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Abstract
Purpose – The operating wagon records were produced from distinct railway information systems, which
resulted in the wagon routing record with the same oriental destination (OD) was different. This phenomenon
has brought considerable difficulties to the railway wagon flow forecast. Some were because of poor data
quality, which misled the actual prediction, while others were because of the existence of another actual
wagon routings. This paper aims at finding all the wagon routing locus patterns from the history records, and
thus puts forward an intelligent recognition method for the actual routing locus pattern of railway wagon
flow based on SST algorithm.
Design/methodology/approach – Based on the big data of railway wagon flow records, the routing
metadata model is constructed, and the historical data and real-time data are fused to improve the reliability
of the path forecast results in the work of railway wagon flow forecast. Based on the division of spatial
characteristics and the reduction of dimension in the distributary station, the improved Simhash algorithm is
used to calculate the routing fingerprint. Combined with Squared Error Adjacency Matrix Clustering
algorithm and Tarjan algorithm, the fingerprint similarity is calculated, the spatial characteristics are
clustering and identified, the routing locus mode is formed and then the intelligent recognition of the actual
wagon flow routing locus is realized.
Findings – This paper puts forward a more realistic method of railway wagon routing pattern recognition
algorithm. The problem of traditional railway wagon routing planning is converted into the routing locus
pattern recognition problem, and the wagon routing pattern of all OD streams is excavated from the historical
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data results. The analysis is carried out from three aspects: routing metadata, routing locus fingerprint and
routing locus pattern. Then, the intelligent recognition SST-based algorithm of railway wagon routing locus
pattern is proposed, which combines the history data and instant data to improve the reliability of the wagon
routing selection result. Finally, railway wagon routing locus could be found out accurately, and the case
study tests the validity of the algorithm.
Practical implications – Before the forecasting work of railway wagon flow, it needs to know howmany
kinds of wagon routing locus exist in a certain OD. Mining all the OD routing locus patterns from the railway
wagon operating records is helpful to forecast the future routing combined with the wagon characteristics.
The work of this paper is the basis of the railway wagon routing forecast.
Originality/value – As the basis of the railway wagon routing forecast, this research not only improves
the accuracy and efficiency for the railway wagon routing forecast but also provides the further support of
decision-making for the railway freight transportation organization.

Keywords Intelligent transportation, Pattern recognition, Simhash algorithm,
Wagon flow routing, Similarity matrix, Clustering analysis

Paper type Research paper

1. Introduction
Railway wagon routing selection and allocation are the vital basic work in the railway
freight transport organization, which is the principal reference for the railway wagon flow
forecast, adjustment and daily plan making. The reasonable planning of the railway wagon
routing and the accurate tracking of the railway wagon flow locus is the key to guide the
railway freight production. However, there is a situation that actual wagon routing in the
railway network does not match the planning wagon routing, which makes it hard for
relevant departments to forecast the wagon flow, to trace the wagons, to get the delivered
time and to optimize the freight organization in the long-distance transportation. The wagon
operating records are produced from distinct railway information systems, which resulted in
that the wagon routing record with the same oriental destination (OD) may be different.
Some of the phenomena were because of poor data quality, while others were because of the
existence of another actual wagon routings. It has already been a common problem that the
actual routing trajectory of railway wagon flow was not in line with the planning routing.
The planning wagon routing could not forecast wagon flow routing anymore because of the
above phenomenon. Therefore, how to take full advantage of the big data of railway wagon
flow accumulated by Railway Transport Information Integration Platform and recognize
wagon routing locus patterns intelligently by mining the history information of wagon
routing has become the chief issue of railway wagon flow routing forecast.

Experts and scholars in the field of railway transportation have made extensive research
on railway wagon routing and achieved fruitful results. In the traditional research, the
railway network consisting of railway lines and railway stations was defined as the directed
network or the directed graph (Xu, 2001). The railway wagon routing vertex-to-arc models
were classified based on two hypotheses: unlimited railway network capacity (Xu, 2001;
Shen and Deng, 2003) and limited railway network capacity (Xu, 2001; Shen and Deng, 2003;
Ford et al., 2001). To solve the model, Dijkstra algorithm and Floyd algorithm were two
major computing methods of wagon routing planning. Nevertheless, with the expansion of
the national railway network scale, the execution efficiency of the above algorithm was
concerned.

Besides the railway network restriction capacity, the design of the objective function was
another decisive factor. Railway wagon routing problem was optimized by different goals,
such as the minimum operating mileage (Wen et al., 2016; Jiang et al., 2004), the minimum
operating cost (Wang et al., 2014), the maximum merchandise revenue (Ji et al., 2011), the
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lowest transportation cost (Jin et al., 2005) and the shortest transportation time (Chang,
2010). The diverse goal of the model decided the operation effect of wagon routing selection.
However, the defects in this study above are also obvious that one single goal narrowed the
boundaries of the problem and reduced the complexity of the study. Therefore, multi-
objective optimization models for wagon routing selection were designed thoroughly by Shi
and Shi (1998), Shi and Yong (1999) andWu et al. (2016).

With the development of international trade, scholars pay more attention to the railway-
based multimodal transportation. For multimodal transport, the optimized railway wagon
routings can lead to higher transport efficiency. The common method of multi-modal
transportation freight routing planning problem contains column generation method
(Caprara et al., 2011) and genetic algorithm (Xiong and Wang, 2014), which are established
on the mixed-integer linear/nonlinear model. In the scene of multimodal transportation, the
freight commodity is integrity (Liu et al., 2011; Li et al., 2012), railway network situation
limits the network capacity (Cho et al., 2012), transportation targets are different (K. Lei et al.,
2014) and transportation cases are spatio-temporal stochastic (Bai et al., 2014; Wang et al.,
2011). The characteristics of multimodal transport routing planning are similar to the main
two characteristics in the railway freight routing planning.

It is not difficult to find out that there are two significant problems in the traditional
research. Both problems cause that we have to use the planning routing to forecast the
actual wagon routing in the work of railway wagon flow forecast. The accuracy of wagon
flow spatial prediction is low, andwagon flow time prediction is even more impossible.

Problem 1: The optimal goal based on the comparison of the shortest and the second
shortest routing is often unrealistic. The shortest wagon routing planned does not mean the
best, which can only be simply called the better choice in one aspect or one target.

Problem 2: The cost of wagon routing calculation by the multi-objective programming is
too high. The planning result does not match the actual production, which implies that the
planning wagon routing is meaningless to improve the railway transport efficiency.

With the emergence of new calculation and analysis method, the big data thinking is
more widely used, which converts traditional causal relationship analysis to the strong
correlation analysis. To bring the research results closer to reality, domestic and foreign
experts use machine learning and data mining methods to analyze the behavior of learning
objects and further guide the production.The big data analytic method used in the traffic
and transportation field contained the multisource data fusion (Drli�ciak and �Celko, 2016;
Necula, 2015), the visualization of big data (Cebon and Samson, 2012), online learning (Zhou
et al., 2015; Lint, 2008) and SVM (Jeong et al., 2013; Chen et al., 2016).

Based on the excavation and analysis of railway wagon flow big data, this paper puts
forward a more realistic method of railway wagon routing pattern recognition algorithm,
which supports the wagon flow forecast. The problem of traditional railway wagon routing
planning is converted into the routing locus pattern recognition problem, and the wagon
routing pattern of all OD streams is excavated from the historical data results. The analysis
is carried out from three aspects: routing metadata, routing locus fingerprint and routing
locus pattern. Then, the intelligent recognition SST-based algorithm of railway wagon
routing locus pattern is proposed, which combines the history data and instant data to
improve the reliability of the wagon routing selection result. Finally, railway wagon routing
locus could be found out accurately, and the case study tests the validity of the algorithm.

The rest of this paper is organized as follows. Section 2 describes the scientific problem of
the wagon routing selection based on the big data. The complex reasons for the huge
mismatch between the actual railway wagon path and the planning track are analyzed in
detail. Based on the big data of railway wagon flow, an SST-based algorithm is developed in
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Section 3. The algorithm evaluation standard is proposed in Section 4 to verify the SST-
based algorithm. In Section 5, the suggested algorithm is applied to the actual cases of
railway wagon flow in the China Railway Corporation, and all the data are generated from
the Railway Transport Information Integration Platform. Section 6 summarizes the full text
and discusses the further issue in this research.

2. Railway wagon routing selection issue
There is a great gap between the behavior of the railway wagon flow and other traffic flow.
The unique of the railway wagon flow is mainly manifested in integrity and convergence.
Integrity means that the wagons of any OD flow during the transport procedure between
loading wagon station and unloading wagon station are in one train, which could not move
individually. The convergence refers that the original wagon will be marshalled into a train
with the same OD in the railway technical station, which would not be ceaselessly spliced in
the movement.

Two characteristics improve the efficiency of the railway transport organization. The
main factors of wagon routing selection are as follows:

� transport distance;
� transport time;
� restrict capability of railway stations and networks; and
� transport costs.

The traditional research on wagon routing concentrated on the influential factors above to
allocate the shortest wagon routing, aiming at optimizing the railway wagon flow
organization. This method, as the object entity without choosing behavior, limits the scope
of the influence factors, narrows the boundary of the problem and ignores the complex and
changeable situation. The direct consequence is that the simulated results of the railway
wagon routing do not match the actual wagon routing.

The reasons for this phenomenon are mainly as follows. In recent years, the scale of
China railway network has expanded rapidly. The transportation capacity has also been
greatly improved. However, compared with the actual domestic freight demand, there are
still significant shortcomings, which are directly reflected in the lack of railway network
capacity. The railway department formulates the freight plan based on the historical
experience and railway network capabilities and plans the wagon routing. In the actual
transportation process, the capacity of the marshalling stations is limited, the distributary
station is blocking and the freight trains avoid passenger trains. These reasons have made it
difficult for freight trains to accurately follow the planned wagon routing. In this case, to
carry out the operation plan and to ensure the railway network unobstructed, the temporary
adjustment of the wagon routing on some congested stations of the railway network is
required. Then, it causes the actual wagon routing in the railway network to mismatch with
the planning wagon routing, as shown in Figure 1, which may not provide decisive support
for the transport organization and production.

In Figure 1, there are three loci from Pingdingshan (central city of Henan Province,
China) East Railway Station to Sanming (northwestern city of Fujian Province, China)
Railway Station: Locus 1 is the planning shortest wagon routing, Locus 2 and Locus 3 are
the other two actual wagon routing, which means the difference is obvious and brings
difficulties to the wagon flow forecast.

As shown in Figure 2, in the China railway network, the number of active wagons per
day is about 600,000. The number of daily wagon report is about 3,000,000. The capacity of
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one report is about 1 KB. It can be observed that the reported capacity is approximately 3
GB by day and nearly 100 GB by month. All the records are stored in the Railway
Transportation Information Integration Platform. Many railway vehicle data contain many
influential factors, which reflect the discipline of the wagon routing, and have great
significance for analyzing the wagon routing pattern. All the wagon routing patterns in the
records are actual trajectory of the trains, while they may be different from the planning
ones, which have brought practical difficulties to the wagon flow forecast in railway freight
transportation.

According to the big data of the actual wagon routing, a hypothesis is proposed that the
routing selection behavior mode of any wagon flow in the railway network has certain
potential rules. Wagons with individual characteristics have obvious differences in the
routing selection mode. In addition to the four factors above, wagon routing behavior mode
is also affected by the natural environment, railway network status, management level,
human factors, uncontrollable noise and other factors. In other words,behavior modes are
determined by multiple influential factors. It is not hard to find that the traditional analysis
method constructs multi-objective model for various influential factors to obtain the optimal
wagon routing, which is not always suitable for the actual situation. However, ignoring
some of the factors, the optimization result (the planning wagon routings) does not match
the actual situation, which cannot support the transport organization. In recent years,
Chinese railway has accumulated huge wagon operation data, which contains the wagon
routing loci. Using railway wagon big data to excavate vehicle path mode is a new solution.

3. Intelligent recognition SST-based algorithm
The intelligent recognition SST-based algorithm consists of three important parts:

(1) routing metadata model description;

Figure 1.
Pingdingshan East-

Sanming actual
wagon routing loci

Figure 2.
The daily active

wagon number and
seven-day quantity

accumulation of
wagon report in the

China Railway
Network

Intelligent
recognition
SST-based
algorithm

7



(2) routing fingerprint construction based on Simhash; and
(3) routing locus pattern mining and recognition.

Part 1 (Chapter 3.1) processes and fuses the wagon operating records in the different railway
information systems, which form the complex wagon routing locus strings. Part 2 (Chapter
3.2) reduces the dimension of the complex wagon routing locus strings and keep the
authenticity, which would improve the efficiency of the wagon flow routing locus
recognition. Part 3 (Chapter 3.3) designs the recognition algorithm to excavate the actual
wagon routing locus from the railway big data based on the above scheme. The total flow
chart is shown as Figure 3.

3.1 Routing metadata model description
3.1.1 Routing metadata characteristic. The railway wagon routing data is not stored
centrally. When the wagon arrives in or departs from one railway station, the operation
event may be recorded and stored separately in the database. It is hard to get the related
information about the wagon routing directly. Therefore, it is necessary to use metadata
model to process and analyze the railway wagon flow data.

Metadata is the description of the data that is used to process the data rapidly. The major
class described by the routing metadata model is routing metadata. Routing metadata
consists of four basic characteristics, RM = (T, S, C, D), which provides services for the
semantic recognition, the semantic matching and the wagon behavior decision of railway
wagon routing.

Figure 4 points out the relationship of the characteristics in the routingmetadata.
3.1.1.1 Time characteristic T. The characteristic T is the value that represents the start

or end time of a wagon behavior event.
3.1.1.2 Spatial characteristic S. The characteristic S is the related attribute of the railway

station. The attribute mainly refers to the geographical location where the wagon behavior

Figure 3.
The total flow chart
of the intelligent
recognition SST-
based algorithm
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event occurred. The spatial feature uses the spatial basis data to establish the mapping
table, which is spliced into the wagon routing locus as the chronological order, to make the
foundation for mining the Content Feature C.

3.1.1.3 Content characteristic C. The characteristic C refers routing locus feature of the
wagon flow. The wagon routing pattern indicates the OD routing pattern in routing
metadata, which provides decision support for future wagon routing planning.

3.1.1.4 Data source characteristic D. The characteristic D is divided into instant wagon
flow data and history wagon flow data. The instant data is reported immediately by the
railway station and railway bureau. After analysis, the instant wagon flow data is
transferred to the history wagon flow data. The history wagon flow data is used to build the
wagon routing knowledge base, which enhances the variety of the study.

3.1.2 Routing metadata fusion. The real-time wagon flow data and historical wagon flow
data are fused in the routing metadata model, and the fusion process is describedin the
dashed box part in Figure 4, which is described in detail in Figure 5. Historical wagon flow
data will no longer be unchangeable, which enriches the information value of the training
data and enhances the credibility of the wagon routing analysis and selection.

Figure 5 reflects the fusion process of history data and real-time data. Real-time data
submitted by reporting clients is the source of the historical data. Through data cleaning,
classifying and weighting, real-time wagon flow data is fused with historical wagon flow
data of different storage types, and the training data is constructed. The training data

Figure 5.
Fusion process of the

history data and
instant data

Figure 4.
The descriptive
model of wagon

routingmetadata
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provides spatial characteristics and time characteristics for the routing metadata. At this
point, the data preparation has been prepared for extracting the content characteristics of
the wagon routing locus.

The spatial characteristic of routing metadata contains all the basic data of passing
stations, which are spliced into a completed character string, called Wagon Routing Locus
Character String (WRLCS). The larger data length increases the computational cost and
declines the efficiency of pattern recognition. In Figure 6, there are two stitching strings of
the actual wagon routing locus, which means contrast calculation is huge.

In the field of semantic recognition, the word segmentation method is used to segment
the text and give different weights according to the degree of importance to judge the
similarity of the text. Based on this idea, the dimension of spatial characteristics, especially
the WRLCS, are reduced by the Simhash algorithm. According to the different influencing
factors, the higher dimensional eigenvector is mapped into the lower dimensional
fingerprint, andmetadata wagon routing mode can be excavated.

3.2 Routing fingerprint construction based on Simhash
3.2.1 Spatial characteristic division and dimension reduction. The railway stations can
generally be divided into two categories: Distributary Station and Non-Distributary Station.
Distributary station refers to the point of the railway network, like Luohe Railway Station
given in Figure 1. The L1 norm of the edge between the distributary point and its adjacent
point in the railway network is greater than 2. On the contrary, Susong Railway Station is a
non-distributary station. Assuming Factor 3 would not exist, in the certain direction, the
wagon routing WRLCS of any two neighbor distributary stations is the single one. That
means all the elements between the neighbor distributary stations are not-distributary
stations.

Assuming that the WRLCS is represented by a spatial characteristic S of routing
metadata RM, which consists of separator symbols and passing station symbols. These are
a – 1 distributary station and b non-distributary station. The passing station quantity of the
spatial characteristic S is calculated by formula (1). The spatial characteristic Sis divided
into a vector space with a eigenvector Va. It is necessary to initialize f-dimensional
fingerprint row vector F, and any element of F is 0, descripted by formula (2).

kSstationk1 ¼ ja� 1j þ jbj þ 2 (1)

F ¼ 0; 0; � � � ; 0½ �1�f (2)

To improve the performance of data matching and mining, the eigenvector, which is
composed of separator symbols and passing station symbols, is processed by the md5 hash
algorithm, convertingVa to f-bit 0-1 hash valueHa (Chen et al., 2016).

Figure 6.
Stitching string of the
actual wagon routing
locus (From
Pingdingshan East to
Sanming)
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3.2.2 Spatial characteristic matrix and weight hash row vector. In the process of traditional
semantic lexical analysis, based on the frequency and property of the word, Simhash
algorithm divides the fingerprint row vector into several parts and gives different
weights. However, for the issue of the railway wagon routing locus recognition, freight
cars do not repeatedly pass a certain railway station (circuitous phenomenon) in general.
Thus, the traditional semantic lexical analysis method is meaningless to the issue of this
paper. To solve this problem, the property of every railway station is used to estimate
how to give the weight for the spatial eigenvector Va, and then the 0-1 hash value Ha is
transformed into eigenvector weight hash value Wa ¼ Wa

i

� �
, as shown in the

constraints below.
In the formula (3), vai is the ith element of the ath eigenvectorVa. Ia is the element quantity

of the ath eigenvector that is divided by the separator. The form of the separator among the
stations is free, which can be expressed as a semicolon (“;”), comma (“,”), vertical line (“|”)
and other forms.

Va ¼ vai ji 2 Ia
� �

(3)

Formula (4) states all the constants of the involved station s in the ODstation. l s is the unique
constant generated at random.

P ¼ l sjs 2 ODstationf g (4)

wa
i is the weight value of the ith element in the ath eigenvector. a, b , w and m are four

different weight constants when the passing station vai is the distributary station, non-
distributary station, boundary station or marshalling station, respectively.

wa
i ¼

al s vai 2 distributary station; s ¼ vai

bl s vai 2 non� distributary station; s ¼ vai

wl s vai 2 boundary station; s ¼ vai

ml s vai 2 marshalling station; s ¼ vai

8>>>>>><
>>>>>>:

(5)

wa is the summation of the element weight value in the ath eigenvector, as shown in
formula (6).

wa ¼
X
i2Ia

wa
i (6)

Wa
j is the jth weight value of the ath eigenvector, which is calculated by constraint (7). When

the jth bit of the ath f-bit 0-1 hash valueHa is 1,Wa
j will bewa. Conversely, it will be –wa.

Wa
j ¼

wa Ha
j ¼ 1; j 2 f

�wa Ha
j ¼ 0; j 2 f

8<
: (7)

All the constraints and formulas above transform the spatial characteristic matrix to the f-
bit weight hash row vector.
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3.2.3 Weight hash combination and similarity calculation. Formula (8) sums the value of
every hash bit fromWa to get theWeight Fingerprint (WF).

WF 0
j ¼

X
a

Wa
j j 2 f (8)

Aimed at reducing the dimension of the spatial eigenvector, the merged weighted result is
mapped to the binary value, transformed to 0-1 string. The fingerprint set F 0 ¼ F 0

j

n o
is

calculated by formula (9).

F 0
j ¼

1 WF 0
j > 0; j 2 f

0 WF 0
j # 0; j 2 f

(
(9)

At this point, the comparison of the spatial characteristics of the routing metadata is
converted to the similarity comparison of the routing locus fingerprint, which optimizes the
wagon routing locusmining method. The Hamming distance between two vectors measures
similarity by comparing the number of different characters (Pi et al., 2009; Jarrous and
Pinkas, 2009). To estimate the similarity, hamming distance compares the fingerprint dwith
the fingerprint e to calculate the number of distinct characters (Jayram et al., 2008), which is
described by formula (10).

d d; eð Þ ¼
X
j2f

jF 0
j

d
�F 0

j

e
j (10)

3.3 Routing locus pattern mining and recognition
3.3.1 Weight hash similarity adjacency matrix construction. Comparing the similarity of any
two fingerprint element Fi and Fj, which are extracted from the routing fingerprint set Fin the
wagon routing metadata, similarity indicator p (i, j)is calculated via the bit length f of the
fingerprint F and hamming distance d (i, j). Similarity indicator p (i, j) constitutes the similarity
matrixP = {p (i, j)} as shown in formula (11).

p i; jð Þ ¼ jFi \ Fjj
jFi [ Fjj ¼

jf � d i; jð Þj
jf þ d i; jð Þj 1# i; j#n (11)

According to the similarity matrix, for wagon routing fingerprint set, clustering analysis is
an effective method to collect the wagon routing locus pattern.

In recent years, clustering algorithm based on the similarity matrix was the focus of the
study, which was divided into spectral analysis method and graph analysis method.
However, the two main algorithms need to design the scale of the clustering. To avoid the
problem above, Squared Error AdjacencyMatrix Clustering (SEAMAlgorithm) (Yu and Lin,
2008) was an excellent choice. The core idea of SEAM algorithm was that hypothesizing the
similarity matrix reflected the structure of original data, the similarity matrix should be
close to an adjacency matrix with the same similar weight measurement. In the ideal case,
the two matrices were the same. SEAM algorithm did not need to specify other parameters,
and the clustering result was depending on the given similarity matrix.

In principle, the consequence of clustering analysis will not be affected, when the
similarity matrixmultiplies a similarity weight. Theoretically, there should be a certain
adjacency matrix E that is similar to the similarity matrix P in theory, and the ideal
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situation is that the two matrices are equal. In the paper, uE = [ue(i, k)]n�n is defined as the
similarity weighted adjacency matrix and offset weight. The optimum E and u can be
calculated by least square method, and the loss function is shown in formula (12).

f u;Eð Þ ¼
X
i 6¼j

p i; jð Þ � u� e i; kð Þð Þ2 (12)

The distributary phenomenon of railway wagon flow in the distributary station causes a
higher coincidence degree of the wagon routing, generally more than 65 per cent, which
would produce the situation of similarity over-iteration. Therefore, SEAM algorithm was
adjusted by formula (13)-formula (16), and the adjusted algorithm was called as Squared
Error Offset AdjacencyMatrix Clustering (SEOAMAlgorithm) in this paper.

The formula (13) transforms f(u, E) into the relationship among the offset adjacency
matrix P0 = 1 – P(i, j) that is shown in formula (16). The offset matrix E0 and the offset
weight u0 are explained as below:

f u0;E0ð Þ ¼
X
i 6¼j

p 0 i; jð Þ � u0 � e0 i; kð Þ� �2
(13)

The necessary condition of the loss function described by formula (13) is converted to
formula (14) and (15).

e0 i; jð Þ ¼ 1 p 0 i; jð Þ � u0=2

0 p 0 i; jð Þ < u0=2

(
(14)

u0 ¼

X
i 6¼j

p 0 i; jð Þ � e0 i; jð Þ
X
i 6¼j

e0 i; jð Þ (15)

e lð Þ i; jð Þ ¼ 1� e
0 lð Þ

i; jð Þ (16)

For the adjacency matrix E0(l) of wagon routing fingerprint offset, SEOAM Algorithm is an
efficient method to iterate the matrix, and the attribute l presents the iteration count. Finally,
the Tarjan algorithm is used to find the connected branches in the adjacency matrix, and
then the clustering recognition results of the routing trajectory pattern are obtained. The
calculation process was designed:

INPUT: l-iterative number, e0(0)(i, j)-offset adjacent matrix, u0(0) -offset weight, W-iterative
limit.

OUTPUT: similarity adjacencymatrix E(l).
Step 1:Initializel= 0, e0(0)(i, j) = 0, u0(0) = maxi=jp

0(i, j),W.
Step 2: Update offset adjacent matrixE0(lþ1) = {e0(lþ1)} by formula (14) and formula (15).
Step 3: Calculate and update the offset weight u0(lþ1).
Step 4: Terminate when lþ 1 =W or u0(l) = u0(lþ1); otherwise, l= lþ 1, and return to Step 2.
Step 5: Output the offset adjacency matrix E0(l) and the offset weight u0(l).
Step 6: Calculate the similarity adjacency matrixE(l) by formula (16).
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3.3.2 Routing locus clustering and pattern marking. To get the clustering recognition
result of the wagon routing locus, Tarjan algorithm (Liao, 2006) is asked to seek the
connected branch in the adjacency matrix E(l). Tarjan algorithm is used to find the closed
loop for the directed graph. However, the adjacency matrix was an undirected graph, and
the features of the wagon routing fingerprint should be considered. In this paper, it is
necessary to improve the Tarjan algorithm to fit the situation.

The process of the amended Tarjan algorithm was shown in Figure 7. The amended
parts were in the shadows.

(1) There are two parts to be amended in the process of P = {i,. . ., h, j}:
� Considering that the undirected graph has no direct follow-up vertex, the

adjacent vertex k of j is used to extend P. When the vertices are selected from
the adjacent vertex sets of j, they are accessed from small to large according to
the label of the adjacent vertex. It can be ensured that all the vertices which are
adjacent to j can be accessed to only once.

(2) According tothe property of the undirected graph, if there is only i in P, k never
appears in the loop which is started from i:
� When P goes back to the vertex v and the flag of v is true, only all the adjacent

vertices of v are accessed, the tag of v is released. However, in the traditional
Tarjan algorithm, the tag of v is immediately released when P is accessing v.

Now, the clustering set C was found out by the amended Tarjan algorithm, which got the
connected component of the adjacency matrixE(l).

4. Algorithm evaluation standard
The evaluationwas performed in each WRLCS set of the spatial characteristic. The manual
annotation was used as the gold standard for the evaluation (Artiles et al., 2009). In general,
the recognition algorithm or system was evaluated using the standard clustering metrics
purity and inverse purity, and the algorithm evaluation standard was called P-IP (Artiles
et al., 2007). This measure focuses on the frequency of the most common category in each
cluster and rewards the clustering solutions that introduce less noise in each cluster (Khabsa
et al., 2015). Purity P, well known in Information Retrieval, is related to the precision
measurement of the wagon routing locus pattern. The emphasis of Inverse Purity IP is the
cluster with a maximum recall for each wagon routing pattern, which focuses on the
comprehensiveness of recognition.

Being C the set of wagon routing loci cluster Ci recognized automatically to be evaluated
and L the set of wagon routing pattern category Li annotated manually, purity is computed

Figure 7.
The flow chart of the
amended Tarjan
algorithm
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by taking the weighted average of maximal intersection between Ci and Lj for a given
category Lj, as shown in formula (17).

P ¼

X
Ci2C

maxLj2LkCi \ Ljk1X
Ci2C

kCik1
(17)

Inverse purity is calculated by getting the weighted average of maximal intersection
between Li and Cj for a given category Cj, defined as formula (18).

IP ¼

X
Li2L

maxCj2CkLi \ Cjk1X
Li2L

kLik1
(18)

The relationship between the two indexes is not inevitable, but mutual restraint. Thus, we
used the harmonic constant Fs of purity and inverse purity to rank the recognition
algorithm finally. The Fmeasurement is defined by the following formula (19).

Fs ¼ s 2 þ 1ð ÞP � IP
s 2P þ IP

s 2 0; 1½ � (19)

s is included as an additional measure giving more importance to the aspect of purity or
inverse purity, which is a ratio constant in nature. Therefore, achieving a high inverse purity
should be rewardedmore than having high purity.

5. Case study
5.1 Experiment data and test environment
The paper adopted the national railway historical report of wagon flow in the latter half of
2016 as the experimental data. The scale of the railway report of wagon flow is nearly 600
GB, generating about 130,000 OD. After processed by the routing metadata model, every OD
routing metadata contains the spatial characteristics, which are consisted of 4,000-20,000
passing station records. Based on the actual production data, the experimental environment
was established. The recognition algorithmwas running on the computer with 2.5GHz CPU,
3 GB randommemory, developed by Java, and executed in the JVM environment.

5.2 Experiment result and analysis
5.2.1 Experiment procedure. Using the routing metadata model, about 130,000 routing
metadata were constructed. Taking the wagon routing from Pingdingshan East Railway
Station to Sanming Railway Station as the example, six wagon routings with significant
differences were found out from the records of 16,729 railway wagons by the traditional
method. The traditional method refers to the direct comparison of the stitching strings of the
actual wagon routing with the same OD. Because the stitching string of the passing station
code is incomplete, the accuracy of comparison is low.

Table I shows that the situation and proportion of the seven loci are different from each
other, but compared with the result annotated manually, in fact, there are only three actual
wagon routing loci, as shown in Figure 1. In Table I, the percentage of locus 1 and locus 3
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accounts for 24.694 per cent and 37.037 per cent, and the quantity of the wagon routing is
10,327. The quantity of passing station of locus 4 is the same with locus 5, while the WRLCS
Unicode length of them are different, which means the traditional method treats them as two
distinct routing loci.

First of all, the spatial characteristic SL–Z of routing metadata RML–Z was divided by the
distributary station, and the dimension of SL–Zwas reduced to the form of 0-1. Second, while
calculating the weight hash value of spatial eigenvector, the weight value of distributary
station awas set as 2, the non-distributary station b was set as 1, boundary station w was
set as 4 and marshalling station m was set as 3. Then, the wagon routing spatial
characteristic fingerprint was calculated by the improved Simhash algorithm, to compute
the hamming distance of any two routings, whereby hamming distance matrix was
obtained, as shown in Figure 8.

From Figure 8(a), we could not find the same locus, and all the routing fingerprint
hamming distances were different. Computing the similarity matrix PL–Z of the wagon
routing locus pattern continuously, seen in Figure 8(b),PL–Z could not support to cluster the
actual routing locus. The routing fingerprint offset matrix

Q0
L�Z in Figure 8(c) was

calculated by formula (11). Assumed W was 10, the routing fingerprint offset adjacency
matrix was set by SEOAM algorithm, as shown in Figure 8(d). EL–Z in Figure 8(e) was
calculated by formula (16). Finally, combined with Tarjan algorithm, the clustering result of
routing fingerprint undirected graph was solved, which was illustrated in Figure 8(f).
Figure 1 indicated that the experimental result was consistent with the manual recognition
result, and the SST algorithm found the actual wagon routing locus.

5.2.2 Pattern recognition assessment. Considering the scale of 130,000 routing metadata,
it is hard to recognize the wagon routing pattern manually. Hence, the first 100 routing
metadata is selected, which have rich and detail spatial characteristics, and P-IP evaluation
standard is used to analyze the experiment result. In the harmonic coefficient Fs , s is 0.5,
that means accuracy and comprehensiveness are equivalent important. The purity P,
inverse purity IP and Fs are shown in Table II.

The F values of the three methods are over 80 per cent. The harmonic coefficient F of the
wagon routing recognition method in this paper is the best, as high as 94.739 per cent, which
is 14.550 per cent higher than the traditional algorithm and 4.264 per cent higher than the
semantic method. The experimental result demonstrated that the algorithm in this paper
could effectively recognize the wagon routing locus.

5.2.3 Calculation efficiency analysis. The program was programmed by Java on the
eclipse and run on the JDK 1.8. The OD set size was taken from 10 to 500. Respectively using
different recognition algorithm to analyze the wagon routing metadata. Figure 9 showed the

Table I.
Pingdingshan East-
Sanming actual
wagon routing locus
analysis result by
traditional method

Wagon routing name
Passing station

quantity
WRLCS Unicode

length
Wagon routing

statistics
Wagon routing

ratio (%)

Locus 1 97 870 4131 24.694
Locus 2 101 902 1652 9.875
Locus 3 63 574 6196 37.037
Locus 4 31 288 516 3.084
Locus 5 31 300 826 4.938
Locus 6 32 296 310 1.853
Locus 7 39 373 3098 18.519
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comparison result of execution efficiency by traditional routing recognition method,
semantic recognition method andwagon routing recognition method in this paper.

With the expansion of routing metadata scale, the time consumption of the traditional
method is obvious, and the operating time growth rate is high. When the size of the routing

Figure 8.
Thewagon routing
locus fingerprint

matrix and clustering
partition

Table II.
The analysis of
comprehensive
performance

Method name Purity P (%) Inverse purity IP (%)
Harmonic coefficient

Fs =0.5 (%)

Traditional routing recognition method 79.931 81.237 80.189
Semantic recognition method (Artiles et al., 2007) 89.916 92.783 90.475
Routing recognition method in this paper 94.578 95.386 94.739

Figure 9.
The comparison of

the algorithm
execution efficiency
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metadata reaches 500, the operation time of the traditional method is close to 7min. The
semantic method improves the operating effectiveness, but the recognition effect remains to
be improved, as shown in Table II. The algorithm of this paper has significant improvement
not only on the recognition accuracy but also on the operating efficiency.

In the actual production process, for large-scale data sets, the time cost of traditional
algorithms and literature algorithms is difficult to accept, and the algorithm operation time
growth rate is low, it canmaintain an acceptable stable state.

Using the algorithm mentioned above to identify parts of actual railway wagon routing
loci, Figure 10(a) shows three actual wagon routing loci from Lianyun Railway Station
(UHK) of Shanghai Railway Administration of China to Zhongning Railway Station (VNJ) of
Lanzhou Railway Administration of China, Figure 10(b) shows eight actual wagon routing
loci from Jingtanggang Railway Station (JGV) of Taiyuan Railway Administration of China
to Yian Railway Station (YAV) of Taiyuan Railway Administration of China, Figure 10(c)
shows two actual wagon routing loci from Qingdao Railway Station (QDK) of Jinan Railway
Administration of China to Wangjiayingxi Railway Station (KNM) of Kunming Railway
Administration of China, Figure 10(d) shows three actual wagon routing loci from Sanming
Railway Station (SMS) of Nanchang Railway Administration of China to Jishan Railway
Station (JSQ) of Guangzhou Railway Corporation of China, Figure 10(e) shows two actual
wagon routing loci from Shuangyashan Railway Station (SSB) of Ha’erbin Railway
Administration of China to Bohai Railway Station (BED) of Shenyang Railway
Administration of China, and Figure 10(f) shows one actual wagon routing locus from Hami
Railway Station (HMR) of Urumqi Railway Administration of China to Zhicheng Railway
Station (ZCN) of Wuhan Railway Administration of China. All the results above indicate the
proper recognition effect.

Figure 10.
The railway wagon
flow actual routing
locus recognition
effect
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6. Conclusions
In this paper, an intelligent algorithm of railway wagon routing is presented to accurately
recognize the actual wagon flow loci from the railway big data. Four main characteristics of
the railway wagon flow data are considered in the routing metadata model to ensure the
comprehensiveness of information. Taking full advantage of the historical data and real-
time data, the spatial characteristic is extracted from the fruitful context characteristic.
Based on improved Simhash algorithm, SEOAM algorithm and Tarjan algorithm, SST
wagon routing pattern recognition algorithm is designed properly and then successfully
tested through a real-world case study. The results argued that the routing metadata model
is effective to improve the efficiency of characteristic extraction. The results also point out
that the SST-based algorithm is better than the traditional method not only in the efficiency
but also in the accuracy.

The intelligent recognition for the wagon routing locus is one of the key parts in the
railway wagon flow space forecast. However, different routing loci patterns provide various
choices for the railway wagon. Hence, future research should attempt to explore the wagon
routing decision pattern to guide the actual railway freight transport organization and
improve the efficiency of the railway wagon coordination.

References
Artiles, J., Gonzalo, J. and Sekine, S. (2007), “The SemEval-2007 WePS evaluation: establishing a

benchmark for the web people search task”, International Workshop on Semantic Evaluations.
Association for Computational Linguistic, pp. 64-69.

Artiles, J., Gonzalo, J. and Sekine, S. (2009), “Weps 2 evaluation campaign: overview of the web people
search clustering task”, Proceedings of the wwwWeb People Search EvaluationWorkshop.

Bai, R., Wallace, S.W., Li, J. and Chong, A.Y.L. (2014), “Stochastic service network design with
rerouting”,Transportation Research Part B: Methodological, Vol. 60, pp. 50-65.

Caprara, A., Malaguti, E. and Toth, P. (2011), “A freight service design problem for a railway corridor”,
Transportation Science, Vol. 45 No. 2, pp. 147-162.

Cebon, P. and Samson, D. (2012), “Using real time information for transport effectiveness in cities”, City
Culture and Society, Vol. 2 No. 4, pp. 201-210.

Chang, J.S. (2010), “Assessing travel time reliability in transport appraisal”, Journal of Transport
Geography, Vol. 18 No. 3, pp. 419-425.

Chen, C., Chen, L., Xiong, J. and Yu, H. (2016), “Research and improvement of data de-duplication based
on Simhash algorithm”, Journal of Nanjing University of Posts and Telecommunications (Natural
Science Edition), Vol. 3, pp. 85-91.

Cho, J.H., Kim, H.S. and Choi, H.R. (2012), “An intermodal transport network planning algorithm using
dynamic programming-a case study: from Busan to Rotterdam in intermodal freight routing”,
Applied Intelligence, Vol. 36 No. 3, pp. 529-541.

Drli�ciak, M. and �Celko, J. (2016), “Implementation of transport data in to the transport forecasting in
Slovakia$”,Transportation Research Procedia, Vol. 14 No. 5, pp. 1733-1742.

Ford, W., William, F. and Topp, W. (2001), Data Structures with Cþþ, TSINGHUA UNIVERSITY
PRESS, Beijing.

Jarrous, A. and Pinkas, B. (2009), “Secure hamming distance based computation and its applications”,
International Conference on Applied Cryptography and Network Security, Vol. 40, pp. 107-124.
Springer-Verlag.

Jayram, T.S., Kumar, R. and Sivakumar, D. (2008), The One-Way Communication Complexity of
Hamming Distance, Vol. 4 No. 1, pp. 129-135.

Intelligent
recognition
SST-based
algorithm

19



Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M. and Easa, S.M. (2013), “Supervised weighting-online learning
algorithm for short-term traffic flow prediction”, IEEE Transactions on Intelligent
Transportation Systems, Vol. 14 No. 4, pp. 1700-1707.

Ji, L., Lin, B., Qiao, G. and Wang, J. (2011), “Car flow assignment and routing optimization model of
railway network based on multi-commodity flow model”, China Railway Science, Vol. 32 No. 3,
pp. 107-110.

Jiang, N., Xia-Miao, L.I., Zhu, Y.H. and Wei, C.Y. (2004), “Mathematical problems in car flow routing”,
China Railway Science, Vol. 25 No. 5, pp. 121-124.

Jin, L., Ye, Y., Zhao, Y., et al. (2005), “Choosing of regional railway network car flow routing”, Chinese
Railways, Vol. 12, pp. 49-51.

Khabsa, M., Treeratpituk, P. and Giles, C.L. (2015), “Online person name disambiguation with
constraints”,Acm/ieee-Cs Joint Conference on Digital Libraries, ACM, pp. 37-46.

Lei, K., Zhu, X., Hou, J. and Huang, W. (2014), “Decision of multimodal transportation scheme based on
swarm intelligence”,Mathematical Problems in Engineering, Vol. 2014, pp. 1-10.

Li, Y., Zhao, J., Wu, G. and Chen, J. (2012), “Solving the mode selection problem with fixed
transportation cost in intermodal transportation”, J. Southwest Jiaotong Univ, Vol. 47,
pp. 881-887.

Liao, J. (2006), “The recognition arithmetic study of special structures for palm diagnosis”, Dissertation,
Harbin Institute of Technology.

Lint, J.W.C.V. (2008), “Online learning solutions for freeway travel time prediction”, IEEE Transactions
on Intelligent Transportation Systems, Vol. 9 No. 1, pp. 38-47.

Liu, J., He, S.W., Song, R. and Li, H.D. (2011), “Study on optimization of dynamic paths of intermodal
transportation network based on alternative set of transport modes”, Journal of the China
Railway Society, Vol. 33, pp. 1-6.

Necula, E. (2015), “Analyzing traffic patterns on street segments based on GPS data using R”,
Transportation Research Procedia, Vol. 10, pp. 276-285.

Pi, B., Fu, S., Wang, W., Han, S. and Inc, R. (2009), “Simhash-based effective and efficient detecting of
near-duplicate short messages”, Proceedings of International Symposium on Computerence and
Computational Technology, Vol. 4, pp. 20-25.

Shen, Z. and Deng, X. (2003), Transportation Engineering, CHINA COMMUNICATIONS PRESS,
Beijing.

Shi, Q. and Yong, S. (1999), “Multi objective linear programming model and its algorithm for car flow
routing with bidirectional heavy and empty cars in railway network”, Journal of the China
Railway Society.

Shi, Y. and Shi, Q. (1998), “Multi-Objective decision model for car flow routing with bidirectional heavy
and empty Cars in railway network”, Shanghai Tiedao Daxue Xuebao, pp. 78-82. Z2.

Wang, L., Ma, J., Lin, B., Chen, L. and Wen, X. (2014), “Optimal route choice model for loaded and
empty car flows in railway network”, Journal of Beijing Jiaotong University, Vol. 38 No. 6,
pp. 12-18.

Wang, Q.B., Han, Z.X., Ji, M.J. and Li, Y.M. (2011), “Path optimization of container multimodal
transportation based on node operation randomness”, J. Transp. Syst. Eng. Inf. Technol, Vol. 11,
pp. 137-144.

Wen, X., Lin, B. and Chen, L. (2016), “Optimization model of railway vehicle flow routing based on tree
form”, Journal of the China Railway Society, Vol. 38 No. 4, pp. 1-6.

Wu, W., Dong, B. and Chen, G. (2016), “Optimization of car flow routing based on vague sets”, Railway
Transport and Economy, Vol. 10, pp. 42-47.

Xiong, G.W. and Wang, Y. (2014), “Best routes selection in multimodal networks using multi-objective
genetic algorithm”, Journal of Combinatorial Optimization, Vol. 28 No. 3, pp. 655-673.

SRT
2,1

20



Xu, L. (2001),Modern Mathematics Handbook, Huazhong University of Science and Technology Press,
Wuhan.

Yu, J. and Lin, Z. (2008), “Squared error adjacency matrix clustering”, Technical Report on Dept. of
Computer Science, Beijing Jiaotong University.

Zhou, Z., Lu, X., Peng, W. and Zeng, W, Transportation, S. O. and University, S (2015), “Vehicle shadow
detection algorithm based on superpixel and SVM”, Journal of Southeast University, Vol. 45
No. 3, pp. 443-447.

Corresponding author
Xiaodong Zhang can be contacted at: xdcheung@126.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Intelligent
recognition
SST-based
algorithm

21

mailto:xdcheung@126.com

	Railway wagon flow routing locus pattern intelligent recognition algorithm based on SST
	1. Introduction
	2. Railway wagon routing selection issue
	3. Intelligent recognition SST-based algorithm
	3.1 Routing metadata model description
	3.1.1.1 Time characteristic T.
	3.1.1.2 Spatial characteristic S.
	3.1.1.3 Content characteristic C.
	3.1.1.4 Data source characteristic D.
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	3.2 Routing fingerprint construction based on Simhash
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	3.3 Routing locus pattern mining and recognition
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed



	4. Algorithm evaluation standard
	5. Case study
	5.1 Experiment data and test environment
	5.2 Experiment result and analysis
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed



	6. Conclusions
	References


