
Application of complex network
theory in identifying critical

elements of CRH2 train system
Huiru Zhang

State Key Laboratory of Rail Traffic Control and Safety,
Beijing Jiaotong University, Beijing, China and School of Traffic and

Transportation, Beijing Jiaotong University, Beijing, China

Limin Jia
State Key Laboratory of Rail Traffic Control and Safety,

Beijing Jiaotong University, Beijing, China and
Beijing Engineering Research Center of Urban Traffic Information Intelligent

Sensing and Service Technologies, Beijing, China

Li Wang
School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China
and Beijing Engineering Research Center of Urban Traffic Information Intelligent

Sensing and Service Technologies, Beijing, China, and

Yong Qin
State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong

University, Beijing, China

Abstract
Purpose – Based on complex network theory, a method for critical elements identification of China Railway
High-speed 2 (CRH2) train system is introduced in this paper.

Design/methodology/approach – First, two methods, reliability theory and complex theory, are
introduced, and the advantages and disadvantages for their application in identifying critical elements of
high-speed train system are summarized. Second, a multi-layer multi-granularity network model including
virtual and actual nodes is proposed, and the corresponding fusion rules for the same nodes in different layers
are given.

Findings – Finally, taking CRH2 train system as an example, the critical elements are identified by using
complex network theory, which provides a reference for train operation andmaintenance.
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Originality/value – A method of identifying key elements of CRH2 train system based on integrated
importance indices is introduced, which is a meaningful extension of the application of complex network
theory to identify key components.

Keywords Critical elements, Network model, Integrated importance ranking, Entropy weight,
Grey relation analysis

Paper type Case study

1. Introduction
1.1 Background
Because of its advantages of rapid speed, high frequency and good service, the high-speed
railway system has become a national business card. China’s high-speed railway mileage
reached 29,000 kilometers until the end of 2018, more than 66% of the world’s total and is
still in a period of rapid development (People’s Transportation Network, 2019). According to
the medium and long-term railway network planning, a high-speed railway network with
the main framework of “eight vertical eight horizontal” will be formed by 2030 (National
Railway Administration, 2016).

At present, there are many types of high-speed trains in China such as CRH1, CRH2,
CRH3, CRH5, CRH6 and CRH380 and each type of train is slightly different to meet the
requirements of different operation scenarios. Among them, the CRH2 train is widely used,
mainly serving various new high-level railways such as national trunk railways,
interregional trunk railways and intercity suburban railways. Therefore, the CRH2 train is
studied as an example in this paper. A high-speed train system is an extremely complex
system with tens of thousands of components with different structures and functions (He,
2007a, 2007b). The train system, also called the equipment system, includes six subsystems
and there are interaction relationships between these subsystems. Furthermore, each
subsystem consists of a large number of elements with interactional relations (Figure 1).

The identification of system-level critical elements is of great practical significance,
which is conducive to maintaining the safety and reliability of high-speed railway system.
On the one hand, it can support the reliability improvement and optimization during the
design stage. On the other hand, it can also reasonably allocate the detection and
maintenance resources during the operational phase. Because of the large scale and high
complexity of high-speed train systems, system-level critical element identification methods
that require a large number of reliability tests and statistical data become infeasible. In
practice, however, only a small amount of experimental data, field data and engineering
experience information is available (Lin et al., 2018). Therefore, a more cost-effective
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identification method is needed in high-speed railway systems to achieve operational
reliability, availability, maintainability and supportability (Saraswat and Yadava, 2008).

1.2 Related literature
The critical elements of the high-speed train system refer to the unit that plays an important
role in maintaining the global topology and normal functions. The importance measure is
the common method of system-critical elements identification, which can be roughly divided
into the following two types.

1.2.1 Importance measurement based on reliability theory. In the existing research on the
identification of critical elements, important indices of reliability have been widely used.
Birnbaum’s importance is a sensitivity analysis method widely used in the field of
component reliability (Wang et al., 2004). Critical importance is usually combined with fault
tree analysis to measure the impact of failed critical components on system failures (Espiritu
et al., 2007; Lambert, 1975). The reliability achievement worth (RAW) importance mainly
measures the importance of the component to maintain the current reliability level of the
system, and alternately, the reliability reduction worth (RRW) importance is mainly used to
analyze the degree of influence on the current reliability level of the system when the
component is always unreliable (Bisanovic et al., 2016). Fussell-Vesely’s importance is
mainly used to evaluate the influence of a minimal cut set containing at least one failed
component on the system reliability (Van Der Borst and Schoonakker, 2001). The Bayesian
reliability importance measures the probability that a component fails given that the system
fails (Zhu and Kuo, 2014).

In general, the following assumptions are made before the analysis of reliability
importance.

� Failure probabilities and repair times are independent.
� Component states and associated probabilities are known.

However, in real systems, components are interdependent in the process of implementing
functions and reliability also affects each other (Dobson et al., 2007). Therefore, for a
complex system such as the high-speed train system, it is almost infeasible to accurately
obtain information on the reliability importance of each component to identify critical
components, which is also uneconomical.

1.2.2 Importance measurement based on complex network theory. As the
groundbreaking work of Watts and Strogatz (1998) regarding small-world networks and
Barab�asi and Albert (1999) regarding scale-free networks, real-word phenomena have begun
to be studied from the perspective of actual networks and network theory. Taking
components as nodes and connecting relationships as arcs are the main mean of abstracting
actual systems into complex networks (Lin et al., 2018; Wang et al., 2017). Kou et al. (2018)
proposed a new method that can better use the theory of network flow to represent the
network: arcs represent the components, and nodes are the transitive relation. For the
distributed and complex electromechanical system, Wang et al. (2016) generated a
penetrable visibility graph method that combines the phase space reconstruction method.
Topological features include degree centrality (DC), betweenness centrality (BC), closeness
centrality (CC), etc (Bonacich, 2007; Brandes et al., 2016; Chen et al., 2012; Du et al., 2015; Hu
et al., 2015).

The application of the topological approach to measure importance is quite popular. On
the one hand, it has obvious advantages in the analysis of complex systems because it is
relatively simple to use. On the other hand, it offers the capability of identifying elements of
structural reliability, i.e. network edges and nodes whose failure can induce severe damage
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to the network through the physical disconnection of its parts. However, the traditional
complex network approach only focuses on the topology characteristics of the network and
ignores the physical significance of the components (Hines and Blumsack, 2008; Zio and
Golea, 2012). In this respect, it is important to possibly overcome these limitations by
complementation with more actual characteristic analyzes on components of complex
systems (Bompard et al., 2009).

1.3 Contributions
A method of identifying key elements of the CRH2 train system based on integrated
importance indices is introduced, which is a meaningful extension of the application of
complex network theory to identify key components. Our work makes two important
contributions.

(1) A multi-layer multi-granularity network model suitable for the identification of
critical elements in the high-speed train system is presented, including virtual
nodes and actual nodes. The rules for merging edges of the same component at
different layers are given.

(2) Considering the topology structure, actual function and risk characteristics of the
high-speed train system, an integrated importance ranking algorithm based on
entropy weight and grey relation analysis is proposed. This algorithm
compensates for the lack of actual features of the complex network theory.

The rest of this paper is structured as follows: Section 2 describes a multi-layer multi-
granularity network model and details the rule of fusion. Section 3 explains the integrated
importance ranking algorithm of the proposed networkmodel. A case study is used to verify
the effectiveness of the network model and importance ranking algorithm in Section 4.
Finally, conclusions are drawn in Section 5.

2. Methodology
2.1 The network model
Based on the definition of dependency relationship between elements in train system in
Wang et al. (2017), we define the connection relationship between the components in the
established network as mechanical connection, electrical connection and information
connection. Therefore, the conception of the mechanical layer, electrical layer and
information layer is proposed. The multi-layer multi-granularity network S is built as
follows:

S ¼ S1;S2; � � � ;Si; � � �f g
Si ¼ Gi;a;Gi;b ;Gi;y

� �
Gi;a ¼ Vi;Ei;a

� �
Gi;b ¼ Vi;Ei;b

� �
Gi;g ¼ Vi;Ei;g

� �

8>>>>>>>><
>>>>>>>>:

(1)

where Si is subsystem i of the train system, Gi,a, Gi,b and Gi,g are the mechanical layer,
electrical layer and information layer of subsystem i, Vi is the set of nodes of subsystem i,
Ei,a, Ei,b and Ei,g are the set of links of three layers of subsystem i.
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Vi ¼ vviri ;Vreal
i

n o
Vreal
i ¼ vreali;1 ; vreali;2 ; � � � ; vreali;s ; � � �

n o
8><
>: (2)

where vviri is the virtual node of subsystem i, Vreal
i is the set of real nodes of subsystem i, vreali;s

is the real node s of subsystem i. Note that, nodes in different layers of the same subsystem
are identical:

Ei;u ¼ Eaffi
i;u ;E

act
i;u

n o
Eaffi
i;u ¼ evviri ;vreali;1

; � � � ; evviri ;vreali;s
; � � �� � ; u 2 fa; b ; gg

Eact
i;u ¼ eu

vreali;1 ;vreali;2
� � � ; eu

vreal
i;s

;vreal
i;t

; � � �n o

8>>>>><
>>>>>:

(3)

where Eaffi
i;u is the set of links representing affiliation relationships of subsystem i, Eact

i;u is the

set of links representing action relationships of subsystem i, evviri ;vreali;s
is the link between vviri

and vreali;s , eu
vreali;s ;vreali;t

is the link between vreali;s and vreali;t at layer u.

The structure diagram of the network is shown in Figure 2. In the equipment system,
each subsystem Si has a virtual node vviri and several real nodes, and two real nodes may
have different relationships at the mechanical, electrical and information layers.

2.2 Fusion rules of links of different layers
For the constructed multi-layer complex network, fusion rules of edges of the different layer
are given (Zhang et al., 2020). With the help of a common vertex, the connections of different
layers can be merged. For example, through node 5, ea

vreali;5 ;vreali;3
and eb

vreali;5 ;vreali;4
can be merged

(Figure 3). If two nodes have connections at different layers, the connections are merged into
one. For example, for nodes 3 and 5, ea

vreali;5 ;vreali;3
and eg

vreali;5 ;vreali;3
are merged into one.

3. An integrated importance ranking algorithm
An importance ranking algorithm considering the actual function and risk characteristics of
the complex network based on the topology structure is proposed.

Figure 2.
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3.1 Selection and calculation of indices
3.1.1 Indices of topology characteristics. The topology indicator Ktopo

s of component s
consists of four indices. Topology degree I topodeg sð Þ is the simplest centrality measure of a node
in a complex network, and the more links a given node is connected the more important it
will be. Topology closeness centrality I topoclose sð Þ represents the “closeness” of a node to the
others and the larger the value, the more important the node is. Topology betweenness
I topobetw sð Þ refers to the number of shortest paths through a given node in the complex network,
and the larger the value, the more important the component. Topology efficiency I topone sð Þ
measures the network efficiency on the condition that the component s is in failure, and the
smaller the value is, the more important it is, which is contrary to the judgment standard of
the other three indices:

Ktopo
s ¼ F I topodeg sð Þ; I topoclose sð Þ; I topone sð Þ; I topobetw sð Þ

� �
I topodeg sð Þ ¼

Xm

t¼1
ast

I topoclose sð Þ ¼ m� 1ð Þ=
Xm

t¼1
dst

I topone sð Þ ¼ 1=m m� 1ð ÞX
s6¼t

1=dst

I topobetw sð Þ ¼
X

a 6¼s6¼b2Ss ab sð Þ=s ab

8>>>>>>><
>>>>>>>:

(4)

where ast is the value of the sth row and the jth column of the adjacency matrix,m is the total
number of nodes in complex network S; dst is the shortest path between node s and t, which
is the number of links between two nodes; both values sab(s) and sab are related to the
number of shortest paths between nodes a and b, but the difference is that the former only
calculates the shortest paths through node s. The indicator Ktopo

s mainly presents the
topology characteristic of the complex network. The bigger the value Ktopo

s is, the more
important the component corresponding to the node is in the topology structure.

3.1.2 Indices of function characteristics. On the basis of the Ktopo
s , the function

importance indicator Kfunc
s is defined according to the importance of the components to the

train operation.

Figure 3.
Fusion rules of links
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Kfinc
s ¼ F I funcdeg sð Þ; I funcdose sð Þ; I funcne sð Þ; I funcbetw sð Þ

� �
I funcdeg sð Þ ¼ v s � I topodeg sð Þ
I funcclose sð Þ ¼ v s � I topoclose sð Þ
I funcne sð Þ ¼ v s � I topone sð Þ
I funcbetw sð Þ ¼ v s � I topobetw sð Þ

8>>>>>><
>>>>>>:

(5)

where v s is the coefficient representing the function importance of node s, and the value can
be given through the method of scoring by expert’s experience (Table 1).

On the basis of rich practical experience, experts rank the importance of each node, with
scores ranging from 0 to 1. If the value ofKfunc

s is large, the corresponding component plays
an important role in ensuring the normal operation of the train.

3.1.3 Indices of risk characteristics. Considering the possibility and impact of the failure,
the risk indicatorKrisk

s is defined:

Krisk
s ¼ F I riskdeg sð Þ; I iskclose sð Þ; I riskne sð Þ; I riskbetw sð Þ

� �

I riskdeg sð Þ ¼ ps � ls �
Xm
t¼1

ast

I riskclose sð Þ ¼ m� 1ð Þ=
Xm

t¼1
d�st

I riskne sð Þ ¼ 1=m m� 1ð ÞX
s6¼t

1=d�st

I riskbetw sð Þ ¼
X

a6¼s6¼b2Vs
�
ab sð Þ=s�

ab

8>>>>>>>>>><
>>>>>>>>>>:

(6)

where ps is the coefficient of occurrence frequency of node s counted from fault data
(Table 2); qsa is the impact on node a after the failure of node s; d�st is the risk shortest path
from nodes s to t; ls is the severity of the impact on train operation when node s fails obtained
from the historical text data. Note that, the impact on train operation we mentioned here
means that the train has to be stopped temporarily and ls is the value of the current state that
the node has degraded from the optimal state, where ls ranges from 0 to 100. A larger Krisk

s
means that when the corresponding component fails, the greater the impact on train
operation. Table 1.

Grading standard for
evaluating the

function importance
in the high-speed

train system

Score [0, 0.3] [0.4, 0.7] [0.8, 1]

Standard Less important Important Very important

Table 2.
The grading

standard for failure
frequency

Score 1 2 3

Failure frequency High Medium Low
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3.2 Integrated importance measure
An importance ranking algorithm combining the entropy weight method and grey relational
analysis is introduced here to measure the integrated importance.

3.2.1 Index preprocessing. Because the goals and directions of these indices are different,
processing all performance values for every component into a comparability sequence is
necessary. If there are m components and n index, the sth component can be expressed as
Is = (Is1,Is2,� � �,Isx,� � �,Isn), where Isx is the performance value of index x of component s. The
term Is can be translated intoDs by use of one of the equations (7)–(8):

dsx ¼ Isx �min Isx; s ¼ 1; 2; � � � ;mf g
max Isx; s ¼ 1; 2; � � � ;mf g �min Isx; s ¼ 1; 2; � � � ;mf g for s ¼ 1; 2; � � � ;m

x ¼ 1; 2; � � � ; n (7)

dsx ¼ max Isx; s ¼ 1; 2; � � � ;mf g � Isx
max Isx; s ¼ 1; 2; � � � ;mf g �min Isx; s ¼ 1; 2; � � � ;mf g for s ¼ 1; 2; � � � ;m

x ¼ 1; 2; � � � ; n (8)

Equation (7) is used for the-larger-the-better index and equation (8) is used for the-smaller-
the-better index.

3.2.2 Entropy weight calculation. The concept of entropy is well suited to measuring the
utility value of indices to represent the average intrinsic information transmitted for decision-
making. In general, the smaller the entropy Ei of a certain index is, the greater the variation
degree of the index value is and the more information can be provided, the greater the weight
of the index value is. On the contrary, the greater the entropy, the smaller the weight.

D ¼ dsxð Þm�n ¼

d11 d12 � � � d1n

d21 d22 � � � d2n

� � � � � � � � � � � �
dm1 dm2 � � � dmn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

m�n

for s ¼ 1; 2; � � � ;m x ¼ 1; 2; � � � ; n

(9)

fsx ¼ dsxXm

s¼1
dsx

; s ¼ 1; 2; � � � ;m; x ¼ 1; 2; � � � ; n (10)

ex ¼ � 1
ln n

Xm
s¼1

fsxln fsx (11)

wx ¼ 1� exð Þ= n�
Xn
x¼1

ex

 !
(12)

where m is the number of actual data for evaluation objects, n is the number of indices
selected, fsx is the proportion of the sth component to the xth index, ex is the entropy value of
the xth index,wx is the weight of the xth index.
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3.2.3 Grey relational analysis. The state of the components in the high-speed train system
is regarded as a grey system, and the critical elements are identified based on the value of
correlation degree. The reference sequence fsx is defined as d0x = (dsx,s= 1,2,� � �,m):

Dsx ¼ jd0x � dsxj (13)

Table 3.
The virtual and

actual nodes of the
whole network (only
partial actual nodes

are listed)

Node type Node’s label Component name Node’s label Component name

Virtual nodes PANTOGRAPH Pantograph subsystem BOGIE Bogie subsystem
TRACTION Traction subsystem SIGNAL Signal subsystem
AIRBRAKE Air and brake subsystem – –

Actual node 1 Carbody 7 Dropper
3 Pillar . . . . . . . . . . . .
4 Insulator . . . . . . . . . . . .
5 Location device . . . . . . . . . . . .
6 Catenary 130 Close-fitting checker

Table 4.
The virtual and

actual nodes in the
bogie subsystem

Label Name

BOGIE Bogie
70 Bogie frame
71 Wheel
72 Axle box bearing
73 Axle box
74 Axle
75 Primary vertical vibration absorber
76 Axle spring
77 Secondary vertical vibration absorber
78 Secondary lateral vibration absorber
79 Anti-yaw vibration absorber
80 High-speed adjusting valve
81 Certain pin
82 Anti-rolling torsion bar
83 Air spring
84 Traction rod
85 Lateral stop
86 Coupling
87 Gearbox
88 Grounding device
89 Lubrication device
90 Sand device
91 Troubleshoot device
92 Junction box
93 Speed sensor1
94 Speed sensor2
95 Speed sensor3
96 Speed sensor4
97 Speed sensor5
98 Accelerate sensor
99 Gearbox bearing temperature sensor
100 Axis temperature sensor
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g I0x; Isxð Þ ¼ min Dsxf g þ rmax Dsxf g
Dsx þ rmax Dsxf g for s ¼ 1; 2; � � � ;m x ¼ 1; 2; � � � ; n

(14)

Cs ¼ 1
n

Xn
x¼1

g I0x; Isxð Þ for s ¼ 1; 2; � � � ;m (15)

where g (I0x,Isx) is the grey relational coefficient between I0x and Isx; r is the distinguishing
coefficient, r [ [0,1];Cs is the weighted grey relational grade.

4. Numerical example
A typical CRH2 train system is taken as an example to illustrate the feasibility of the model
and algorithm proposed in this study. The code is implemented in Ri386 3.4.3, uses Gephi to
draw graphics and runs on a 64-bitWindows operating system.

4.1 Data and parameters
The components composing the rail train are more than 40,000 (Kou et al., 2018). To
facilitate the analysis, we select some representative elements for study and finally form a

Figure 4.
Fusion rules applied
in bogie subsystem
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multi-layer multi-granularity network composed of 5 virtual nodes and 125 actual nodes
(Table 3).

Note that, virtual and actual nodes are encoded together in the network construction. For
example, the virtual node “PANTOGRAPH” corresponds to the unshown node whose label
should be “2” in Table 3.

4.2 Results
4.2.1 Fusion rules of links of different layers. Taking the bogie subsystem as an example to
illustrate the fusion rules. CRH2 train adopts the 4M4T marshaling mode, its motor car uses
the SKMB-200 power bogie and the trailer uses the SKTB-200 trailer bogie. According to the
structure and fault data of CRH2 bogie and the extraction rules of components, a total of 31
components are extracted as nodes in each layer of the multi-layer network model of the
bogie subsystem (Table 4).

Node Bogie is a virtual node that connecting with all the other nodes belonging to the
bogie subsystem, presenting the affiliation relationships between the subsystem and
components. In Figure 4, the affiliation connections are blue and the actual connections are
in different shades of pink, which is proportional to the degree of each node. In Figure 4(c),
the nodes labeled “50” and “57” are motor and main windpipe, which are hidden in the fused
bogie network because they are divided into other subsystems. Figure 4(d) is the result of

Figure 5.
Fusion rules applied

in the high-speed
train network
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fusing the mechanical layer, electrical layer and information layer, which contains all the
connection relationships of the bogie subsystem. The combined network comprehensively
considers all connection relationships and greatly reduces the complexity of multi-layer
network computing. Next, fusion rules are applied to the complex network of the high-speed
train system and critical elements will be identified.

4.2.2 Indices calculation. After adopting the fusion rules, the complex network of the
high-speed train system has 130 nodes and 370 edges. In Figure 5, the node is colored
according to its outdegree value, which reflects the activity of the node in the network
(Snijders, 2003). The outdegree value of each virtual node is relatively large because it has
affiliation relationships with all actual nodes in its subsystem.

4.2.2.1 Indices in topology characteristics. I topodeg ; I topoclose; I
topo
ne and I topobetw are calculated as

shown in Figure 6. The ranking results of importance will be quite different if it is performed
according to each index separately, and therefore the topology index Ktopo is of great

Figure 6.
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Topology importance
ranking results
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significance to present the integrated topology importance (Figure 7). The weights of each
indicator are: Wtopo = {0.280, 0.281, 0.165, 0.274}. Rank nodes by the value of Ktopo and the
top 30 are shown in Table 5.

The Ktopo
70 value of the bogie frame is the largest (0.788), that is, this component is the

most important one from the perspective of the topology structure. This is followed by car
body, motor bearing, axle box, etc., and the topology critical components are formed.

Table 5.
Nodes in the top 30 of
topology importance

Order Name Ktopo

1 Bogie frame 0.788
2 Carbody 0.584
3 Motor bearing 0.401
4 Axle box 0.383
5 Junction box 0.310
6 Gearbox 0.309
7 Brake clamp 0.303
8 Brake cylinder 0.302
9 Axle spring 0.266

10 Axle 0.255
11 Wheel 0.251
12 Pressure cylinder 0.248
13 High-speed adjusting valve 0.237
14 Certain pin 0.237
15 Traction rod 0.237
16 Gearbox bearing temperature sensor 0.227
17 Primary vertical vibration absorber 0.225
18 Coupling 0.223
19 Grounding device 0.223
20 Brake disc 0.219
21 Air spring 0.217
22 Lateral stop 0.217
23 IGBT 0.215
24 Axle box bearing 0.214
25 Accelerate sensor 0.208
26 Main windpipe 0.202
27 Secondary vertical vibration absorber 0.197
28 Secondary lateral vibration absorber 0.197
29 Anti-yaw vibration absorber 0.197
30 Anti-rolling torsion bar 0.197

Figure 8.
Function importance

ranking results
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Overall, the difference of the Ktopo value is obvious in the whole system, the scores of the
bogie subsystem and the air-brake subsystem are relatively higher than the other parts.
Next,Kfunc andKrisk are calculated separately based on the result ofKtopo.

4.2.2.2 Indices in function characteristics. Based on the topology indices and function
score, Kfunc is obtained (Figure 8). The weights of each indicator are: Wfunc = {0.272, 0.235,
0.165, 0.328}. Rank nodes by the value ofKfunc and the top 30 are shown in Table 6.

Motor bearing is the most important component on the point of function importance
that with the largest value of Kfunc

50 (0.613), followed by bogie frame, axle box, brake

Table 6.
Nodes in the top 30 of
function importance

Order Name Kfunc

1 Motor bearing 0.613
2 Bogie frame 0.603
3 Axle box 0.551
4 Brake cylinder 0.502
5 Wheel 0.494
6 Gearbox 0.460
7 IGBT 0.458
8 Carbody 0.438
9 Main windpipe 0.401

10 Contract line 0.394
11 Bow suspension 0.392
12 Brake clamp 0.384
13 Junction box 0.383
14 Axle spring 0.377
15 Pressure cylinder 0.376
16 Axle 0.369
17 Lower rod 0.364
18 Pillar 0.364
19 Underframe 0.364
20 Carbon slide 0.363
21 Brake disc 0.363
22 Catenary 0.361
23 Support capacitor 0.358
24 Upper rod 0.357
25 Gearbox bearing temperature sensor 0.357
26 Wind cylinder 0.356
27 Dropper 0.355
28 Axle box bearing 0.354
29 Transmission control unit 0.354
30 Main air cylinder 0.353

Figure 9.
Risk importance
ranking results
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cylinder, wheel, etc. The difference in the Ktopo of the components is significant. In
contrast, most components in the network have a high Kfunc with an average of 0.35.
That is to say, the components selected in this paper are very important in the process
of train operation.

4.2.2.3 Indices in risk characteristics. Similarly, Krisk is obtained as shown in Figure 9
and the top 30 are shown in Table 7. The weights of each indicator are:
W risk ¼ f0:286; 0:266; 0:161; 0:287g:

In terms of the probability of risk and the severity of the consequences, the bogie frame is
the most important component, with a Krisk

70 value of 0.584, followed by IGBT, gearbox,
motor bearing, axle box, etc. The probability of nodes with high Ktopo and Kfunc

degenerating to failure is supposed to be small, but once the components fail, the
consequences are very serious, so the value of Krisk may be very large such as the bogie
frame.

4.2.2.4 The important elements. The maximum values of the topology index Ktopo, the
function index Kfunc and the risk index Krisk are used as the grey-reference. Based on the
grey relational analysis, the integrated importance indicator K is obtained and the critical
components are obtained (Table 8).

Table 7.
Nodes in the top 30 of

risk importance

Order Name Krisk

1 Bogie frame 0.584
2 IGBT 0.561
3 Gearbox 0.538
4 Motor bearing 0.525
5 Axle box 0.518
6 Brake cylinder 0.459
7 Wheel 0.401
8 Brake clamp 0.389
9 Carbody 0.366

10 Pressure cylinder 0.341
11 Axle box bearing 0.337
12 Certain pin 0.303
13 Axle 0.301
14 Axle spring 0.299
15 Brake disc 0.296
16 Primary vertical vibration absorber 0.291
17 Traction rod 0.285
18 lateral stop 0.276
19 Air spring 0.276
20 High-speed adjusting valve 0.276
21 Anti-yaw vibration absorber 0.262
22 Secondary vertical vibration absorber 0.262
23 Secondary lateral vibration absorber 0.262
24 Coupling 0.254
25 Accelerate sensor 0.248
26 Anti-rolling torsion bar 0.246
27 Gearbox bearing temperature sensor 0.241
28 Transmission control unit 0.225
29 Speed sensor4 0.223
30 Speed sensor5 0.223
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Compare the four tables from Tables 5 to 8, we can get the following conclusions.
� Generally, based on a comprehensive analysis of the three indicators of topology,

function and risk, the most important element of the CRH2 train system is the bogie
frame. The bogie frame is the basic stress point of the bogie and the installation
foundation of various components. It has a connection relationship with almost all
components of the bogie subsystem, so the topology index value is very high and the
integrated importance based on the topological structure is also relatively high, which
means that it is a component that requires the focus of the relevant railway department.

� Carbody, motor bearing, axle box, gearbox and brake cylinder are ranked in the top
10 in all tables, which means that they are very important and require more
attention to keep train operation safely. Here, the car body is defined as a
combination of electromechanical components, that is, the train system except for
the other five subsystems clearly given in the text.

� Most of the key elements of the CRH2 train system identified by complex network
theory belong to the bogie subsystem, so this subsystem needs special attention.

5. Conclusions
This study aims to introduce a method for identifying critical elements of the CRH2 train
system based on complex network theory. A multi-layer multi-granularity network model
suitable for the CRH2 train system is presented, including virtual nodes and actual nodes.
Based on the network characteristic index, entropy weight and grayscale theory, the integrated
importance ranking algorithm considering the three dimensions of topology, function and risk
is proposed. Finally, a CRH2 train system is provided. Compared with the identification results
by topology, function and risk indicator separately, the critical elements identified by the
integrated importance ranking algorithm is more reasonable because it comprehensively takes

Table 8.
Nodes in the top 20 of
integrated
importance

Order Name Ktopo Kfunc Krisk K

1 Bogie frame 0.788 0.603 0.584 0.991
2 Motor bearing 0.401 0.613 0.525 0.789
3 Axle box 0.383 0.551 0.518 0.734
4 IGBT 0.215 0.458 0.561 0.687
5 Gearbox 0.309 0.460 0.538 0.685
6 Carbody 0.584 0.438 0.366 0.660
7 Brake cylinder 0.302 0.502 0.459 0.658
8 Wheel 0.251 0.494 0.401 0.620
9 Brake clamp 0.303 0.384 0.389 0.578

10 Pressure cylinder 0.248 0.376 0.341 0.550
11 Axle spring 0.266 0.377 0.299 0.540
12 Axle box bearing 0.214 0.354 0.337 0.536
13 Axle 0.255 0.369 0.301 0.536
14 Certain pin 0.237 0.352 0.303 0.529
15 Brake disc 0.219 0.363 0.296 0.527
16 Traction rod 0.237 0.352 0.285 0.524
17 High speed adjusting valve 0.237 0.352 0.276 0.521
18 Primary vertical vibration absorber 0.225 0.340 0.291 0.520
19 Main wind pipe 0.202 0.401 0.215 0.517
20 lateral stop 0.217 0.345 0.276 0.516
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into consideration the characteristics of the complex network in three dimensions. The most
important element of the identified key elements is the bogie frame andmost of the components
belong to the bogie subsystem of the train, which alsomeans that this subsystem is the one that
needs themost attention of relevant staff.

In summary, the critical elements identification method based on complex network theory
proposed in this paper enables decision-makers to not only improve train reliability in the
design phase but also allocate maintenance resources more reasonably during the operation
phase. At the same time, this method has universality and can be applied to the identification
of critical elements of any other type of train on the basis of corresponding data.
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