peak day. It implies that an ex ante estimation
conducted one month prior to the actual peak date would have accurately predicted the
upcoming change in regime.

3.3 Back test of the negative bubble from 2007 to 2008
Starting in 2005, the strong and sustainable growth of China, India and other dynamic
developing countries was increasingly becoming the main driver of the world economy.
China’s GDP growth remained above 10 per cent from 2003 and gained a record high of 11.5
per cent in 2007. The seaborne trade of dry bulk shipping slowed down significantly in the
wake of a globally gloomy economy and a lack of demand for steel. On the supply side, ship
owners have ordered massive tonnage during the shipping boom since 2004, and the market
was seriously hit by massive deliveries. The total dry bulk fleet in 2012 was 615.5 million
dwt, increased by about 130 per cent since 2000. Resulting from both sluggish demand and
surplus of tonnage, charter rates of dry bulk vessels plummeted and so did ship values of
both second-hand and newbuilding vessels. For example, one-year timecharter rate for a
Panamax dripped from a record high level of $71,500 per day in 2007 to an average of $4,350
per day in 2012 (Clarksons Shipping Intelligence Network, 2016).

When fitting the LPPL equation to the time series preceding the peak we arrive at the
results presented in Figure 4. The time interval window is rolling with an initial start date
t1 = 25 January 2006 with the end date t2 increasing from 6 December 2006 to 10 October
2007 in steps of five (trading) days. In these time intervals, the price of the CSI300 index
performed a faster-than exponential decrease.

It can be seen from the figure that the indices during this period follow the characteristics
of LPPL. It can also be seen from Figure 4 that the 50 per cent confidence interval captures
the actual peak date, or regime shift of 13 November 2007, while the median date is only six
days later. This means that if an ex ante prediction would have been performed on the Baltic
indices one month prior to the actual peak in 2007, it would have given us a good estimation
of the upcoming date of the regime shift (Table IV).

Figure 3.
The LPPLmodel
fitted to BDI prior to
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3.4 Testing the robustness of the model
In testing the robustness of the model, we proceed by changing several parameters or
conditions and see whether there is any distinct difference in results. First, we test the
influence of the last observed date on the robustness of the model by setting the last
observed date two months and two weeks prior to the actual peak, respectively, and repeat
the estimation process. Second, we change the length of the rolling window to be 15 months,
increased from 10 months. Here, we only present results of making the comparative analysis
conducted in the case of predicting the bubble in 2007, and results of the others can be
acquired from authors.

When performing an estimation where the last observed date is two months prior to the
peak, we reach similar results to those of Figure 4. It can be seen from Figure 5(a) that the
median date is shifted four days to the left in the graph, while the confidence interval is
slightly broadened compared to the first estimation of Figure 4. These results indicate that
an ex ante prediction conducted two months prior to the peak would have yielded almost the
exact same conclusions regarding the upcoming regime shift as those of the estimation
performed one month prior to the peak. However, the broadened confidence interval
indicates some additional uncertainty, which is expected when performing an earlier ex ante
prediction.

From Figure 5(b), where the last observed date is set two weeks prior to the peak, it is
evident that both the confidence interval as well as the median are shifted a couple of days
later compared to the estimation of Figure 4. As the LPPL framework suggests that the

Figure 4.
The LPPLmodel

fitted to BDI prior to
the bubble in 2007
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Table IV.
Means of parameters
for LPPL equations
of predicting bubble

in 2007

Period A B C1 C2 a v

The bubble in 2007 9.4575 �0.0436 �0.00263 0.00239 0.5923 9.3734
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regime shift should occur when the oscillations reach zero, one possible explanation for this
behavior could be that the amplitude of oscillations is already quite low when the
predictions are conducted. The confidence intervals will continue to move to the right in the
graph when moving the last observed date to the right, as long as the oscillations soon after
the last observed date are close to zero.

This means that estimations performed two months and two weeks prior to the actual
peak day would have yielded similar conclusions regarding the upcoming change in regime.

Figure 5.
(a). The LPPLmodel
fitted to BDI prior to
the bubble in 2007
with the last observed
date two months
prior to the peak day
(b). The LPPLmodel
fitted to BDI prior to
the bubble in 2007
with the last observed
date two weeks prior
to the peak day
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Results that are largely unaffected by when the predictions are conducted are what one
wishes to see when examining a bubble.

In Figure 6, the LPPL equation is fitted to Baltic indices one month preceding the
downturn of 2007 based on the rolling window of a length of 15 months. It is apparent that
the indices follow the characteristics of LPPL. It is also evident that the predictions of the
LPPL model in this case produce similar results as those obtained based on the first
estimation of Figure 4. The confidence interval is slimmer, but the actual peak day on 13
November is still captured.

4. Further discussion
In our study, the actual peak date is not knownwhen conducting ex ante predictions, and the
date of the regime shift is a stochastic process; therefore, the prediction of the bursting of a
speculative bubble at one critical point may be misleading. Instead of looking at estimation
of one crash time, we make an attempt to estimate a period when the bubble will burst at
certain confidence intervals. The timing of crash can happen in the middle of, immediately
after or long after this estimated period, although our empirical results exhibit the capture of
actual peak days within the 50 per cent confidence interval.

4.1 Findings relating to the model
The period of predicted end dates of a bubble, in this way, should be interpreted as the start
of a period when the market becomes more sensitive to negative external events, which is
consistent with the analysis by Gustavsson et al. (2016), who propose that the model’s ability
to predict the bursting of bubbles is not as strong as has been claimed in previous studies,
and the results of all estimations have to be interpreted in a more careful manner.

Second, the theory of the model only applies to bubbles that are driven by the
endogenous factors of the LPPL framework and does not claim that all bubbles follow this
pattern, see Johansen and Sornette (2010). In reality, factors triggering a bubble are complex,
which may be not only driven by endogenous super-exponential growth but also by other
factors. In this case, we propose that the LPPL model may not be enough to explain and

Figure 6.
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predict the end of a speculative bubble in some cases, where exogenous shocks may have
significant influence on the burst of a bubble.

For example, we can see two peaks during the period of 2007-2008. The burst of the
bubble in November 2007 was followed soon by the outbreak of the financial crisis occurring
in the USA, which can be deemed as a critical exogenous factor to the market. It is argued by
Gustavsson et al. (2016) that if such an exogenous event occurs before the speculative
behavior has reached maturity, the price will not fall drastically as they are not sufficiently
overvalued to begin with. A dip in prices can be expected as they are affected by exogenous
shocks, and the index quickly returns to the trend and thereafter continues to rise. The
downturn in early 2008 was trigged by an unsustainable faster-than-exponential growth of a
bubble and the negative credit crisis spread all over the world.

We have already observed that the 50 per cent confidence interval and the median are
shifted as the last observed date is changed. It indicates that the time series is sensitive to a
regime shift just following the last observed date, so that the regime could be influenced
significantly by both exogenous and endogenous factors.

Third, it is evident from all figures that the oscillations decrease in amplitude as the
bubble approaches its regime shift. The possible explanation for this could be the results of
diverse investors’ psychology and investment actions. When the market reached a record
peak, it is argued that investors get more anxious, and they are less confident of the future
movements of the market, while at the same time, some believe the market continues to
increase and are afraid of missing out on further increases. Heterogeneous views of the
market and investment strategies of market participants result in frequent trading actions of
sell-outs and buy-ins over a short period, leading to more frequent oscillations with lower
amplitude as the bubble gets older.

4.2 Economic explanations of bubbles
It is demonstrated by the empirical analysis that during three bubble phases, the price index
follows a faster-than-exponential power law growth process, accompanied by log periodic
oscillations. When resources are unlimited, exponential growth can go on indefinitely. This
is different in systems of finite size, where there is competition for limited resources
(Sornette and Cauwels, 2015). When the resources are not unlimited, prices will follow an
unsustainable track, bringing the market to a critical state characterized by the existence of
an intrinsic end-point.

The key ingredient that sets off an unsustainable growth process, which is a prerequisite
for a financial bubble, is positive feedback. Positive feedback is often caused by imitation:
when investors display herd behavior, a price increase triggers even greater demand due to
the strengthening of the herd, and consequently, the equilibrium of supply and demand
breaks down.

In the dry bulk shipping market, smart money flows in at the early stage when the
market is picking up, which leads to a first wave of price appreciation. Attracted by the
prospect of extrapolated higher returns, more investors follow. At some point, demand goes
up as the price increases, and the price goes up as the demand increases. This is a positive
feedback mechanism, which fuels a spiralling growth away from equilibrium. The positive
feedback before bubbles in the dry bulk shipping market could be revealed distinctly by
Figures 7-9 (the dry bulk shipping market is generally divided into three sub-markets by
ship size: the Capesize, the Panamax and the Handymax/Handy markets). Before crashes in
the year of 1995, 2004 and 2007, the dry bulk shipping market was booming, witnessed by
the sharp hike in the second-hand ship market. When second-hand ship prices go up, orders
for new vessels pick up, together with the increasing volume of second-hand ship sales.
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Figure 7.
Second-hand ship
sales, prices and
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Figure 8.
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Figure 9.
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The process of positive feedback operates not only directly from past price increases but
also from auxiliary psychological changes of investors that the past price increases helped
generate. As prices continue to rise, the level of exuberance is enhanced by the price rise
itself. Investors, their confidence and expectations buoyed by past price increases, bid up
ship prices or freight rates further, thereby enticing more investors to do the same, so that
the cycle repeats again and again.

Investors buy and sell ships in anticipation of future market prices, but those prices
are contingent on the investors’ expectations. Investors are striving to do the right
thing, but they have limited abilities and certain natural modes of behavior that decide
their actions when an unambiguous prescription for action is lacking. In the absence of
knowledge and unlimited abilities, participants must introduce an element of judgment
or bias into their decision-making. As a result, outcomes are liable to diverge from
expectations.

5. Conclusions
The aim of this study is to analyze the predictive ability of log periodic functions which,
according to some researchers (Sornette and Zhou, 2006; Sornette et al., 2009) can be used to
forecast accurately turbulent changes of certain phenomena, such as the changes observed
on the financial markets.

The evaluation of this method’s accuracy is based on three log periodic models
constructed for the evaluation of Baltic index behavior over different periods. The objective
is to predict the bursting time of shipping bubbles’ occurrence. We find that all the bubbles
analyzed (the bubble in 1995, the bubble in 2002 and the crash in 2007) behave in accordance
with the expected characteristics of the LPPL model. The price movements leading up to the
regime shift are characterized by faster-than-exponential growth and show clear oscillatory
patterns where the oscillations decrease in amplitude leading up to the regime shift. In our
analysis, actual peak dates are encapsulated by the confidence intervals of critical points,
bolstering the argument that the model has the good predictive ability.

However, we also observe in some cases that the index continues to rise with small
oscillatory patterns even after the predicted regime shifts. Furthermore, the
comparative analysis by changing the last observed dates and the number of
estimations for each bubble implies that the LPPL model may be sensitive to the time
when the predictions are conducted and sensitive to the number of estimations for each
prediction. In this way, to predict one crash date may be misleading when conducting
the ex ante prediction, and to produce a period of critical points within some confidence
intervals is more reliable.

It is worth nothing from this paper that fitting the model into historical data and
using it to generate prediction in real time are two different things and the latter is
much more difficult. The LPPL model is only applicable to the bubble driven by
endogenous factors, while in reality, exogenous shocks could have significant influence
on bubbles.

In considering the economic triggers for bubbles in the shipping market, to speak of
supply and demand as if they are determined by forces that are independent of the market
participants’ expectations is quite misleading. Rising ship prices often attract buyers and
vice versa, as evidenced by rising ship sales. The self-reinforcing trends cannot persist if
supply and demand curves are independent of market prices. Hence, market investors’
expectations could also behave as one of fundamentals when the positive feedback
mechanismworks.
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Thus, it is not enough to just rely on this model to guide our investment decisions, more
analyses are needed, such as the fundamental study, the exogenous factors/news
influencing the dry bulk shippingmarket.
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