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Abstract
Purpose – An accurate detection of overhead ground wire under open surroundings with varying illumination is the premise of reliable line grasping
with the off-line arm when the inspection robot cross obstacle automatically. This paper aims to propose an improved approach which is called
adaptive homomorphic filter and supervised learning (AHSL) for overhead ground wire detection.
Design/methodology/approach – First, to decrease the influence of the varying illumination caused by the open work environment of the
inspection robot, the adaptive homomorphic filter is introduced to compensation the changing illumination. Second, to represent ground wire more
effectively and to extract more powerful and discriminative information for building a binary classifier, the global and local features fusion method
followed by supervised learning method support vector machine is proposed.
Findings – Experiment results on two self-built testing data sets A and B which contain relative older ground wires and relative newer ground wire and on the
field ground wires show that the use of the adaptive homomorphic filter and global and local feature fusion method can improve the detection accuracy of the
ground wire effectively. The result of the proposed method lays a solid foundation for inspection robot grasping the ground wire by visual servo.
Originality/value – This method AHSL has achieved 80.8 per cent detection accuracy on data set A which contains relative older ground wires and
85.3 per cent detection accuracy on data set B which contains relative newer ground wires, and the field experiment shows that the robot can detect
the ground wire accurately. The performance achieved by proposed method is the state of the art under open environment with varying illumination.
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Paper type Research paper

1. Introduction

The research on power-line inspection robot which has the ability
to cross obstacles automatically has been raised highly attention
(Pouliot and Montambault, 2012; Debenest and Guarnieri,
2010; Hongguang et al., 2010; Wang et al., 2014). The key
problem of automatically obstacles crossing technology is how to
detect the ground wire accurately. After the comprehensive
analysis of various detection methods, it can be concluded that
there are two broad categories methods: non-vision based and
vision based. With a laser sensor installed on the bottom of robot
manipulator, one method in literature Cuilian et al. (2006) is
proposed to detect ground wire by analyzing rising edge signal of

the laser sensor when the laser spot is sheltered by the ground
wire. Two laser sensors are adopted directly in literature Xinglong
et al. (2006) to detect points along two line edges.With the help of
the robot dynamics model, the position of ground wire relative to
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the arm is determined. One method is proposed in literature
SunSin and JangMyung (2008) to detect the groundwire through
the combination of an infrared detector with high measurement
accuracy and an ultrasonic sensor which is not affected by light.
An electromagnetic sensor is used to inspect power transmission
line when energized in literature Zhongwei et al. (2006).
Literature by Richard et al. (2014) and Pouliot et al. (2012)
introduces a compact and less-expensive LIDARs system,
UTM-30LX, to detect ground wire and obstacles by the
comprehensive analysis of distance, diameter and signal intensity.
Literature by Yunchu et al. (2007) presents a ground wire

detection scheme with a fixed-focused length camera installed
on the shoulders of the mechanical arm. By observing the
distribution characteristic of binary pixels of the captured
image, the horizontal position of the axis center of ground wire
can be determined through vertical projection, and the
horizontal coordinates of up and down points of ground wire
are determined through symmetry constraint. The method is
effective for ground wire detection, but it neglects the effect of
light on the binary image distribution. Literature by Ludan
et al. (2007) models the transmission line as a cylinder with
infinitely length and uniform diameter. A stereo vision method
is proposed based on monocular camera to determine the
location and attitude of ground wire according to
the geometrical characteristics and the imaging principle. The
mathematical model has been improved in literature Cong and
Wei (2011) for detecting ground wire based on the prior
literature. Both of the two kinds of solution introduce the stereo
technology which is effective for the ground wire detection, but
it is lack of camera calibration operation and the light factors
affecting imaging that are neglected. Literature by Weibing
et al. (2012) defines the transmission line offset distance and
angle in image space to characterize the position of ground
wire. After extracting the edge of the gray image and calculating
length of each detected lines, the longest two parallel ones are
selected as the boundary of ground wire by Hough
transformation. Themethod is intuitive and easy to implement,
but the experimental results under the cluster background
which may interfere the lines detection are not given. One
method is proposed in literature Wang et al. (2014) to calculate
angle and intercept of ground wire through the following steps:
intercepting region of interest (ROI) area, binarization, hole
filling, corrosion, connected domain calculation, fitting
connected domain and characteristics calculation. For this
method, the influences of changing illumination and the cluster
background on detection accuracy are considered, but no
contrast experiments are conducted. Literature by Wenming
(2014) analyses the texture of ground wire and proposes one
method to determine position of ground wire based on the
texture feature local binary pattern (LBP) and fuzzy c-means
method (FCM). Statistical characteristics are used to improve
LBP operator and reduce the cost of calculation. The first two-
order Shannon entropy of the image intensity histogram is
selected as the first two-dimensional characteristic of texture
descriptors, and the edge density of canny edge image is selected
as the third dimension. One method is proposed in literature
Hyunho et al. (2013) which filters image with Gabor filter to
characterize the position of the ground wire based on health
coefficient. One method is put forward in literature Song et al.
(2014), which is mainly implemented in three steps, to identify

the normal line, broken strand, counterweight by using histogram
of gradient (HOG) feature and support vector machine (SVM).
First, an ROI rectangle is extracted from the captured image.
Second, the HOG feature of the ROI is extracted. In the third
step, HOG features are put into a hybrid classifier composed of
two SVM to train final classifier. This method can get good
performance when identifying the normal line. However, when
Hough transformation is used to detect the two edges of the
ground wire, the influences of illumination and complex
background are not considered. Literature by Zhenhui et al.
(2015) proposes the pose estimation method for transmission
line based on its textual features and integral projectionmethod.
Both non-vision-based and vision-based methods have their

own advantages, but vision-based methods are better than
non-vision-based methods for three reasons. First, the vision
sensor has the advantages of small volume, light quality and
convenient installation, while the laser sensor, infrared sensor and
radar sensor do not have that advantages. Second, the vision
sensor is not affected by temperature and changes of magnetic
field, but the infrared image is greatly influenced by temperature.
Third, information obtained from vision sensor is comprehensive,
while the non-vision-basedmethod acquires local information.
Based on hand-eye-vision system, this paper proposes one

newmethod called adaptive homomorphic filter and supervised
learning (AHSL) method, which adopts adaptive
homomorphic filter, global and local feature fusion approach
followed by image partition as well as random sample
consensus (RANSAC) algorithm for ground wire detection.
The proposed method AHSL works by pre-processing image
with adaptive homomorphic filter and partitioning images into
overlapped square patches. Then global and local features are
extracted from all of the patches, and all the combined feature
vectors are put into the binary classifier trained by supervised
learning method SVM. After classifying the patches, the
patches which belong to the ground wire are fitted to a straight
line to represent the groundwire by using RANSACmethod.
Section 2 describes the details of the proposed method which

include pre-processing; features extraction and combination; and
ground detection and representation. Section 3 describes the
experiments and results, and Section 4 finally concludes the work
we have done andwhat we are looking forward to in the future.

2. The proposed method adaptive homomorphic
filter and supervised learning

To detect ground wire under the influencing factors mentioned
above, this paper proposed one method called AHSL. In
general, the method can be divided into four steps. The first
step is to blur the image with adaptive homomorphic filter to
compensate illumination. The second step is to divide the
whole image into small blocks, which is called “patch”. For
each patch, global and local features are extracted and
combined into a feature vector to represent the image. On the
basis of the training data set, a binary classifier is generated by
using the supervised learning method SVM to determine
whether the patch belongs to the ground line. Then through
recording all the patches belonging to the ground wire, the
RANSAC algorithm is applied to fit them to 2D straight line.
The flow chart of the AHSL is shown in Figure 1.
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2.1 Pre-processing based on adaptive homomorphicfilter
Based on the Lambert reflection model (Gonzalez and Woods,
2010), an overhead groundwire image I is defined by:

I x; yð Þ ¼ R x; yð ÞL x; yð Þ (1)

where I(x,y), R(x,y) and L(x,y) represent the pixel value
positioned in image coordinate (x,y); the intensity of
illumination reflected by surface of the ground wire and the air;
and the intensity of illumination shine to the ground wire,
respectively. Seen as high frequency signal, R is corresponding
to the high contrast area, such as ground wire, the off-line arm
and the pinch roller. L is seen as low frequency signal
corresponding to the background of the ground wire image
because the image illumination component between adjacent
pixels changes slowly (Wang et al., 2011).
To remove the influence of illumination variation, the

homomorphic filterH(u,v) is applied to suppress low frequency
illumination component and enhance high frequency reflection
component at the same time, which achieves the goal of
illumination compensation for the groundwire image.
To perform exponential operation on both sides of equation (1),

R andL are separated:

ln I x; yð Þ ¼ lnR x; yð Þ1 lnL x; yð Þ (2)

Performing the following operation on image I according to
Figure 2, the output image keeps the reflection component.
Applying the same method proposed in literature Jain

(2011),H(u,v) is defined by:

H u; vð Þ ¼ gH � gLð Þ 1� exp�c D2 u;vð Þ=D2
0ð Þ

h i
1 gL (3)

where D(u,v) is the distance from (u,v) to the original of the
center Fourier transform, D0 is the cutoff distance measured

from the origin, gL < 1 and gH > 1 are the parameters of the
filter, and c is a constant to control the sharpness of the slope of
the filter function as transition take place.
Literature by Faraji andQi (2015) has proven that c is the key

parameter of the homomorphic filter. Every ground wire image
has different unknown amount of illuminations that require a
different filter to compensate illumination. Therefore, we
produce the adaptive homomorphic filter based on each input
image by adjusting the parameter c.
In the spectrum diagram of ground wire, the origin of the

Fourier transform contains the slowest varying frequency
component which corresponds to the average gray level intensity
of the image. While moving away from the origin, the frequency
changes from low to high. Because the illumination component
mainly concentrated in the low frequency part, the origin center
contains most of the varying of the illumination. Therefore, we
consider a square window around the origin of the Fourier
transform and use a ratio among the low frequency component
to determine parameter c, which represents the changing rate of
the low frequency component, that is the change rate of
illumination component. Parameter c is defined by:

c ¼ Mag1
Mag2

(4)

whereMagi is the ith largest value in the square window.
In the experiment, the side length of the square is set to the

15 per cent of the smaller value of image width and height. If
the image size is 320 � 240, the size of the square window is
36 � 36. The other parameters are empirically set to be gH =
1.1, gL = 0.5 and D0 = 36. D0, the cutoff distance, is set to the
side length of the square window.
The effect of adaptive homomorphic filter performed on

ground wire image is shown in Figure 3. It indicates that the
homomorphic filter attenuates the low frequency component.
That is the illumination component of a ground image.

2.2 Feature extraction
2.2.1 Ground wire image partition
For each captured frame, it is divided into some m � m square
window as shown in Figure 4. These square windows are
arranged from the top-left corner to the right-bottom corner,
from left to right, from top to bottom. The horizontal and

Figure 1 The flow chart of proposed method AHSL

Ransac fitting line

Feature extraction
and combination

Contrast R,uniformly U,entropy E

Global information

FLBP ELQP

Local information

[ ]1 2 1 2, , , , ,... ,R U E FLBP FLBP ELQP ELQP

Feature vector

SVM classification
and RANSAC fitting

support
vector

f  ( x ) = 0

SVM

Adaptive
Homomorphic

filter

partitionInput image pre-processing

The RANSAC
fitting line

c

a
b

Patch

Figure 2 The flow chart of homomorphic filter

Input image LOG FT

Inverse
LOG Inverse FTOutput

image

high-pass
filter Threshold

Reflection
component

γL，γH

Overhead ground wire detection

Xuhui Ye et al.

Sensor Review

Volume 38 · Number 3 · 2018 · 376–386

378



vertical moving stride is s which is set to m � 0.75. For every
movement, a sub-image is cropped from the image contained in
the square window; thus, the ground wire image is divided into
many sub-images overlapped each other, and the sub-image is
called “patch” in this paper.
So, for a ground wire image whose size is H � W, it can be

divided intoNm�m square patches andN is given by:

N ¼
$
H �m

s

%
1 1

0
@

1
A�

$
W �m

s

%
1 1

0
@

1
A (5)

Specifically,H=240,W=320,m=12, s=9 andN is 910. So each
image is divided into 910 square patches. The value of parameterm
is related to the diameter of the ground wire and the distance
from the lens of the hand-eye camera to the upper surface of
ground wire. The farther the distance is, the smaller m is. In the
experiment andfieldwork, the distance is limited to a certain value.

2.2.2 Global features extraction
The characterizations of texture can totally be divided into
three categories, namely, smoothness, coarseness and
regularity (Gonzaliez et al., 2009). Three features are used to
represent the global information of the ground wire patch
characterized by texture.
For a ground wire patch Z which is shown in Figure 4, let z

be a random variable denoting intensity and let p(zi), i = 0, 1,
2,. . ., L-1, be the corresponding histogram, where L is the
number of distinct intensity level.
The first global statistical feature R is based on the second

moment of zwhich is particular important in texture description.
Because z is a measure of intensity contrast, it can be used to
establish relative smoothness descriptors.R is given by:

R zð Þ ¼ 1� 1

11s2 zð Þ= L� 1ð Þ2 (6)

It is 0 for areas of constant intensity and approaches 1 for large
values of s2(z).
The second feature U is texture measures based on

histograms including ameasure of “uniformity”, given by:

U zð Þ ¼
XL�1

i¼0

p2 zið Þ (7)

TheU(z) is large for smooth area and relatively small for coarse
area, and all values are in the range (0,1). It is a measurement of
similarity of image pixels.
The third statistical global feature E is an average entropy

measurement, which you will recall from the basic information
theory. It is defined as:

E zð Þ ¼ �
XL�1

i¼0

p zið Þlog2 p zið Þ=L (8)

The value of E(z) is in the opposite order and thus leads to the
same conclusions as the uniformity.
The three global features of three different type of texture

patch (as show in Figure 4) are shown inTable I.
The ground wire is composed of aluminum strands and the

appearance texture is regular, while the background of it shown
in Figure 4 is either smooth or coarse. For feature R in Table I,
patch a gets the lowest value because it lies in a smooth region
where all intensity of pixels are almost the same, while patch
b gets the highest value as it has extensive variation in intensity.
Given a patch of the captured image, the one with the R value
which is higher than a threshold and lower than another
threshold has little probability to be a ground wire patch. The
feature E does have the same characters with feature R, while
the feature U does have the opposite characters. From the
Table I, we can know that the three global features are useful
tools to distinguish ground wire and the background. So the
global feature of groundwire is defined asG = [R,U,E].

2.2.3 The LBP histogram feature extraction
Derived from a general definition of texture in a local
neighborhood, LBP proposed in literature Ojala et al. (2002) is
defined as a grayscale invariant texture measurement. It is a
useful tool to model texture images. Its effectiveness proves in
image classification (Yuan et al., 2015; Nanni et al., 2012), face
recognition (Zhou et al., 2013; Shen et al., 2016), vehicle
detection (Hu et al., 2016), texture classification (Ojansivu and
Heikkilä, 2008) and so on.
As shown in Figure 5, for any point p on the ground wire, the

pixel values of 3 � 3 pixels in the domain are compared with
intensity value of point p to obtain a binary sequence. The LBP
code at point p is given by:

Figure 4 The schematic diagram of image block

Table I Texture measures for the sub-image shown in Figure 4

Standard texture R U E

a 0.003 0.103 0.052
b 0.105 0.002 0.636
c 0.025 0.032 0.125

Figure 3 The result of homomorphic filter performing on ground wire
image
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LBPP;R ¼
XP�1

p¼0

d gp � gcð Þ2p (9)

where gc is the intensity value of point p. gn is the intensity value
of neighborhood pixels. R is the radius of neighborhood. P is
the number of neighborhood points, and the sign function d (·)
is given by:

d xð Þ ¼ 1; x > 0
0; x � 0

�
(10)

As shown in Figure 5, the LBP codes of each pixel are
calculated through statistical analysis to get the LBP histogram
distribution of coding, so the feature vector of the ground image
patch is given by [H1, H2, . . .Hn], where Hi is the number of
occurrences of intensity value i, and n is the dimension number
of feature vector. The feature vector is normalized to get the
final vector which is given by H = [H1’, H2’. . .,Hn’], where
Hp’= (Hp-min(Hn))/(max(Hn)�min(Hn)).
For the original LBP discussed above, the overall dimension

of feature vector is 2P. An extension of LBP patterns is called
circular uniformLBPwhose dimension number is P1 2. It first
links the head and end of the obtained binary sequences to get a
circle binary sequence, choose the different node as the starting
bit to form P binary sequences, select the smallest LBP code
among the P binary sequence as the desired LBP code of point
p and finally categorize the LBP codes to the same class which
contain two times more than those of transition from 0 to 1or 1
to 0. Based on the calculation of the original LBP codes of
ground wire, the circular uniform LBP histogram are extracted
to represent the final feature vector.

2.3 Feature combination
The scheme which fuses different features to boost the
description power is popular in computer vision application, and
the literature Premebida et al. (2009), Yuan et al. (2015) and
Zhenhui et al. (2015) have proven its reliability in pedestrian
detection, scene classification and cloud classification.
For each patch shown in Figure 1, the global feature G and

local feature H discussed above are extracted, and they are
combined to form a description of the patch. The simple way to
combine features is to concatenate the two feature vectors and
assign the same weights to the two of them, which is given by
V = [G,H]. The weighting scheme ignores the differences in the
discriminative power of global and local features which may
lower the performance of combination. A straightforward
approach to improvement is to assign weights to features based
on their discriminative power. Assuming that the discriminative
power of m feature vectors is estimated and given by pi, i =
1,. . .,m, we can simply define the weights of these feature
vectors as follow:

v i ¼ piXm

j¼1
pj
; i ¼ 1; . . .;m (11)

This definition is consistent with our intuitive that feature
vectors with a larger discriminative power should be assigned
larger weights.
There are two feature vectors in our work, and m is set to 2.

The weights ofG is set to b , which is called mixing coefficient,
and the weight of H is set to 1-b . The combined feature vector
is given by:

V ¼ bG; 1� bð ÞH½ �;G ¼ R;U;E½ �;H ¼ H1; . . .;Hn½ �
(12)

whereG andH are global feature vector and local feature vector,
respectively, and n is the dimension of local feature vector which
is P 1 2, and P is the number of considering neighborhood
pixels in circular uniformLBP feature extraction.
Therefore, for a ground wire image captured by hand-eye

camera, the combined features are extracted, and all the feature
vectors are sent to the next processing phase as testing data, and
the schematic diagram is shown in Figure 6.

2.4 Ground wire detection and representation
2.4.1 Ground wire detection
As the ground wire image is divided into square patches, the
purpose of ground wire detection is transformed into the
classification of the patches. SVM is a kind of supervised
machine learning algorithm based on structural risk
minimization. It is commonly used to solve the problem of
binary classification and shows particular advantages in the
aspect of solving problems of small samples data sets, nonlinear
and high-dimensional pattern recognition. Therefore, in this
paper, SVM is applied to solve this problem.
Each training samples contained in training samples set D can

be expressed as Di = (xi, yi), i = 1, 2,. . .n,where n is the total
number of training samples, and xi is the feature vector discussed
in previous stage, yi is the corresponding label of xi and yi [ {�1,1}.
The label �1 indicates the patch, as patch a in Figure 6, which
belongs to background and 1means the patch, as patch c in Figure

Figure 5 The feature extraction of LBP histogram

Figure 6 The feature vector
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6, which belongs to the ground wire area. For testing data, the
label is unknownwhich is ready to be assigned by SVM.
For a linear separable problem, an optimal separating

hyperplane, given by wTx 1 b = 0 is desired to be found to
separate positive sample data and negative sample data, and the
classifier function is given by f(x)= wTx 1 b, where w is
the normal vector of the hyperplane. b is the intercept of the
hyperplane equation. For any input feature vector x, if f(x)> 0,
the label of the corresponding patch is set to 1. The hyperplane
tries to maximize the gap which is given by 2/kwk between
positive samples and negative samples, and the propose is equal
to minimize the object function kwk2. For a linear inseparable
problem, the slack variable z is introduced to allow a certain
degree of mistaken classification. The constraint condition is
yi[w

Tx1 b]≥1-j i. The penalty factor C is proposed at the same
time to value the importance of mistaken classification points,
and large value of C means that there is intolerance with
mistaken classification. Accordingly, the problem is converted
to minimize the object function under constraint conditions,
which is given by:

min :
1
2
kwk2 1 C

Xl

i¼1

j i (13)

where the constraint condition is given by yi[w
Tx1 b] ≥ 1� j i,

j ≥ 0, i= 1, 2,. . .,n.
The appropriate mapping transformation U is selected to map

the feature vector of the sample to high-dimensional feature
space, so that the inseparable problem can be transformed into
separable problem. Because the mapping function f is hard to
find out, the appropriate kernel functionK is proposed to receive
two low-dimensional feature vectors to obtain the result which is
equal to the inner produce of two feature vectors in the high-
dimensional space, and the equation is given by:

K xi ; xjð Þ ¼ hU xið Þ;U xjð Þi (14)

where <xi, xj> is the inner product of vectors xi and xj. The
parameter w is related to the feature vector and label of the
training sample, and we assume that:

w ¼
Xl

i¼1

aiyixið Þ (15)

where a is the Lagrange multiplier. So the classifier function is
given by:

g xð Þ ¼ sgn
Xl

i¼1

aiyiK xi; xð Þ1 b

" #
(16)

In the experiment, the RBF kernel function is applied and the
core parameters areC and g .
For each test sample, the feature vector xi is calculated and

put into the equation (14), we get 1 or �1 which represents
positive sample or negative sample, respectively. Figure 7
shows the classification result of a testing frame. The patches
which are classified as positive samples are shown in the image
with a black center point. It indicates the position of the sample
under the image coordinate.

2.4.2 Ground wire representation
The ground wire in the image may be seen as a 2D straight line
overlap with the center line of the groundwire. The result of the

detection phase is a collection of candidate patches. But as
shown in Figure 7, not all points represent candidate patches
which are in the ground wire area, such as point B and Point C
which are the mistaken detection samples. The black points in
Figure 7 can be divided into inner points and outliner points.
The inner points are the ones which lie in the area of ground
wire and the outliner points are outside the area of the ground
wire. It is difficult to find the accurate line through all the inner
points by conventional linear fitting method, i.e. least square
method because it is tried to consider all the candidate points
which include outliner points.
RANSAC algorithm is a kind of robust parameter estimation

method. A model estimation is obtained through the random
subspace of all the points to test the remaining points to get a
score. Repeating the action certain times, the model with the
biggest score is selected as the final model of all the points. The
premise of the correct erection for the ground wire by using
RANSAC is based on two assumptions. One is that the
majority of the detected candidate patches using SVM are in
the area of ground wire, and this assumption is verified by the
following experiments based on the proposed method AHSL.
The other one is that the iteration times k should be large
enough to ensure that all the selected points are all the inner
points at least one time, and the k is given by:

k � log 1� h0ð Þ
log 1� «mð Þ 17

where h0 is the confidence coefficient and equal to 0.95 in the
following experiment. 1 � h0 is the probability that an inner
point is classified as outliner point.m is the numbers of random
selected points each iteration and is set to 2. e is the ratio of the
number of inner points and the number of all points, and it is
set to 0.5. According to the equation (17), k should be larger
than 10. So k is set to 15 in the experiment.
The fitting results of the detected points in Figure 7 by least

square method and the RANSAC method are shown in
Figure 8. It can be indicated that the RANSAC method can
eliminate outliner points and fit out the groundwire accurately.
After detecting the ground wire, it is represented by two

parameters u and l , given by Figure 9. u means the angle
between the vertical middle line and the center line of
the ground wire. Starting from the middle vertical line, u is
positive in clockwise and negative in anti-clockwise. l donates
the distance between center point of the image and the
intersection point of center line of ground wire and center line
of the image height orientation. When the ground wire is on

Figure 7 The SVM classification of ground wire patches
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the left side of the central vertical line, g is positive. Conversely,
it is negative.

3. Experiment and result

3.1 Data sets setup
The positive samples of the training set are cropped manually
from the image patches which belong to ground wire, and the
negative samples of the training set are cropped randomly from
the image patches which belong to the background of the
image. The images under different illuminations are used to
create testing data set.

3.1.1 The establishment of the training set
Considering two kinds of ground wire with different surface
that one is a new ground wire and the other is a relative old
ground wire, the images are taken under different illumination
conditions camera, and the patches which belong to the ground
wire are cropped to be used as positive samples. The negative
samples are cropped randomly from the images which screen
out the ground wire. The size of the cropped patches is 20� 20
and part of the training samples is shown in Figure 10.

3.1.2 The establishment of the testing set
Considering two-ground wire with different surface, two
testing sets called A and B are created based on the two-ground
wire. A is relatively older ground wire and B is relatively newer
ground wire. For each ground wire, images taken by hand-eye
camera are different due to the various illumination in the
different period of the day. Five hundred images are selected on
an average to be the testing set. For each captured image, the
parameters u and g are assigned to it, and g is set to 1000 if
there’s no ground wire in the image. Some of the testing images
in set A and B are shown in Figure 11. The first row of
Figure 11 shows the examples of set A and the second row
shows the examples of set B.

3.2 Experiment setup
For the two testing data sets, A and B, we perform all
processing in grayscale. To evaluate the effects of the adaptive
homomorphic filter on the final detection accuracy, the mixing
coefficient b is set to 0.5, and a comparison experiment
between the with and without adaptive homomorphic filter is
performed. To find out the optimal mixing coefficient b , we
enumerate the b from 0.1 to 0.9. To prove the effectiveness of
the proposed method, the comparison experiment between
previousmethods and the proposedmethod is performed.
For each experiment, the sizem of the square patch shown in

Figure 4 is given by m ¼ d
ffiffiffi
2

p
, where d is the diameter of the

ground wire shown in Figure 9, and d = 16 mm for data A and
B. In the ground wire contour, the size of the vertical internal
max square from the max incircle is chosen as the one of the
patch. This is a rational method because the patch is full of the
ground wire with the largest probability. Larger m will lead to
higher false negative ratio because the patch which belongs to
the ground wire can be classified as background. Smaller m will
lead to the increase of the total number of the patches which
will consumemore calculation resources.
The parameter R is the radius of neighborhood, and P is the

number of neighborhood points. They are set to (2, 16)
empirically. The core parameters of the SVM (C,g) used in this
paper are optimized by the grid search method, which is
provided by the LibSVM toolbox (Chang and Lin, 2011), and
the final parameters is (2.0, 45.2) for b = 0.2.
For a testing sample, if Du � 3° and Dl � 5 pixels, we treat it

as an accurate detection, where Du and Dl denote the absolute
differential value of the u and l of the fitting line by RANSAC
method and the sample itself. The detection accuracy is given
by:

accuracy ¼ TP
N

(18)

Figure 8 The fitting result (a) least square method and (b) the RANSAC
method

Figure 9 The parameters of detected ground wire

Figure 10 The part training samples of ground wire

Figure 11 The part testing samples
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where TP denotes the number of accurate detection and N is
the total number of testing sample. The definition is used to
evaluate the performance of all the following experiments.

3.3 Result
3.3.1 The effect of the adaptive homomorphic filter
The illumination changes of the testing images are caused by
the changing environment where the robot works. To
evaluate the performance that the adaptive homomorphic filter
is applied to compensate the illumination variation, a set of
controlled experiments were performed on data sets A and B,
which are relatively older and newer ground wire, respectively.
The first experiment was performed under the condition that
there is no pre-processing filter, and the following procedures
are the same as the proposed method AHSL. The second
experiment was performed under the condition that the core
parameter c of the adaptive homomorphic filter is set to fixed
value 0.9 empirically, and the following procedures are the
same as the proposed method AHSL. The third experiment
was under the proposed method with the adaptive
homomorphic filter as the pre-processing procedure.
Figure 12 shows the results of the experiments, and Table II

gives the details of the performance obtained from our method.
It can be concluded that the adaptive homomorphic filter
applied in the proposed method improves the detection
accuracy of the groundwire tremendously.
From the Table II, the row means the performance of the

three experiments on the same data set. It can be seen from the
first row in Table II that the method with the adaptive
homomorphic filter achieves the highest detection accuracy
among the three experiments in the data set A, and the
performances of the first two controlled experiments are almost
the same. The results shown in the second row reveal the same

discipline as the first row. The reason is that the robot working
environment is characterized by an open space and complex
illumination changes. The varying working environment leads
to the illumination changes in the captured image, and the
interference of illumination differs from image to image.
Therefore, we need to filter the image with different amount of
compensation for each image. If a fixed illumination
compensation parameter is applied on all testing images, the
performance of the method is inacceptable. Accordingly, for
each input testing image, the parameter of the amount of the
illumination compensation should be calculated, namely,
adaptive parameters, to achieve improvement in detection
accuracy of the groundwire.
From Figure 12 and Table II, we can see that the adaptive

homomorphic filter improves the detection accuracy to a
certain extent, but to be exact, the improvement is limited. The
highest detection accuracy is 62.3 per cent for data set B and
56.0 per cent for data set A which is relatively low for detecting
ground wire. The reason is that the features mixing coefficient
b is set to a constant value 0.5. That is to say, we assign the
same weights to the global and local features. However, the
different importance of the two feature vectors are not taken
into account. This kind of average weighting method may
inhibit testing potential performance of the proposed method
AHSL.

3.3.2 Relationship between mixing coefficient and final
performance
The detection accuracy is related with the features mixing
coefficient b because the global and local features are
combined to form the final feature vectors. b and 1-b denote the
proportion of the global feature vector G and the local feature vector
H, respectively. To find the optimal b to get the best performance,
we assign 21 different values to it between 0 and 1 in an interval
of 0.05, and Figure 13 shows the performance under different
value of b .
In Figure 13, it can be concluded from the two curves that

when b is approaching 0.2, the highest performance is
achieved. That is to say, when the proportion of the local
feature vectors is 80 per cent, the optimal performance is
achieved. The results show that the local features possess the
powerful description ability and discriminative power for the
texture of the groundwire.
When b is approaching 1, only the global feature vector is

used as final feature vector. When the detection accuracy is

Figure 12 The results of adaptive homomorphic filter on data set A
and B
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Table II The detection accuracy of the three different methods on data set
A and B

Accuracy (%) Non-filter
Fixed-value

homomorphic filter
Adaptive

homomorphic filter

Data set A 31.1 32.2 56.0
Data set B 35.2 38.1 62.3

Note: The highest results are shown in italic

Figure 13 The performance under varying mixing coefficient b
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merely 20 per cent, the performance is undesirable. When b
is approaching 0, only the local feature vector is used as the final
feature vector, and the detection accuracy is about 69 per cent.
The reason is that the global features are statistical
characteristics and describe the texture of the image roughly
which is smooth, coarse and regular. It may be similar about the
global features of the patches belonging to the ground wire and
background. Under this condition, the ground wire patches
and the background patches can be mistakenly identified which
may produce more mistaken classification, and the final
detection accuracy is relatively low. The local feature vector
H is the LBP histogram features which can resist partly
changing illumination as well as 2D rotation. It is capable of
describing the texture of the ground wire shown in the image
with arbitrary angle and under varying illumination. But when
the distance between the surface of the groundwire and the lens
of the camera varies slightly which may lead to texture density
changes. The LBP histogram features of the patches in the
same position may be different which will lead to mistaken
classification. But another fact is that the global statistical
features remain constant under this circumstance. Therefore,
the global features can be used as a complementary information
for the local feature vectors so as to achieve the effect of the two
complementary advantages
Meanwhile, it can be concluded from Figure 13 that the

performance on the data set B is better than the performance on
the data set A with varying b . The reason is that the surface of
the image containing relatively older ground wire in data set A
may be corroded by some factors, which will lead to the
breakage of the texture.

3.3.3 Comparison with other methods
We compare the performance of our approach with other
methods mentioned in the introduction part of this paper on
testing data set A and B. The performances of our approach
and othermethods are summarized in Figure 14 andTable III.
In the data set B, the detection accuracy of the method based

on Hough transformation (Cong and Wei, 2011) is merely 35
per cent. All lines in the image are detected, and the longest two
lines are selected to determine the parameter for the ground
wire. The similar method proposed in literature Song et al.
(2014) is applied to extract HOG features and perform
classification procedure using SVM, and the detection accuracy
is 65.1 per cent. The method proposed in literature Wenming
(2014) extracts LBP features of the image and perform image
segmentation using FCM, and the detection accuracy is 72.2

per cent. The method proposed in literature SunSin and
JangMyung (2008) with infrared sensors capture the infrared
images of the ground wire, and the detection accuracy is 57.0
per cent. This method is implemented on another robot of our
laboratory. The proposed method AHSL achieves the best
performance which is 85.3 per cent, and the mixing coefficient
b is set to 0.2 which is the optimal parameter discussed in
previous experiment. The results on testing data A reveal the
same discipline as the data set B.
The improvement of our approach on testing data A and B

mainly depends on two effectual procedures. One is that the
adaptive homomorphic filter is introduced in the proposed
method AHSL with invariant illumination. For each input
testing image, the optimal illumination compensation
coefficient is calculated to remove the effect of the varying
illumination. The other is that the combination of the global
and local feature is introduced in the proposed method AHSL.
The optimal mixing coefficient is obtained through the
enumeration method. The combined features possess
abundant information about the texture of the ground wire
which is more powerful in describing the texture and
discriminating the groundwire and the background.
Meanwhile, compared all the results on data set A and B, the

performance on B is better than that of A. The reason is that the
image surface of testing data A containing relatively older
ground wire may be corroded by some factors, which will lead
to the breakage of the texture.

3.3.4 The field experiment
To verify the validity of the proposed method AHSL, we
conduct experiments on a simulation groundwire and an actual
ground wire both under the open and complex changing
illumination condition. Figure 15(a) shows the software
window when the robot is finding ground wire, and Figure 15
(b) shows the experiment performed on simulation ground
wires. Figure 15(c) shows the experiment performed on real
projection. In the process of the two experiments, the robot can
detect the ground wire accurately under the changing
illumination, so it can seize the ground wire and cross the
obstacle rapidly. The result shows that the method has certain
advantages in practical application to some extent.

4. Conclusion

This paper presents a novel method AHSL by using
adaptive homomorphic filter and global and local feature
fusion approach based on image partition. This method is
followed by RANSAC approach for ground wire detection.
The proposed method AHSL works by pre-processing

Figure 14 The performance comparison with other methods
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Table III The performance comparison with other methods

Methods A(%) B(%)

Hough transformation (Cong and Wei 2011) 33.2 35.0
HOG1 SVM (Song et al., 2014) 60.1 65.1
LBP1 FCM (Wenming, 2014) 65.2 72.2
Infrared sensors (SunSin and JangMyung, 2008) 56.3 57.0
Our method AHSL 80.8 85.3

Note: The best performance of each data set is shown in italic
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image with adaptive homomorphic filter which can
decrease the influence of the varying illumination. In the
feature extraction step, global and local features are fused
with different weights to form the final feature vectors
which contain more abundant local and global information
than a single global or local feature.
This method AHSL has achieved 80.8 per cent detection

accuracy on data set A which contains relatively older ground
wires and 85.3 per cent detection accuracy on data set B which
contains relatively newer ground wires, and the field
experiment shows that the robot can detect the ground wire
accurately. The performance which is achieved by proposed
method is the state of the art under open environment with
varying illumination. In our future work, we will focus on the
ground wire detection method aiming at different kinds of
ground wire with different aging degree and improving the
efficiency of the algorithm as the real time processing is
important for the practical application.
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