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Abstract
Purpose – This study aims to investigate a locating-routing-allocating problems and the supply chain,
including factories distributor candidate locations and retailers. The purpose of this paper is to minimize
system costs and delivery time to retailers so that routing is done and the location of the distributors is
located.
Design/methodology/approach – The problem gets closer to reality by adding some special conditions
and constraints. Retail service start times have hard and soft time windows, and each customer has a demand
for simultaneous delivery and pickups. System costs include the cost of transportation, non-compliance with
the soft time window, construction of a distributor, purchase or rental of a vehicle and production costs. The
conceptual model of the problem is first defined and modeled and then solved in small dimensions by general
algebraic modeling system (GAMS) software and non-dominated sorting genetic algorithm II (NSGAII) and
multiple objective particle swarm optimization (MOPSO) algorithms.
Findings – According to the solution of the mathematical model, the average error of the two proposed
algorithms in comparison with the exact solution is less than 0.7%. Also, the algorithms’ performance in
terms of deviation from the GAMS exact solution, is quite acceptable and for the largest problem (N = 100) is
0.4%. Accordingly, it is concluded that NSGAII is superior to MOSPSO.

© Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté. Published
in Smart and Resilient Transportation. Published by Emerald Publishing Limited. This article is
published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce,
distribute, translate and create derivative works of this article (for both commercial and non-
commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence maybe seen at http://creativecommons.org/licences/by/4.0/legalcode

Bounded
delivery time

283

Received 11 August 2021
Revised 21 October 2021

Accepted 21 October 2021

Smart and Resilient
Transportation

Vol. 3 No. 3, 2021
pp. 283-303

EmeraldPublishingLimited
e-ISSN: 2632-0495
p-ISSN: 2632-0487

DOI 10.1108/SRT-08-2021-0008

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/2632-0487.htm

http://dx.doi.org/10.1108/SRT-08-2021-0008


Research limitations/implications – In this study, since the model is bi-objective, the priorities of
decision makers in choosing the optimal solution have not been considered and each of the objective functions
has been given equal importance according to the weighting methods. Also, the model has not been compared
and analyzed in deterministic and robust modes. This is because all variables, except the one that represents
the uncertainty of traffic modes, are deterministic and the random nature of the demand in each graph is not
considered.
Practical implications – The results of the proposed model are valuable for any group of decision
makers who care optimizing the production pattern at any level. The use of a heterogeneous fleet of delivery
vehicles and application of stochastic optimization methods in defining the time windows, show how effective
the distribution networks are in reducing operating costs.
Originality/value – This study fills the gaps in the relationship between location and routing decisions in
a practical way, considering the real constraints of a distribution network, based on a multi-objective model in
a three-echelon supply chain. The model is able to optimize the uncertainty in the performance of vehicles to
select the refueling strategy or different traffic situations and bring it closer to the state of certainty. Moreover,
two modified algorithms of NSGA-II and multiple objective particle swarm optimization (MOPSO) are
provided to solve the model while the results are compared with the exact general algebraic modeling system
(GAMS)method for the small- andmedium-sized problems.

Keywords Supply chain management, Meta-heuristic algorithms, Time windows,
Location-routing problems, Robust optimization

Paper type Research paper

1. Introduction
Some of the most challenging problems in supply chain management (SCM) are facility
location problem (FLP) and vehicle routing problem (VRP), a separate review of which
increases costs and planning time. So, the location-routing problem (LRP) is proposed by
considering FLP and VRP in SCM at the same time. (Misni et al., 2020)

In such problems, coordination between these two factors is the necessary condition for
designing an efficient distribution network (Parast et al., 2021).

The problem that has always created many issues for large manufacturing companies to
be able to meet the existing demand in a timely manner with the lowest possible
transportation costs, both in the number of vehicles used and in the number of shipments,
while being as profitable as possible.

In fact, by solving the inventory routing location problem, it is determined how much
product, at what time and by what means of transportation and through which route to be
sent to each of the retailers (customers).

In most supply chain locating routing models, it is usually assumed that the items can be
transported for an indefinite time. While many goods do not follow this rule and over time
will be qualitatively or quantitatively spoiled. Therefore, development of time window
management concepts for routing locating problems to transfer products to customers is one
of the key issues in transportation (Ohmori and Yoshimoto, 2021).

The concepts of time windows determine that each service to each customer must occur
at a specific time interval and any important factors such as refueling restrictions, unsafe
traffic conditions, vehicle depreciation, etc. that lead to delays in the delivery of products
outside that time frame, can limit supply chain managers or logistics system decision
makers. Therefore, considering them in locating routing models will bring their nature
closer to the existing reality andwill have a higher practical application (Yu et al., 2011).

In addition, in reality, factors such as customer demand, delivery time or shipping cost
are not deterministic and customers due to running out of stock or untimely delivery or even
minor factors such as load capacity restriction or refueling time, face shortages that lead to
re-ordering or lost sales.
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Many approaches have been proposed to address this uncertainty, which are based on
stochastic methods and are referred to as stochastic VRPs. The purpose of such problems is
to achieve a set of near-optimal answers that optimize each of the uncertain parameters for a
set of worst-case scenarios (Yousefi et al., 2017).

Each of these optimal solutions must meet the limitations of time windows. In a multi-
echelon supply chain, the simultaneous optimization of each of these factors at each echelon
alone has added to the complexity of routing location problems, and so far the models have
tried to facilitate this complexity in accordance with the priorities of decision makers in
optimization. For example, in some studies, LRPs are formulated in the form of multi-
objective and multi-echelon models, or the fleet of delivery vehicles is defined in a
homogeneous and heterogeneous states, with either deterministic or stochastic data.
However, reviewing all of them shows that there is a gap in the observance of the
dependencies of the variables. For example, providing an optimal location model at the
distribution center level certainly has a direct impact on the definition of product delivery
time windows, at any echelon.

Therefore, in this study, an attempt has been made to provide an integrated model of a
comprehensive and reliable distribution network in a three-echelon supply chain that
simultaneously, in addition to locating distribution centers, routing transportation vehicles
between supply chain echelons with two objectives of minimizing the operating costs in the
first place and the transportation time in the second place, while other variables are selected
based on the severity of their impact on each of these objectives. The deterministic variables
are based on the historical data average and experts’ opinion. Such a model is rare in
literature in which the variables are optimized based on the degree of influence on each other
in the objective function. In fact, the innovation of the study can be summarized as follows:

� Development of a multi-objective location-routing model in a three-echelon supply
chain that includes manufacturers at the highest echelon, distribution centers and
retailers (customers) at the lowest echelon as well as considering simultaneous
demand of delivery and loading.

� Development of a new mixed integer programming model for a heterogeneous
transportation fleet with speed, capacity (depreciation cost of each vehicle is a
function of its load capacity), fuel consumption (limitation of refueling in some
candidate locations) and different purchasing costs.

� Transportation time intervals evaluation in hard and soft time windows and
showing their impact on the answers.

� Using robust optimization considering different traffic scenarios.
� Development of modified metaheuristic algorithms of NSGA II and MOPSO for a

multi-objective location routing model.
� Validation of the model with small and medium size problems by the exact method

of GAMS.

Since each of the location and routing problems is an np-hard problem in itself, the LRP, as
well as the capacitated LRP (CLRP), are also considered np-hard problems. If an accurate
algorithm is used to solve these large problems, the solution time will increase
exponentially. Accordingly, these problems cannot be solved definitively in many cases and,
therefore, heuristic andmetaheuristic approaches must be used

In this study NSGAII algorithm is used due to its more compatibility with discrete LRPs.
MOPSO algorithm is used to solve the model and to achieve the optimal set of feasible
solutions and to avoid falling into the trap of local optimality. Finally, the performance of
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each algorithm with the results obtained by the accurate method are compared and
evaluated.

The rest of this article is organized as follows. In the second part, studies on VRP,
methods of solving them with deterministic and in deterministic data and metaheuristic
algorithms are reviewed. The third section describes the details of the multi-objective VRP
model and describes its parameters and constraints. The first objective function is to
minimize transportation costs, the cost of violating the soft time window, the fixed cost of
distributor construction, the fixed cost of the vehicle and the cost of production. The second
objective function minimizes the transportation time and finally explains the framework for
using the indeterministic methods. In the fourth and fifth sections, the NSGAII and MOPSO
algorithms are investigated to solve LRPs and their set of parameters and steps are defined.
In the sixth section, the solution and the numerical results obtained are compared and
analyzed with the deterministic method results for the sample problems. In the final section,
conclusions, limitations and suggestions for the future researches are discussed.

2. Literature review
Over time, different types of VRP issues have developed, each with different models and
features but their review, according to the presented model’s features, is done from four
perspectives of VRP models with time window constraints, multi-objective VRP models,
using random and fuzzy methods andmetaheuristic methods to solve them.

In such problems, if a capacity constraint is added to the existing problem, it will become
a capacitated VRP (CVRP). In CVRP, the vehicle has a limited capacity. So, it may be
necessary to use multiple vehicles or routes instead of one vehicle. However, there is no
distance constraint in such problems (Ralphs et al., 2004).

If there is a travel length constraint (in terms of distance or time), the distance
constrained VRP (DVRP). Therefore, there are two types of constraints in these problems.
One is the vehicle capacity constraint, and the other is the maximum distance the vehicle
travels on the route (Toth and Vigo, 2002). Over time, new constraints have been introduced
to the problem, one of which is VRP with hard time windows (VRPTW). In VRPTW, the
customer is serviced on specific demand by a homogeneous transport fleet in which the
capacity of each vehicle is limited. At the beginning and end of each route leading to
the depot, customer service is provided within a certain period, and it is not possible to
provide service outside this period. (Berger and Barkaoui, 2004). This problem, was
suggested by Solomon (Solomon, 1987). Another problem is VRP with the soft time window
(VRPSTW). The discussed time window shows the time constraint in a period with the
earliest and latest start time of service. If the period is not observed, the cost of not observing
the time window will be added to other costs (Beheshti and Hejazi, 2015). One of the new
constraints is simultaneous delivery and pickups, which means that after receiving the
goods from the vehicle, the customer delivers other goods to the vehicle to return to the
depot, which is one of the new issues in VRP. In these problems, the customer receives and
sends the goods at the same time (Tasan and Gen, 2012). These types of problems are
referred to as VRP with simultaneous delivery and pickup (VRPSDP). Classical VRP
involves depots, customers and vehicles to provide customer service. In these problems, the
vehicle pickups the goods from the depot, provides service to customers along the route and
returns to the depot. The number of vehicles and depots is limited, (Tas� et al., 2014), the
capacity of each vehicle is limited, and each vehicle can carry a certain amount of goods.
Accordingly, the initial loading of the vehicle at each pickup should be less than its capacity.
Besides, the weight of the load on the vehicle along the route should be less than its capacity.
In the case of perishable food, early and late delivery is prohibited. VRPTW is an attractive
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and easy single-depot (SD) problem but not suitable for companies with more than one
depot, and sometimes more than one depot should be considered for the problems (Karakati�c
and Podgorelec, 2015). In these problems, called multiple-depot VRP (MDVRP), each
customer receives service through only one depot, and each route ends at the same depot
that begins (Allahyari et al., 2015) and (Vidal et al., 2015). The goal of solving the problem in
VRP is to minimize costs. In many VRPs, the distance traveled between customers or the
total travel time between cities is considered a cost and is placed in the objective function. In
the real world, however, other costs, such as minimizing vehicle usage, travel time and
waiting time, sometimes need to be calculated (Qi, 2015). So, sometimes special techniques
must be used to calculate the objective function. Such problems are referred to as multi-
objective VRPs (MOVRP), for example reducing the number of vehicles while minimizing
the distance traveled by the vehicle. Another type of VRP involves two types of customers.
The first type of customers receives the goods from the depot, and the second type of
customers includes the suppliers who send the goods to the depot. Such problems are called
VRPs with backhauls (VRPB) (Cuervo et al., 2014) and (Mahmoudi et al., 2020).

Some other VRP models are offered in a multi echelon supply chain. (Rahbari et al., 2020)
have presented a model of location-routing-inventory problems in a five-echelon supply
chain of red meat preparation and delivery. Because its transportation quality requires the
management of all the processes from production to delivery, all five echelons are
considered in the optimization and numerical results are presented in the form of a case
study using GAMS accurate method. (Wang et al., 2021) have proposed a two-echelon
location routing model in which the time window constraints are considered and the
possibility of sharing transportation vehicles capacity on the same routes is considered
during routing. The model is called a two-echelon LRP with time windows and
transportation resource sharing (2E-LRPTWTRS) and then the modified MPSO algorithm is
used to solve it. (Mohebban-Azad et al., 2021) provide a model of inventory routing location
problems at three echelons of the supply chain, considering deterministic risk in all the
distribution centers that leads to the reliability and continuity of the flow in that chain. The
proposed model is then solved using the Lagrangian relaxation algorithm (Saffarian et al.,
2020).

From the perspective of the degree of certainty of data, in some studies, the problem data
are not considered to be deterministic but stochastic or fuzzy. In VRP with fuzzy demands
(OVRPFD), data can be obtained experimentally. For example, it is said that customer
demand is about 40 units, i.e. between 20 and 70 units, which can be a triangular fuzzy
number (Cao and Lai, 2010). In some other studies, customer demand is defined as
stochastic. For example, it is said that customer demand follows a continuous uniform
distribution function (Gauvin et al., 2014). One of the constraints added to VRPs is the
heterogeneous vehicle fleet, meaning that vehicle load rates vary (Koç et al., 2014). In some
VRPs, vehicle velocities vary on different days and are not always the same (Kuo, 2009). In
classical or simple VRP, customer service is provided in one day, but in another type called
periodic VRP, service is provided over a period that can be two or more days (Lúcia and
Drummond, 2001).

Another type of VRP problems are the Shortest Path (SP) models. For example, Di Caprio
et al. (2021) have proposed a routing model in which the weights given to the selected paths
are fuzzy and indeterministic, and the proposed model is solved by three algorithms of
genetic, particle swarm and ants, and the numerical results are compared. Ebrahimnejad
et al. (2021) have presented a model of uncertain SP that estimates the Mixed Interval-
Valued Fuzzy interval and solve it using MOPSO algorithm, modified artificial bee colony
(MABC) algorithm and NSGAII.
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Abbaszadeh et al. (2020) have presented Robot’s Fuzzy constrained shortest route
problem (FCSRP) model to find the SP in robots. Data on energy consumption along the path
and the distance traveled are considered fuzzy. Then, three algorithms of elite artificial bees’
colony (EABC) algorithm, MOPSO algorithm and NSGAII algorithm are used to solve it.
The results show that EABC algorithm has been the superior one with shorter time and
more convergence. Ebrahimnejad et al. (2015) develop a new model of the SP problem in a
network of fuzzy weights of arcs, for which a modified MOPSO algorithm has been
developed and applied. In another study by the same researcher in 2016, application of the
fuzzy SP (FSP) model to wireless sensor network (WSN) problems is analyzed and solved
using an ABC algorithm (Ahmadi et al., 2018).

As mentioned earlier, VRP problems are considered Np-hard and various metaheuristic
methods have always been developed and used to solve them. Biuki et al. (2020) studied a
routing-location-inventory model for the supply chain of perishable materials. The purpose
of this study is to solve the problem of sustainability and integration of the real-world
assumptions to minimize environmental costs and pollution. To solve the problem, two
algorithms of genetics and PSO have been used to solve the numerical problems in different
sizes. Li et al. (2018) developed a green routing location model that minimizes greenhouse
gas emissions and is based on the cold location chain. In such problems, the storage
temperature of the material during transportation is kept low and PSO algorithm is used to
solve it. Peng et al. (2018) presented a metaheuristic approach to simulate particles motion to
solve the routing-location problem when the capacity is limited. Moshref-Javadi et al. (2016)
presented a model for the problem of location-routing while delays are allowed. Also, two
metaheuristic algorithms were designed to solve the numerical problems.

Qin et al. (2021) studied a heterogeneous VRP involving the routing of a predefined fleet
with different vehicle capacities to serve a range of customers with the aim of minimizing the
maximum vehicle routing time. In this study, they formulated a MILP model to achieve the
optimal solutions to the small-scale problems. Numerical experiments showed that the proposed
algorithm is better than the MILP solution in the large-scale problems and performs better than
existingmeta-heuristic algorithms. The summarized of the researches can be seen in Table 1.

3. Problem statement
In this problem, a three-echelon supply chain is examined with factories at the highest level,
distributors at the second level and retailers at the lowest level. For the echelon of distributors,
there are candidate locations for construction where the distributors will be located. Retailers
and vehicles are assigned to these distributors simultaneously, and delivery routes from
distributors to retailers are routed. Delivery to customers is done by a heterogeneous transport
fleet in which vehicles have different velocities, capacities, fuel consumption, and purchase
costs. Distributors that are used and constructed must be assigned to a factory. Each vehicle is
assigned to only one distributor, and the start and end of its route will be from the same
distributor. Two periods are defined as time constraints for providing services to retailers. The
first constraint is the hard time window. In the hard timewindow, it is not allowed

to provide service to customers i earlier than time ai and later than time ai. The second
constraint is the soft time constraint in the period [Esi, Lsi], meaning that if customer service
i is performed earlier than time Esi and later than the time Lsi, customer service is provided,
but the system will be penalized, and the deviation will continue as long as the hard time
window is not violated. In that case, no service will be provided at that time. Each customer
has two types of certain demand: the delivery demand based on which the goods are loaded
from the depot and delivered to the customer and the pickup demand based on which the
goods are picked up from the customer and returned to the depot.
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In this study, system costs include the cost of moving and refueling the vehicle along each
route, the fixed cost of using the vehicles, the cost of distributors at candidate locations, the
cost of not complying with the soft timewindow, and the cost of production.

Retailers are divided into two types R1 and type R2. R1 retailers are those where vehicles
can refuel at their location, and R2 retailers are those where vehicles cannot refuel at their
location. Each retailer is serviced once and only once on one route by one vehicle. Each
vehicle is used in one route only and is assigned to only one distributor. Another constraint
defined in the problem is the time constraint for the vehicle backhaul to a distributor. For
each customer, the loading operation is done after the delivery of the goods. In this study,
vehicle velocity has different modes according to different traffic conditions. In these cases,
the robust optimization method is used. The method proposed by Mulvey is used to take
advantage of robust optimization. In this method, the optimized LPmodel is as follows:

Minimize : cT :X þ dT :y

subject to : Ax ¼ b

Bxþ Cy ¼ e

x; y > 0

x 2 rn1; y 2 Rn2

x represents the decision variables of the deterministic parameters, and y represents the
decision variables of the control. The LP model includes two types of constraints: structural
constraints whose coefficients are constant (deterministic coefficients) and control
constraints whose coefficients are stochastic.

Moreover, a finite set of scenarios w = {1,2,3,. . ., s} is assumed for the deterministic
parameters of the model, and a set {ds, Bs, Cs, es} is defined as the realization of the
performance of each scenario based on each scenario s [ w . PS, on the other hand, indicates
the probability of any scenario occurring, which is

X
ps ¼ 1. The general form of the robust

optimization model proposed byMulvey et al. Is as follows:

s X; y1; y2; . . . ; ysð Þ ¼
X

seS
ps:j s þ l

X
s2s

ps j s �
X

s2s
psj s

� �
þ 2u s

st : j s �
X

s2s
psj s þ u s � 0

4. Mathematical model
4.1 Sets

D=A set of distributor candidate locations
F = A set of factories
R = A set of retailers
K =A set of vehicles
R1 = A set of customer locations where refueling is possible

SRT
3,3

290



R2 = A set of customer locations where refueling is not possible
U =A set of different traffic scenarios

4.2 Parameters
RI = The amount of delivery demand of retailer i
Pi = The amount of pickup demand of retailer i
Si = Time to provide service to retailer i
Qk= Loading capacity of each vehicle k
ai = The earliest time allowed to provide service to distributor i in the hard timewindow
bi = The latest time allowed to provide service to distributor i in the hard time window
M=Optional large number
ESi=The earliest time allowed to provide service to distributor i in the soft time window
LSi=The latest time allowed to provide service to distributor i in the soft time window
W2= Cost per unit time deviation from the earliest time allowed in the soft time window
W3= Cost per unit time deviation from the latest time allowed in the soft timewindow
fix=k = Fixed cost of using vehicle k
C = Cost of one fuel unit

AT =Minimum amount of fuel allowed inside the vehicle
Cff= Production cost of a unit in factory f
fixd= Cost of constructing distributor candidate location d
TSi=Time to provide service to retailer i
AT =Minimum amount of fuel allowed in the vehicle

DAY=The length of a working day
cpji=Vehicle fuel consumption from node i to node j
dxij = The distance between node i and node j
full = Fuel tank capacity
pu=The probability of occurrence of event u

Vku=The velocity of vehicle k in event u
capd=The capacity of candidate location of distributor d
capf =The capacity of factory f

4.3 Decision variables
Xijkd = The variables zero and one. If vehicle k belonging to distributor d travels from

node i to node j, it is equal to one and otherwise zero.
siu=The time to start providing service to retailer i in event u
L0k=The load on vehicle k when leaving the distributor
Lj=Theweight of the load remaining on the vehicle after service to retailer j
Zd = The variables zero and one. If distributor d is constructed, it is equal to one and

otherwise zero
Eiu = The time deviation from the earliest time allowed to provide service to retailer i in

the soft time window in event u
Liu = The time deviation from the latest time allowed to provide service to retailer i in

the soft time window in event u
FCk=The time to end the route of vehicle k
ded=The center demand of distributor d
Ydf = Variables zero and one. If distributor d is assigned to factory f, it is equal to one

and otherwise zero.
Ai = The amount of fuel available on the vehicle
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min
X

k2K

X
d2vd

X
j2v

X
i2v

Xijkd:FCk:dxij:C ;

þ W2:

X
i2R

Ei þW3:

X
i2R

Li þ
X
d2D

X
k2K

Zd:fixd þ
X
d2D

X
k2K

X
i2R

Xdikd:fix
=
k

þ
X
f2F

Ydf :ded:Cpf

The first objective function is to minimize the set of costs. The first part of the
objective function represents the cost of transportation, the second and third parts
represent the cost of non-compliance with the soft time window, the fourth part
represents the fixed cost of constructing a distributor, the fifth part represents the
fixed cost of the vehicle, and the sixth part represents the objective function of the
cost of production.

min
X
ueU

pu:
X
ieR

siu þ l

X
ueU

pu
X
i2R

siu �
X
ueU

pu
X
i2R

siu þ 2u u

 !

In the second objective function, the service time is minimized.
Subject to:

X
d2D

X
k2K

X
i2R[D

Xijkd ¼ 1; 8j 2 R (1)

X
j2R[D

Xdjkd ¼
X

i2R[D
Xjdkd; 8d 2 D; k 2 K (2)

X
i2D[R

Xijkd ¼
X

i2D[R
Xjikd; 8d 2 D; k 2 K; j 2 R (3)

X
d2D

X
i2v

Xdikd # 1; 8k 2 K (4)

X
i2D;i 6¼d

X
j2R

Xijkd ¼ 0; 8d 2 D; k 2 K (5)

X
i2R

X
j2D;j 6¼d

Xijkd ¼ 0; 8d 2 D; k 2 K (6)

Xiikd ¼ 0; 8d 2 D; k 2 K; i 2 D[R (7)
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Siu þ dxij
Vku

þ TSi �M : 1� Xijkd
� �

#Sju; 8d 2 D; k 2 K; i 2 D[R; j 2 R; u 2 U

(8)

Siu þ dxij
Vku

þ TSi þM : 1� Xijkd
� � � Sju; 8d 2 D; k 2 K; i 2 D[R; j 2 R; u 2 U

(9)

Sdu ¼ 0; 8d 2 D; u 2 U (10)

ai#Siu# bi; 8i 2 R; u 2 U (11)

LOk ¼
X

d2D

X
i2v

X
j2vc

rj � Xijkd; 8k 2 K (12)

LOk#Qk; 8k 2 K (13)

Lj � LOk � rj þ pj �M : 1� Xdjkd
� �

; 8d 2 D; k 2 K; j 2 R (14)

Lj#LOk � rj þ pj þM: 1� Xdjkd
� �

; 8d 2 D; k 2 K; j 2 R (15)

Lj � Li � rj þ pj �M : 1�
X

d2vd

X
k2K

Xijkd

� �
; 8j 2 R (16)

Lj#Li � rj þ pj þM: 1�
X

d2vd

X
k2K

Xijkd

� �
; 8j 2 R (17)

Lj:

X
d2D

X
i2R[D

Xijkd

� �
#Qk; 8j 2 R (18)

Eiu � ESi � Siuð Þ; 8 i 2 VC; u 2 U (19)

Liu � Siu � LSið Þ; 8 i 2 VC; u 2 U (20)

Ai ¼ full; 8 i 2 R1 (21)
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Ai#Aj � DXji:FCk þM : 1� Xjikd
� �

; 8 i 2 R2; j 2 R [ D; k 2 K; d 2 D

(22)

Ai � AT; 8i 2 R (23)

Zd:M �
X

k2K

X
i2R

Xdikd; 8 d 2 D (24)

M :

X
f2F

Ydf � Zd ;8 d 2 D (25)

ded ¼
X

k2K

X
i2R[D

X
j2R

ded � Xijkd; 8d 2 D (26)

ded ¼ capd; 8d 2 D (27)X
f2F

Ydf :ded # capf ; 8f 2 F (28)

SFk � Siu þ dxid
Vku

�M: 1� Xidkdð Þ; 8k 2 K; i 2 R; d 2 D; u 2 U (29)

SFk#DAY; 8k 2 K; (30)

Xijkd; Zd;Ydf ¼ 0 or 1 (28)

Lj;Siu;LOdk � 0 (33)

Constraint (1) ensures that a vehicle enters each retailer andmeets the retailer’s demand.
Constraint (2) ensures that any vehicle leaving the distributor returns to the same
distributor at the end of the route.
Constraint (3) ensures that any vehicle that enters a node to provide service to any
retailer exits that node.
Constraint (4) ensures that each vehicle is used in only one distributor.
Constraints (5 and 6) ensure that if a vehicle leaves a distributor, that vehicle belongs
only to that distributor.
Constraint (7) ensures that there is no edge from each node to itself.
Constraints (8 and 9) calculate the start time of service to each retailer.
Constraint (10) ensures that the start time of the vehicle is zero.
Constraint (11) ensures compliance with the hard time window limit.
Constraint (12) calculates the amount of initial loading of the vehicle.
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Constraint (13) examines the capacity constraint of the vehicle for the initial loading.
Constraints (14 and 15) calculate the weight of the load on the vehicle after leaving the
first retailer along the route.
Constraints (16 and 17) calculate the weight of the load on the vehicle after leaving other
retailers
Constraint (18) examines the capacity constraint of the vehicle for the weight of the load
on the vehicle along the route.
Constraint (19) calculates the deviation from the soft time window for retailers.
Constraints (19 and 20) calculate the soft time window deviation for retailers.
Constraint (21) indicates that at the end of the service to retailers where refueling is
possible, the amount of fuel in the vehicle fuel tank is full.
Constraint (22) calculates the amount of fuel in the vehicle fuel tank at the end of service
to retailers where refueling is not possible.
Constraint (23) ensures that the vehicle fuel constraint is observed.
Constraint (24) identifies constructed distributors.
Constraint (25) ensures that each distributor constructed is assigned to one factory.
Constraint (26) calculates the demand of each distributor.
Constraint (27) examines the demand constraint of each distributor.
Constraint (28) examines the demand constraint of each factory.
Constraint (29) calculates the travel time for each vehicle.
Constraint (30) examines the time constraint of the travel length in a day.
Constraint (31) specifies the variables zero and one.
Constraint (32) specifies variables greater than or equal to zero.

5. Providing solutions by non-dominated sorting genetic algorithm II
(NSGA-II)
NSGAII is a well-known algorithm in which a population of solutions is created first, and
a proper reproduction process causes parents to be selected at each stage. From the
selected parents, new children are formed that have some of the characteristics of a
parent and can better reproduce. Some components of the NSGAII algorithm have the
following features.

5.1 Showing initial solution
In this study, the initial solution consists of three parts. The first part contains nþ k-1 cells.
If n is the number of retailers and k is the number of vehicles, the initial solution consists of a
row with nþ k �1 cells containing ordinal numbers 1 to nþ k–1. The numbers 1 to n
indicate the number of retailers, and the numbers nþ 1 to nþ k–1 indicate the arrival of the
vehicle to the distributors, in other words, the end of the route and the use of another vehicle.
The order of the numbers inside the columns indicates the order of service to retailers. The
number nþ i represents vehicle i, and the retailers that precede it represent the retailers that
are serviced by that vehicle, respectively. If there is no retailer number before the vehicle
number, it means that none of the retailers have been assigned to that vehicle and that the
vehicle has not been used. All retailers after the last vehicle number are assigned to the last
vehicle, respectively. In this part, retailers are assigned to vehicles. The second part consists
of kþ d–1 cells, where k is the number of vehicles and d is the number of candidate locations
for the construction of distributors. Similar to the previous part, this part allocates the
vehicles used for distributors. The third part contains dþ f–1 cells in which d is the number
of distributors and f is the number of factories. Similar to the previous parts, in this part, the
distributors used are assigned to the factories.
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To understand more, an example of the initial solution is given. This example is shown in
Figure 1–4, where there are eight retailers, three vehicles, and three distributor candidate
locations. In the first part, the numbers 1 to 8 represent the retailers, and the numbers 9 and
10 represent the first and second distributors, respectively. As can be seen in Figure 1,
retailers 4, 6, and 8 are serviced by the first vehicle, retailers 1 and 3 are serviced by the
second vehicle and retailers 7, 2, and 5 are serviced by the third vehicle. In the second part,
the numbers 1 to 3 indicate the number of vehicles, and the numbers 4 and 5 indicate the
first and second distributors. According to the proposed solution, the first and second

Figure 2.
Crossover operator
for each part

6 10 1 3 8 2 9 5 4 7

4 8 3 5 2 7 6 10 9 1

4 5 7 3 8 2 9 6 10 1

Parent 1

Parent 2

Child

Figure 1.
Example of the
solutionmatrix

52710319864

1 2 5 3 4

3 2 4 1

Figure 4.
Problem solving

Figure 3.
Mutation operation
for each parent

5 1 6 2 3 4

5 2 6 1 3 4 Mutated child
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vehicles are assigned to distributor 1 and the third vehicle is assigned to distributor 2. In this
part, distributor 3 is not constructed. In the third part, the numbers 1 to 3 indicate the
number of distributors and the number 4 indicates the first factory. According to the
solution, distributor 1 is assigned to the second factory and distributor 2 to the second
factory. (Table 2)

5.2 Parents selection
In the proposed algorithm, after calculating the fit of the objective functions of each
chromosome and sorting the population based on the conditions of domination, new parents
are selected to create a new population. The tournament method is used for each parent
selection. In this method, the two chromosomes are first randomly selected, and each of the
higher-ranking solutions is selected as the first parent. To select the second parent, two
chromosomes are first selected randomly and each of the higher-ranking solutions is
selected as the second parent.

5.3 The crossover operator to produce new children
After selecting two parents by the tournament method, the two-point crossover method is
used to create new children, based on which two crossover points are randomly selected for
each part of the initial two-by-two solution. The genes between these two points in the first
parent are passed directly to the first child, and the remaining genes in the second parent are
copied to the first child (Figure 2).

5.4 Mutation operator
After implementing the crossover operator, each child may change randomly to generate a
random number. If this number is less than the mutation rate, the child is changed by the
mutation operator. Two genes are randomly selected first, and the numbers inside the two
genes are then swapped for a genetic mutation (Figure 3).

6. Numerical results
An example, with eight retailers, three candidate locations for distributors, and two
factories, is randomly generated and the solution obtained from GAMS software is analyzed
to validate the proposed model. For this purpose, the observance of the constraints and the
accuracy of the value of the objective function obtained from GAMS software are checked.
Figure 4 shows the schematic solution obtained from GAMS software. In this solution, a
distributor is constructed in Locations 1 and 2, and no distributor is constructed in Location
3. In both distributors, two vehicles were used. Figure 7 shows the routes. The best value
function obtained from GAMS software is 2323 for the first objective function and 521 for
the second objective function. The calculations indicate that the values obtained are quite
accurate.

In the step to check the problem constraints, the soft and hard time window constraints
are first checked, the results of which are shown in Figures 5 and 6. In each figure, the first

Table 2.
Solution of example

Retailers Distributor Number of vehicles Rout

2 1 1 4–6-8
2 1 2 1–3
1 2 3 7–2-5
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and last time of service in the time window and the actual time of service are specified.
According to Figures 1 and 2, both constraints are observed.

Figure 7 shows the initial loading constraint; Figure 8 shows the constraint on the weight
of the load on the vehicle along the route. In Figure 7, number 1 represents distributor 1
of route 1, number 2 represents distributor 1 of route 2, number 3 represents distributor 2 of

Figure 5.
Compliance check for
soft time windows

Figure 6.
Compliance check for
hard time windows

Figure 7.
Compliance check for
initial loading
constraint
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route 1 and number 4 represents distributor 2 of route 2. In Figures 7 and 8, the constraint on
the weight of the load on the vehicle is not violated.

In the next step to test the proposed NSGAII algorithm, small examples are randomly
generated, solved and compared by GAMS software and genetic algorithm, the results of
which are presented in Table 5.

The small problem is implemented using GAMS software and the proposed NSGAII
algorithm, the results of which are given in Tables 3 and 4. According to Table 3, the
value of the exact solution deviation obtained from GAMS software and NSGAII
algorithm for the values of the first and second objective functions has an acceptable

Figure 8.
Compliance check for

en route loading
constraint

Table 3.
Comparison of the
answer of NSGAII

with the exact
solution in small
sizes for the first
objective function

Number of retailers Mean NSGAII Gams Gap(%) Exact

N = 4 1160 1160 0 1160
N = 5 2061 2047 0 2047
N = 6 2124.2 2120 0.2 2120
N = 7 2259.7 2253 0.3 2253
N = 8 2339.5 2329 0.5 2329
N = 9 3342.5 3320 0.7 3320
N = 10 3682.4 3658 0.7 3658

Table 4.
Comparison of the
answer of NSGAII

with the exact
solution in small

sizes for the second
objective function

Number of retailers NSGAII Gams Gap(%) Exact

N = 4 153 153 0 1160
N = 5 183 183 0 2047
N = 6 201 201 0 2120
N = 7 225.4 225 0.2 2253
N = 8 238.7 238 0.3 2329
N = 9 252.8 251 0.7 3320
N = 10 306.8 304 0.9 3650
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deviation. Accordingly, it can be argued that the proposed small NSGAII algorithm has
good performance.

As the size of the problem increases, the problem cannot be solved using GAMS
software or other precise methods. So, to test the performance of the NSGAII algorithm
in large sizes, examples are created and the NSGAII and MOPSO algorithms are solved.
The results of Tables 5 and 6 show the acceptable deviation between the mean of the
solutions obtained from NSGAII and MOPSO and the better values of the NSGAII
algorithm.

7. Conclusion and recommendations
Themodel presented in this study has many constraints and complex conditions. The use of
new decision variables makes modeling attractive. At the beginning of the study, a
conceptual model for the problem is presented. Accordingly, a mathematical model is
proposed, and the accuracy and efficiency of the model are checked and verified by solving a
stochastic example using GAMS software. Since the problem is complex and small in size,
the NSGAII algorithm is proposed to solve it, and the efficiency of the algorithm in large and
small sizes is then proven.

In fact, comprising the values of the fitness functions indicate that, in solving
problems with small size, the NSGAII has achieved better performance against the
MOPSO algorithm. Although the obtained results have been issued in a shorter time by
MOPSO, in terms of optimizing the objectives, and proposing the best non-dominated
solutions, the superiority of the NSGA-II is obviously proven. Moreover, the average
error of the two proposed algorithms in comparison with the exact solution is less than
0.7% which is one more verification for the efficiency and performance of the
algorithms.

Future studies are recommended to consider demand as stochastic, consider
candidate areas in the depot as uncertain or continuous, consider the problem as three-
objective, or add minimizing greenhouse gas emissions to the objectives of the problem.
Moreover, the use of other meta-heuristic methods to solve the problem is
recommended.

Table 6.
Comparison of the
answer of NSGAII
and MOPSO in large
sizes for the second
objective function

Number of retailers NSGAII MOPSO scattering GA(%)

N = 30 1236 1239 0.2
N = 50 1538 1546 0.4
N = 100 2369 2378 0.4

Table 5.
Comparison of the
answer of NSGAII
and MOPSO in large
sizes for the first
objective function

Number of retailers NSGAII MOPSO scattering GA(%)

N = 30 10251 10269 0.2
N = 50 48351 48396 0.1
N = 100 73896 73987 0.2
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