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Abstract
Purpose – This paper aims to test three parametric models in pricing and hedging higher-order moment
swaps. Using vanilla option prices from the volatility surface of the Euro Stoxx 50 Index, the paper shows that
the pricing accuracy of these models is very satisfactory under four different pricing error functions. The
result is that taking a position in a third moment swap considerably improves the performance of the
standard hedge of a variance swap based on a static position in the log-contract and a dynamic trading
strategy. The position in the third moment swap is taken by running a Monte Carlo simulation.
Design/methodology/approach – This paper undertook empirical tests of three parametric models.
The aim of the paper is twofold: assess the pricing accuracy of these models and show how the classical hedge
of the variance swap in terms of a position in a log-contract and a dynamic trading strategy can be
significantly enhanced by using third-order moment swaps. The pricing accuracy was measured under four
different pricing error functions. A Monte Carlo simulation was run to take a position in the third moment
swap.
Findings – The results of the paper are twofold: the pricing accuracy of the Heston (1993) model and that of
two Levy models with stochastic time and stochastic volatility are satisfactory; taking a position in third-
order moment swaps can significantly improve the performance of the standard hedge of a variance swap.
Research limitations/implications – The limitation is that these empirical tests are conducted on
existing three parametric models. Maybe more critical insights could have been revealed had these tests been
conducted in a brand new derivatives pricing model.
Originality/value – This work is 100 per cent original, and it undertook empirical tests of the pricing and
hedging accuracy of existing three parametric models.

Keywords Higher-order moment swaps, Log-contract, Static position, Variance swaps,
Volatility surface

Paper type Research paper

1. Introduction
Moment swaps are derivative securities whose payoff depends on the realized higher
moments of the underlying asset price or state variable. This payoff is linked to the powers
of the log-returns and provides protection against various types of market conditions.
Variance swaps which are liquidly traded today are obtained in the case of squared
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log-returns and offer protection against changes in the volatility process. Higher-order
moment derivatives can be useful to protect against inaccurately estimated skewness or
kurtosis. Rompolis and Tzavalis (2017) and Schoutens (2005) show that moment swaps can
be used to significantly improve the standard hedge of the variance swap.

Some recent studies in the finance literature suggest that power-jump assets can be used
to complete the market. For instance, an incomplete Levy market where power assets of any
order can be traded will yield a complete market. Power assets and realized higher moments
are highly linked and they are virtually the same in a discrete time framework (Corcuera
et al., 2005).

There has been a proliferation of studies extending the Black–Scholes (BS) option pricing
model. However, only a few of these studies addressed hedging contingent claims under
more general assumptions about the state variable stochastic process. Well known
examples of such studies are the stochastic volatility (SV) model of Heston (1993); the SV
and random jumps model (SVJ) of Bates (1996); and the SV, stochastic interest rates and
random jumps model of Doffou and Hilliard (2001). Using delta hedging strategies in an
incomplete market cannot lead to a perfect hedge against jump risk and volatility risk linked
to a position in contingent claims.

Locally risk-minimizing delta hedging strategies that attempt to hedge the option
contract using only the state variable and minimizing the variance of the cost process of a
non-self-financed hedging position are not adequate. In the presence of jumps, these
strategies perform very poorly like the classic delta hedging strategies (Tankov et al., 2007).
Other hedging strategies use option contracts to reduce or eliminate volatility risk (Bakshi
et al., 1997) or protect against jump risk (Coleman et al., 2006; Cheang et al., 2015). Cross
hedging strategies or delta-vega hedging can totally remove an option contract exposure to
volatility risk but not its exposure to jump risk. Jump risk can be hedged either by using a
risk-minimization strategy (Coleman et al., 2006; Tankov et al., 2007) or by discretizing jump
sizes to compute the hedge ratios of the other options (Utzet et al., 2002). However, these two
methodologies are limited. First, they do not characterize the maturity and moneyness of the
option contracts to be used to efficiently and effectively set up the hedge. Further, these two
approaches do not pick up the options’ exposure to volatility risk. Finally, empirical
evidences show that these two methods do not outperform the delta hedging strategy
(Cheang et al., 2015).

This paper tests empirically the Schoutens (2005) along with the Heston (1993) and the
time-changed Levy models in their effectiveness in pricing and hedging moment swaps,
particularly the variance swaps which are liquidly traded today. This paper is organized as
follows. Section 2 defines moment swaps. Section 3 introduces the pricing and hedging
model. The model parameters are estimated in Section 4. Section 5 tests the out-of-sample
pricing performance of the model. Finally, Section 6 concludes the paper.

2. The moment swaps pricing model
Consider an asset (stock or stock index) with a continuous dividend yield y � 0. The asset
price process is modeled by an Ito semi martingale P = {Pt, t� 0} such that P> 0 and P_>
0. In addition to this asset, a bond or money market account with a constant compound
interest rate a is available with a price process H = {Ht = eat, t � 0}. Consider n equally
spaced time intervals of lengthDt such that tj= jDt, with j= 0, 1, 2, . . .., n andW = nDt is the
expiration date of the derivative contract written on the state variable price Pt. The price of
the state variable at each interval j is denoted Pj for simplicity. In practice, the tj are the daily
closing times and Pj is the closing price at day j. It follows that the daily log-returns are
given by ln(Pj) – ln(Pj–1), j= 1, 2, . . .. n.
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Assume futures contracts written on the state variable price P exist with expiration date
W. In the risk-neutral world, the price of the futures contract is given by Ft = Pt exp(a – y)
(W – t). For simplification, the futures price at the discrete time tj is denoted Fj. The mth-
moment swap on the stock is a contract in which the two counterparties agree to exchange
at maturity a nominal amount multiplied by the difference between a fixed level contract
price and the realized level of the mth-order non-central sample moment of the log-return
over the life of the contract. The payoff function is defined by:

MSm
P ¼ NA

Xn
j¼1

ln
Pj

Pj�1

 !m

(1)

where NA is the nominal or notional amount and n is the number of segments of length Dt
within the time interval [0,W].

For m = 2, equation (1) gives the expression of the 2nd-moment swap or variance swap.
Variance swaps are basically forward contracts in which the counterparties agree to
exchange a notional amount multiplied by the difference between a fixed variance and the
realized variance. The fixed variance is the variance swap rate or the variance forward price.
Variance swaps offer protection against volatility shocks. The 3rd-moment swap is linked to
the realized skewness and offers protection against changes in the symmetry of the
underlying distribution. Changes in the tail behavior of the underlying distribution created
by the occurrences of unexpected large jumps are shielded by the 4th-moment swap related
to the realized kurtosis. If the futures price is the state variable driving the moment
derivatives, then the payoff function of themth-moment swap on the futures is:

MSm
F ¼ NA

Xn
j¼1

ln
Fj

Fj�1

 !m

: (2)

Using the link between the stock and futures prices, Fj = Pj exp(a – y)(W – tj), and setting the
notional amount NA equal to one, the relationship between the futures and the stock
moment swaps is derived as follows:

MSm
F ¼

Xn
j¼1

� a� yð ÞDt þ ln
Pj

Pj�1

 !" #m
¼
Xn
j¼1

Xm
h¼0

m
h

� �
� a � yð Þ Dt
� �hln Pj

Pj�1

 !m�h

¼
Xm�2

h¼0

m
h

� �
� a� yð Þ Dt
� �hMS m�hð Þ

P � a� yð ÞW � a� yð Þ Dt
� �m�1

þm � a� yð Þ Dt
� �m�1 XP

where XP ¼
Pn

j¼1 ln
Pj
Pj�1

� �
¼ ln PW

P0

� �
¼ ln PWð Þ � ln P0ð Þ.

The term XP is the log-contract on the stock and plays a critical role in the hedging of
moment swaps. If Dt raised to the higher order powers is very small and therefore
negligible, the above listed expression can be approximated by equation (3) below:

MSm
F � MSm

P �m a� yð Þ DtMS m�1ð Þ
P (3)
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3. Hedging moment swaps driven by futures contracts
The focus is on hedging the moment swaps driven by the futures price as the state variable
or underlying asset. Following Carr and Lewis (2004), as well as Schoutens (2005), a new

expression for ln Fj

Fj�1

� �m
can be derived by combining the Taylor series expansion of the

mth power of the logarithm function and the power series representation of the exponential
function. Most specifically, we have:

lnl m ¼ m! l � 1� lnl � lnl 2

2!
� lnl 3

3!
� . . .� lnl m�1

m� 1ð Þ!
þ j l � 1ð Þmþ1

� � !
(4)

and exp bð Þ ¼ eb ¼ 1þ b þ b 2

2!
þ . . .þ b m

m!
þ j b mþ1

� �
(5)

Equation (4) is obtained from equation (5) by replacing b by ln(l ), rearranging terms and
considering the fact that j (ln lmþ1) = j ((l – 1)mþ1).

Replacing l by Fj

Fj�1
in equation (4) leads to:

ln
Fj

Fj�1

 !m

¼ m!
DFj

Fj�1
� ln

Fj

Fj�1
�
Xm�1

h¼2

ln Fj

Fj�1

� �h
h!

þ j
DFj

Fj�1

 !mþ1
0@ 1A

0B@
1CA;

where DFj = Fj – Fj–1. Hence, with a notional amount of one, the moment swap given in
equation (2) takes the following new expression:

MSm
F ¼

Xn
j¼1

ln
Fj

Fj�1

 !m

MSm
F ¼ m!

Xn
j¼1

DFj

Fj�1
�m! lnFW � lnF0ð Þ �

Xm�1

h¼2

m!

h!
MSh

F þ j
Xn
j¼1

DFj

Fj�1

 !mþ1
0@ 1A:

(6)

Equation (6) shows that the payoff function of the mth-moment swap on the futures can be
decomposed into:

� the payoff from –m! number of log-contracts on the futures;
� the payoff from a dynamic trading strategy in futures given bym!

Xn

j¼1
DFj

Fj�1
; and

� the payoff from a series of moment swaps of order strictly lower thanm.

Such decomposition is an approximation because it is derived from the Taylor series
expansion of themth power of the logarithm function and the power series representation of
the exponential function which are both approximations.

The log-contract on the futures, XF, is given by XF = ln FW – ln F0 = XP – (a – y)W. Carr
and Lewis (2004) shows that this log-contract can be hedged by taking a static position in
bonds and vanilla options.
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Equation (6) leads to the classical hedge of the variance swap in terms of the log-
contracts on the futures whenm= 2, namely:

VSF ¼ MS2
F � 2

Xn
j¼1

DFj

Fj�1
� XF

 !
(7)

To hedge the variance swap requires taking a short position in two log-contracts and a
dynamic strategy in futures. The dynamic strategy can be executed at a zero cost.

Form= 3, equation (6) simplifies to:

MS3
F � 6

Xn
j¼1

DFj

Fj�1
� XF

 !
� 3VSF :

The variance swap on futures can now be derived as given in equation (8) below:

VSF � 2
Xn
j¼1

DFj

Fj�1
� XF

 !
� 1
3
MS3

F : (8)

Comparing equations (7) and (8) leads to the conclusion that taking an additional short
position in 1/3 third moment swaps leads to an improvement of the hedging strategy of the
variance swap.

4. The dynamics of some advanced models
To truly evaluate the effectiveness of the hedging strategies, the performance of the moment
swap hedges must be compared to that of some advanced models’ hedges. The Heston
model and the Levy models with stochastic time and SV will be examined. These two
classes of advanced models offer very acceptable global calibration fits and are well known
and used in the world of derivatives practitioners. The dynamics of each advanced model is
explicitly given by its characteristic function w (v , t) of the logarithm of the price process ln
Pt, namely, by w (v , t) = E [exp(iv ln(Pt))].

4.1 The Heston stochastic volatility model
The Heston SV model has a state variable (the stock price) process that follows the Black
and Scholes (1973) stochastic differential equation, that is:

dPt=Pt ¼ a� yð Þdt þ s tdWt; P0 � 0;

with the squared volatility driven by the Cox et al. (1985) process (Cox, Ingersoll and Ross
[CIR] process):

ds 2
t ¼ K d � s 2

t

� �
dt þ bs tdZt; s 0 � 0;

where dWt and dZt, t� 0, are increments to two correlated standard Brownian motions with
Cov(dWt, dZt) = rdt.

The characteristic function w (v , t) for this advanced model is provided in Heston (1993)
and in Bakshi et al. (1997) as follows:

SEF
36,2

158



w v ; tð Þ ¼ E exp iv ln Ptð Þð ÞjP0;s
2
0

� 	
¼ exp iv lnP0 þ a � yð Þt

� �� �
Að Þ Bð Þ; with

A ¼ exp dKb �2 K� rbv i � xð Þt � 2ln 1� ze�xtð Þ= 1� zð Þ
� �� �� �

;

B ¼ exp s 2
0b

�2 K� rb iv � xð Þ 1� e�xtð Þ= 1� ze�xtð Þ
� �

;

where

x ¼ rbv i �Kð Þ2 � b 2 �iv � v 2ð Þ
� �1=2

(9)

z ¼ K� rbv i � xð Þ= K� rbv i þ xð Þ: (10)

4.2 Levy models with stochastic time and stochastic volatility
The BS model has well known limitations because its underlying source of randomness is a
Brownian motion. One practical way to improve this model is to replace the Brownian
motion by a Levy process. Some of these Levy models can also incorporate SV.

Two independent stochastic processes are used to build the Levy models with stochastic
time considered here. This approach was initiated by Mandelbrot and Taylor (1967). The
asset price dynamics is modeled by the exponential of the Levy process, Y = {Yt, t � 0}
preferably time-changed and by a second process, a stochastic clock, which incorporates SV
allowing time to be stochastic.

In t calendar time units, the economic time that has passed is given by the integralCt of a
positive process g = {g t, t� 0} such that Ct ¼

Ð t
0g sds andC= {Ct, t� 0}.

If the characteristic function of Ct, given g 0, is f (v ; t, g 0), then the price process in the
risk neutral world P = {Pt, t� 0} can be modeled as:

Pt ¼ P0
exp a� yð Þt
� �

E exp Y Ctð Þjg 0

� 	 exp Y Ctð Þ (11)

where Y = {Yt, t � 0} is a Levy process. The stock price process is modeled as the
exponential of a time-changed Levy process which incorporates jumps and SV. The Levy
process Yt picks up the jumps while the SV is accounted for by the time change Ct. The
characteristic function w (v , t) for the logarithm of the stock price is:

w v ; tð Þ ¼ E exp iv ln Ptð Þð ÞjP0; g 0

� 	
¼ exp iv a� yð Þt þ lnP0

� �� � f �i DY vð Þ; t; g 0
� �

f �i DY �ið Þ; t; g 0

� �iv (12)

where DY(v ) = ln E [exp(ivYt)] is named the characteristic exponent of the Levy process.
The subparagraphs that follow will examine:

� the Cox et al. (1985) process (CIR process) for g ; and
� two Levy processes which are the normal inverse Gaussian (NIG) process and the

variance gamma (VG) process.

4.2.1 The normal inverse Gaussian levy process. The NIG process is derived from the NIG
distribution or NIG(h , m , #), with parameters h > 0, –h < m < h , and # > 0. The
characteristic function is given as follows:
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wNIG v ; h ; m ; #ð Þ ¼ exp �#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 2 � m þ ivð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 2 � m 2

p� �� �
:

This characteristic function is infinitely divisible and therefore can help define the NIG

process Y NIGð Þ ¼ Y NIGð Þ
t ; t � 0

n o
, with Y NIGð Þ

0 ¼ 0, because the process has stationary
and independent NIG distributed increments. Each increment satisfies the NIG(h , m , #t)
law over the time slot [k, kþ t].

4.2.2 The VG levy process. Madan et al. (1998) defines the characteristic function of the
VG(B, E, N) distribution with parameters B> 0, E> 0 and N> 0 as follows:

wVG v ;B;E;Nð Þ ¼ EN
EN þ N � Eð Þiv þ v 2

� �B

:

Because this distribution is infinitely divisible, the VG-process can be defined as the one
which begins at time zero with independent and stationary increments. The VG-process

Y VGð Þ ¼ Y VGð Þ
t ; t � 0

n o
has increments Y VGð Þ

kþt � Y VGð Þ
k that satisfy the VG(Bt, E, N)

law over the time slot [k, kþ t].
4.2.3 The Cox, Ingersoll and Ross stochastic clock. The CIR process that solves the

stochastic differential equation listed below is used as the rate of time change by Carr et al. (2003):

dg t ¼ K d � g tð Þdt þ e g
1=2
t dZt;

where dZt is an increment to a standard Brownian motion, the parameter d is the long run
rate of time change, K is the rate of mean reversion and e dictates the volatility of the time
change. The process g t is the instantaneous rate of time change and the new clock is given
by its integral Ct ¼

Ð t
0g sds. The characteristic function of Ct, given g 0, is explicitly

provided in Cox et al. (1985) as follows:

f CIR v ; t;K; d ; e ; g 0ð Þ ¼ E exp iv Ctð Þjg 0

� 	
¼ exp K2d t=e 2

� �
exp 2g 0iv= Kþ l coth l t=2ð Þð Þð Þ

cosh l t=2ð Þ þ Ksinh l t=2ð Þ=lð Þ2Kd =e 2

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 2e 2iv

p
.

For the new clock to be increasing, the instantaneous rate of time change must be
positive. Moreover, for the random time changes to persist, the rate of time change must be
mean reverting. The square root process of CIR considered here is a classic example of a
mean-reverting positive process.

5. The log-contract
The log-contract on the stock and the log-contract on the futures were already defined in
Sections 2 and 3, respectively. Further, it was established that the log-contract plays a
critical role in the hedging of moment swaps. Closed form solutions for the price of the log-
contract are achieved under many models. For example, under the BS model, the log-
contract price on the stock is given by:

XP ¼ exp �aWð ÞEQ ln PWð Þ � lnP0jT 0
� 	

¼ exp �aWð ÞEQ a � y� s 2=2
� �

Wþ sZWjT 0
� 	

;

XP ¼ exp �aWð Þ a� y� s 2=2
� �

W;

where s is the volatility of the stock price P.
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The log-contract price for more elaborate models can be directly obtained from the risk-
neutral characteristic function of ln(PW), that is:

w v ; tð Þ ¼ EQ exp iv lnPWð ÞjT 0
� 	

:

Taking the partial derivative of w (v , t) with respect tov leads to:

�i
@w v ; tð Þ

@v
jv¼0 ¼ EQ ln PWð ÞjT 0

� 	
:

Therefore, the general expression for the price of the log-contract is given by:

XP ¼ exp �aWð ÞEQ ln PWð Þ � lnP0jT 0
� 	

¼ exp �aWð Þ �i
@w 0; tð Þ

@v
� lnP0

� �
:

In the case of the Heston model, the log-contract price on the stock takes the following
expression:

XHESTON
P ¼ exp �aWð Þ

2K 2K a� yð ÞW� dKW� d e�KW þ d � s 2
0 þ s 2

0e
�KW

� �
;

(13)

while in the case of the time-changed Levy models with a characteristic function w (v , t)
shown in equation (12), the log-contract price on the stock is given by:

XLM
P ¼ exp �aWð Þ W a � yð Þ � f 0 0ð ÞD0

Y 0ð Þ � ln f �i DY ið Þ
� �� �� �

¼ exp �aWð Þ W a � yð Þ þ E CW½ �E Y1½ � � ln E exp Y CWð Þ½ �ð Þ
� �

:
(14)

6. Parameters estimation and results
The parameters to be estimated are those related to the Heston model, the NIG Levy process
with CIR stochastic clock (NIG-L-CIR) and the VG Levy process with CIR stochastic clock (VG-
L-CIR). For the Heston model, the parameters are s 2

0,K, d , b and r . The parameters are h , m ,
#,K, d , e and g 0 for the NIG-L-CIRmodel. Finally, the parameters for the VG-L-CIRmodel are
B, E, N,K, d , e , and g 0. The calibration of the models follows the methods developed in Carr
and Madan (1998) for pricing classical vanilla options. In general, these methods can be used
when the characteristic function of the risk-neutral stock price process is well specified.

Carr and Madan (1998) shows that the price CE(E, W) of a European call option with
exercise price E andmaturity dateW is given by:

CE E;Wð Þ ¼ exp �Eln Eð Þð Þ
p

ðþ1

0

exp �ix ln Eð Þ
� �

g xð Þdx (15)

where « is a positive constant such that the « th moment of the stock price exists and the
function g(x ) is defined by:

g xð Þ ¼
exp �aWð ÞE exp i x � E þ 1ð Þi

� �
ln PWð Þ

� �� 	
E2 þ E � x 2 þ i 2E þ 1ð Þx

¼ exp �aWð Þw x � E þ 1ð Þi;W
� �

E2 þ E � x 2 þ i 2E þ 1ð Þx
;

(16)

with P being the stock price and a the compound interest rate defined earlier. The complete
option surface can be computed using the fast Fourier transforms. This Carr and Madan
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computation methodology is applied in the calibration procedure to estimate the model
parameters by minimizing the price differential (market observed price minus model price)
in a least-squares configuration.

The sample data used consists of 432 plain vanilla call option prices with maturities from
less than one month to 5.165 years. These prices are taken from the volatility surface of the
euro Stoxx 50 Index. The models were tested on August 25, 2017, when the value of the
index was e3,438.55. The risk-free interest rate is set at 3 per cent and the dividend yield at 0
per cent for the sake of simplicity and to focus on the essence of the stochastic behavior of
the asset. The calibration procedure is like the one in Schoutens et al. (2004). The risk-neutral
parameters for all three models are reported below:

HestonModel : s 2
0 ¼ 0:0648; K ¼ 0:6372; d ¼ 0:0681; b ¼ 0:2889; r ¼ �0:7783

NIG� L� CIRModel : h ¼ 16:5571; m ¼ �3:8402; # ¼ 1:1739;

K ¼ 1:2709; d ¼ 0:5304 e ¼ 1:8013; g 0 ¼ 1

VG� L� CIRModel : B ¼ 19:1064; E ¼ 21:1449; N ¼ 27:8697;

K ¼ 1:2755; d ¼ 0:5298 e ¼ 1:8062; g 0 ¼ 1

The out-of-sample performance of an option pricing model is measured by the stability of
the parameters and accuracy of the parameter estimates. Testing the out-of-sample
performance of these three models is in effect a test of how slowly the parameters change
over time. The pricing biases of these models are computed and contrasted. These pricing
biases are captured through four global measures of fit. These global measures of fit are:

(1) the root mean square pricing error (RMSPE);
(2) the mean absolute percentage pricing error (MAPPE);
(3) the mean absolute pricing error (MAPE); and
(4) the mean relative percentage pricing error (MRPPE).

These global measures of fit are defined as follows:

RMSPE ¼
Xn
i¼1

MPi � dMPi

� �2
n

0B@
1CA

1=2

MAPPE ¼ 1

MP

Xn
i¼1

jMPi �dMPij
n

MAPE ¼
Xn
i¼1

jMPi �dMPij
n

MRPPE ¼ 1
n

Xn
i¼1

jMPi �dMPij
MPi

;

where n is the number of options, MPi the market price of option i,dMPi the model price of
option i andMP the mean option price. The computations of these pricing errors are listed in
Table I.

SEF
36,2

162



The prices of the log-contracts are computed from equations (13) and (14) using the
parameters given above and are listed in Table II.

The pricing biases of the Heston model are compared to those of the NIG-L-CIR model
and those of the VG-L-CIR model using the RMSPE, the MAPPE, the MAPE and the
MRPPE statistics. These statistics are computed in Table I. Under the RMSPE measure, the
NIG-L-CIR model performs better than the VG-L-CIR model which in turn performs better
than the Heston model. Using the MAPPE measure, the NIG-L-CIR and the VG-L-CIR
models show the same performance which is superior to that of the Heston model. Under the
MAPE statistic, the NIG-L-CIR model outperforms the VG-L-CIR model which in turn
outperforms the Heston model. Finally, the pricing errors obtained under the MRPPE
statistic confirm the superior performance of the NIG-L-CIRmodel over that of the VG-L-CIR
model and over that of the Heston model.

As indicated earlier, the prices listed in Table II are taken from the volatility surface of
the euro Stoxx 50 Index. All models appear to fit this surface very well leading to almost
similar vanilla prices under the different models. However, the fact that model risk does
exist and is different from model to model explains why exotic prices under the various
models can be significantly different. This difference is illustrated in Table II where the log-
contract prices differ by 48.82 per cent between the Heston and NIG-L-CIR models and by
48.73 per cent between the Heston and VG-L-CIRmodels.

Moneyness, maturity and volatility effects on pricing bias can be further investigated
using a regression analysis. The dependent variable is the percentage pricing error of a
given call in the sample at a given date. The independent variables are the moneyness, the
time to maturity and the volatility of the euro Stoxx index return. The regression equation is
given by:

PPEi tð Þ ¼ a0 þ a1
P tð Þ
Ei

þ a2TMi þ a3VOL t � 1ð Þ þ Oi tð Þ; i ¼ 1; . . . ; n (17)

where PPEi(t) is the percentage pricing error of call option i on date t; P/Ei andTMi represent
the moneyness and time to maturity, respectively, of the call option contract; VOL(t – 1)
stands for the previous day’s annualized standard deviation of the euro Stoxx 50 index
return; and Oi tð Þ is the error term. This is a cross-sectional regression; therefore, the
standard errors (in parentheses) are computed using the White (1980) heteroskedasticity
consistent estimator. The regression is run for each of the three models considered and the
results are summarized in Table III.

Table I.
Overall pricing error

measures

Model RMSPE MAPPE MAPE MRPPE

HESTON 2.9463 0.0042 2.3974 0.0169
NIG-L-CIR 2.2851 0.0033 1.8965 0.0096
VG-L-CIR 2.3179 0.0033 1.9106 0.0103

Table II.
Prices of the log-

contract on the stock
XPð Þ

Model XP times 10; 000

HESTON �31.97
NIG-L-CIR �47.58
VG-L-CIR �47.55
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Each independent variable has statistically significant explanatory power of the remaining
pricing errors regardless of the model examined. Hence, each model pricing errors have
some maturity, intra-daily volatility and moneyness related biases with different
magnitudes. The pricing errors have the same sign and therefore are biased in the same
direction. The pricing errors relative to the euro Stoxx index’s volatility on the previous day
are almost stationary, confirming the importance of modeling SV. The mispricing of the
NIG-L-CIR and VG-L-CIR models is lower than that of the Heston model, confirming that
modeling both SV and jumps is important. The adjusted R2 of 8.7 per cent for the Heston
model, 4.6 per cent for the NIG-L-CIR model and 4.8 per cent for the VG-L-CIRmodel indicate
that the collective explanatory power of these independent variables is quite low. The
regression results confirm the results in Table I, that the NIG-L-CIR model is superior to the
VG-L-CIRmodel which in turn is superior to the Hestonmodel in terms of pricing accuracy.

7. Effectiveness of the variance swap hedge using moment swaps
To assess the effectiveness of the variance swap hedge using moment swaps, this paper will
contrast the strategy that includes a third moment swap outlined in equation (8) with the one
which excludes moment swaps as described in equation (7). This comparison is made for the
different models discussed in Section 4. The parameters used are still the same listed earlier.

Exactly 20,000 variance swaps contracts are hedged. The profit and loss distributions of
these hedges under the various models examined are obtained by running a Monte Carlo
simulation with one million scenarios. To simulate a NIG process, a NIG(h , m , #) random
numbers are first simulated. The NIG random numbers are obtained by combining inverse
Gaussian (IG) random numbers and standard normal numbers. An IG(c, d) random variable
Y has the following characteristic function:

E exp ivYð Þ
� 	

¼ exp �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2v i þ d2

p
� d

� �
:

First, the IG 1; #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 2 � m 2

p� �
random numbers im are simulated using for instance the IG

generator of Michael, Schucany and Haas [Devroye (1986)]. Next, a series of standard normal
random variables vm are sampled. The NIG random numbers nm are then generated using
the expression below:

nm ¼ #2m im þ #
ffiffiffiffiffi
im

p
vm:

Finally, the sample paths of a NIG(h , m , #) process Y = {Yt, t � 0} in the time slots tn =
nDt, n = 0, 1, 2, . . . are generated using the independent NIG(h , m , #Dt) random numbers
nm given by:

Y0 ¼ 0; Ytm ¼ Ytm�1 þ nm; m � 1:

Table III.
Regression analysis
of pricing errors

Coefficients Heston model NIG-L-CIR model VG-L-CIR model

Intercept 0.214 (0.011) 0.143 (0.011) 0.146 (0.011)
P=E �0.172 (0.011) �0.114 (0.011) �0.116 (0.011)
TM 0.061 (0.001) 0.052 (0.001) 0.054 (0.001)
VOL 0.033 (0.011) 0.021 (0.011) 0.022 (0.011)
Adj. R2 0.087 0.046 0.048

Note: The standard errors are in parentheses
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The simulation of a VG process is straightforward because a VG process can be seen as the
difference of two independent Gamma processes. Gamma numbers are generated using the
Johnk’s gamma generator or the Berman’s gamma generator [Devroye (1986)].
The simulation of a CIR process g = {g t, t � 0} is also straightforward by discretizing the
stochastic differential equation:

dg t ¼ K d � g tð Þdt þ e g
1=2
t dZt; g 0 � 0:

The sample path of the CIR process g = {g t, t� 0} in the time slots t= nDt, n = 0, 1, 2, . . . is
given by:

g tn ¼ g tn�1
þK d � g tn�1

� �
Dt þ e g

1=2
tn�1

ffiffiffiffiffiffiffi
Dt

p
xn;

where {xn, n = 1, 2, . . .} is a series of independent standard normally distributed random
numbers.

The means and standard deviations of the profit and loss distributions for each of the
three models are computed both under a hedging strategy without moment derivatives and
under a hedging strategy with moment derivatives. The mean and standard deviation of the
hedging without moment derivatives are respectively m1 and s 1 while m2 and s 2 are the
same descriptive statistics of the hedging that uses a third moment swap. All these
descriptive statistics are listed in Table IV.

Table IV clearly shows that the mean of the profit and loss distribution is closer to zero
and its standard deviation is much smaller under the hedge with a third moment swap.
Hence, consistent with the theory, the empirical results illustrated in Table IV confirm that
the use of a third moment swap in hedging a variance swap dramatically improves the
performance of the hedge. The tails of the basic hedge without the third moment swap are
much fatter than those under the enhanced hedge, which incorporates the third moment
swap. Under the basic hedge without the third moment swap, the standard deviation of the
profit and loss distribution for the Heston model is already very low. This is justified by the
fact that the Heston model exhibits continuous paths. The Taylor series expansion of the
mth power of the logarithm function given by equation (4) is very accurate in a no-jump
economy even if limited to the quadratic term. This is not the case in real markets where
asset prices exhibit jumps of various magnitudes due of supply and demand shocks. These
jumps are themain sources of large hedging errors.

8. Conclusions
This paper tests empirically the pricing accuracy of the Schoutens (2005) along with the
Heston (1993) and the time-changed Levy models and their effectiveness in hedging moment
swaps. Variance swaps which are now liquidly traded can be used to protect against
changes in the volatility regime. Moments of higher order such as skewness and kurtosis are
important, for example, in a jump economy. To protect against inaccurate estimates of

Table IV.
Profit and loss

descriptive statistics

Model m1 s 1 m2 s 2

HESTON 0.059 2.108 �0.0638 0.0051
NIG-L-CIR 6.341 24.893 �0.7252 2.8184
VG-L-CIR 6.101 18.867 �0.6609 1.4736

Higher-order
moment swaps

165



skewness and kurtosis, moment derivatives are needed. The results obtained here show that
using moment swaps leads to a significant improvement of the standard hedge of the
variance swap using only log-contracts. Each hedge is set up as a position in a log-contract
combined with a dynamic trading strategy and a static position in moment swaps of lower
order. Most specifically, SV models such as the Heston and time-changed Levy models are
introduced and closed-form solutions for the price of the log-contract under these models are
derived from the risk-neutral characteristic function. Then, the effectiveness of the variance
swap hedge using a third-order moment swap is evaluated. The result shows that taking a
position in third moment swaps can significantly improve the performance of the standard
hedge of a variance swap based on a static position in the log-contract and a dynamic
trading strategy. The position in third moment swaps is taken by running a Monte Carlo
simulation under the various SV models considered. Overall, the pricing accuracy of the
three SV models considered, measured by RMSPE, MAPPE, MAPE and MRPPE shown in
Table I, is very satisfactory. A possible extension of this research would be to examine how
effective these models are in pricing and hedging moment swaps of order n with n � 3,
usingmoment derivatives of any order.
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