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Abstract
Purpose – The operation safety of the high-speed railway has been widely concerned. Due to the joint
influence of the environment, equipment, personnel and other factors, accidents are inevitable in the operation
process. However, few studies focused on identifying contributing factors affecting the severity of high-speed
railway accidents because of the difficulty in obtaining field data. This study aims to investigate the impact
factors affecting the severity of the general high-speed railway.
Design/methodology/approach – A total of 14 potential factors were examined from 475 data. The
severity level is categorized into four levels by delay time and the number of subsequent trains that are
affected by the accident. The partial proportional odds model was constructed to relax the constraint of the
parallel line assumption.
Findings – The results show that 10 factors are found to significantly affect accident severity. Moreover, the
factors including automation train protection (ATP) system fault, platform screen door and train door fault,
traction converter fault and railway clearance intrusion by objects have an effect on reducing the severity
level. On the contrary, the accidents caused by objects hanging on the catenary, pantograph fault, passenger
misconducting or sudden illness, personnel intrusion of railway clearance, driving on heavy rain or snow and
train collision against objects tend to be more severe.

Originality/value – The research results are very useful for mitigating the consequences of high-speed rail
accidents.
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Introduction
Safety is the primary and critical consideration in the operation of high-speed railway.
However, accidents are inevitable due to the systematic complexity, the unpredictability of
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humans (both operators and passengers) and environment uncertainty. In 2005, Japan’s
high-speed railway derailment accident caused 107 deaths and 555 injuries. In 2011, the rear-
end collision of two high-speed trains in China caused 39 deaths and 191 injuries (Wang,
2014). Similar accidents also occurred in other countries such as South Korea, France and
Germany and caused casualties.

Those accidents were attributed to various factors such as train operator’s mistake,
malfunction of facilities including on-board devices in the train control system and traction
power supply equipment and environment conditions such as thunder-strike. If the factors
affecting high-speed railways safety are identified, countermeasures can be taken to reduce
casualties and property damage. Therefore, plenty of researchers from different institutions
and country governments have paid much attention to investigate the contributing factors
affecting railway safety to provide theoretical and applicable contributions to safety
analysis and accident management. In general, human, equipment and facility and
environmental conditions are the most concentrated factors.

Human factors especially the individual characteristics of railway workers have been
proved to significantly affect the safety of railway operation (Baysari et al., 2008). The
statistics data in Europe pointed out that 75% of fatal railway accidents were caused by
human errors (Evans, 2014). In Iran, train drivers’ faults account for 47% of human-blamed
accidents (Iran Bureau of Rail Mobility, 2015). Guo et al. (2016) examined the relationships
between train drivers’ personalities (openness to experience, neuroticism, extraversion,
conscientiousness and agreeableness.) and driving safety of the high-speed railway. The
results showed that train drivers’ personalities are related to the frequency of accidents.
Another study conducted by Guo et al. (2019) revealed that job insecurity of high-speed
railway drivers affected their safety performance. Train drivers’ sustained attention also
plays a determinative role in railway safety (Hani Tabai et al., 2018). In addition, it should be
noted that passengers’ inadequate behaviors such as smoking in the train carriage or pulling
down the emergency braking valve can also jeopardize the safety operation of high-speed
railway. However, these factors were hardly taken into consideration bymost researchers.

A high-speed railway is a highly complexed and coupled system involving many
diversities of equipment and facilities. In common, infrastructures and on-board equipment
involved in the high-speed railway system include track and wheel-rail system, train control
system, traction power supply system, signal and communication system, etc. Ensuring the
normal running of this equipment and facilities is critical to operation safety. A track plays a
fundamental role in the infrastructure of the railway system. A high percentage of failure of
tracks such as track geometry degradation requires adequate assessment and preventive
maintenance to keep safety and reliable operation (Ižvolta and Šmalo, 2015; Hassankiadeh,
2011). A track circuit is a key component of the signal system of the railway, providing the
information of trains’ location and movements to ensure operation safety and driving
efficiency (Wybo, 2018). The accurate fault prediction of track circuit can improve the
consequential accidents (Hu et al., 2019). Wu et al. (2018) analyzed the impact of axle fatigue
damage on the safety of high-speed railway operation. They assessed the impact of axle
surface scratches on fatigue performance by analyzing the depth of scratches. The catenary
is an important component of the traction power supply system of the high-speed railway
which is responsible for power supply to electric locomotives through pantographs. The
structure integrity and dynamic performance of the catenary system directly affect driving
safety and speed (Han et al., 2018; Liu et al., 2018).

Environment conditions also have potential risks to railway safety because the working
environment of the railway is outdoor. Natural environment including extreme weather
conditions (strong wind, rainstorm, snowstorm, etc.) and geological disasters (soil
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settlement, debris flow, landslides, earthquakes, etc.) can directly result in railway accidents
such as train derailment or indirectly cause equipment damage, thereby endangering
railway safety. One of the reasons for a super railway accident in China in 2011 is that the
train control system was damaged by a thunder-strike. In a study did by Dindar et al. (2017),
derailments at railway turnout caused by extreme weather conditions were analyzed
through Bayesian Network. The natural hazards (temperature change, sea level raise,
roadbed settlement, flood, etc.) brought by global warming were also found to have a
potential effect on the railway turnout system (Dindar et al., 2016). In addition to force
majeure of the natural environment, the influence of the social environment (public security
at stations, management along the railway line, related laws and regulations, etc.) on the
operation safety of high-speed railway is becoming more and more prominent (Guanhua,
2018).

Most of the studies mentioned above were concentrated on a single factor that may result
in an accident in the operation of the railway. However, the operation of the railway is a
complex system involving many factors working simultaneously. A comprehensive
analysis and evaluation of safety factors to examine what extent each factor involved
contributes to accident severity is necessary and significant. Besides, previous studies on
analyzing accident severity using ordered probability models such as ordered logit are
usually constrained by proportional odds assumption (some even neglected it). A
generalization method of the ordered logit model, the partial proportional odds model is
applied in this research to relax the proportional odds constraint.

This paper aims to identify factors affecting accident severity during the process of high-
speed railway operation based on historical data gathered from Railway Bureaus and
quantitively analyze contributions of each factor to accident severity. Accident severity is
divided into four categories from low to high (I, II, III and IV) according to the delay time and
the number of subsequent trains influenced by the accident. Human, facility and equipment
and environment factors are simultaneously considered in the modeling. Considering the
high automation and integration of equipment is a technical development in high-speed
railway systems (Crawford and Kift, 2018), human injury or fatality accidents are less
reported in these years and can hardly found in the data collected. Therefore, only accidents
with no injury or fatality are taken into account in this research.

Methodology
Accident severity in this research is a discrete ordinal categorical variable with four levels.
Therefore, an ordered discrete choice model was the primary choice in this study. Ordered
probability models were applied in many road traffic crashes severity analysis. Numerical
researchers implemented ordered probability models such as ordered probit models (Abdel-
Aty, 2003; Lee and Abdel-Aty, 2005; Ju, 2006) and ordered logit models (Yasmin and Eluru,
2013; Feng, 2015; Rezapour et al., 2019) to severity research studies. The ordered logit model
(also called the proportional odds model) was firstly proposed byWalker and Duncan (1967),
which was widely used in accident severity analysis because of the ordinal nature of
accident severity. The ordered logit model can be written as:

P Yi > jð Þ ¼ exp aj þ Xib
� �

1þ exp aj þ Xib
� �� � ; j ¼ 1; 2; . . . ; M� 1 (1)

where P(Yi > j) is the probability of accident severity for a given accident i. j represents the
number of cut points. aj is the regression intercept of each cut point. b is the vector of the
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regression coefficient which does not change across different logits. X is the vector of
explanatory variables. M is the number of severity categories.

However, a very strict constraint of using the ordered logit model is proportional odds
assumption, also known as parallel line assumption (Mccullagh, 1980). This assumption
indicates that the effects of explanatory variables on different severity levels of the
dependent variable are the same in each cumulative logit. To be more specific, the regression
parameter b remains the same across different cut points. Brant test (Brant, 1990) is often
used to evaluate if a parallel line assumption is violated.

It is apparent that assuming the effects of explanatory variables remain the same among
each severity level cannot be met all the time. That is because the distance between each
severity level is not equal sometimes (Wang and Abdel-Aty, 2008). As a consequence of this
restrictive assumption, the ordered logit model often fails. Sometimes this constraint is
neglected in some research studies. However, it causes a misleading result because the effect
of the variable who violates the parallel line assumption is overestimated or underestimated
(Williams, 2016). An alternate of the ordered logit model is the generalized ordered logit
model which relaxes the restriction of parallel line assumption, and can be written as:

P Yi > jð Þ ¼ exp aj þ Xib j
� �

1þ exp aj þ Xib j
� �� � ; j ¼ 1; 2; . . . ; M� 1 (2)

The only difference between them is that the regression coefficients b j vary across different
equations. Unfortunately, the relaxation of the parallel assumption also brings a new
problem that increasing the number of regression parameters to be estimated because it
allows b to differ.

An intermediate method between these two models is the partial proportional model
(McCullagh and Nelder, 1989; Peterson and Harrell, 1990). In the partial proportional model,
the parallel line assumption is only relaxed for some variables. In other words, the
regression coefficients b of explanatory variables who violate parallel line assumption
change across different logits while others remain the same. The partial proportional model
can be written as:

P Yi > jð Þ ¼ exp aj þ Xi1b j1 þ Xi2b 2
� �

1þ exp aj þ Xi1b j1 þ Xi2b 2
� �� � ; j ¼ 1; 2; . . . ; M� 1 (3)

where Xi1 is the vector of explanatory variables which violate the constraint of parallel line
assumption and accompanied by a vector of regression coefficients b j1 which varies across
the cut points. Xi2 is the vector of the rest of the explanatory variables with a vector of
regression coefficients b 2.

Another equivalent form (gamma parameterization) of the partial proportional odds
model was proposed by Peterson and Harrell (1990). It can be written as:

P Yi > jð Þ ¼ exp aj þ Xib þ Tig j
� �

1þ exp aj þ Xib þ Tig j
� �� � ; j ¼ 1; 2; . . . ; M� 1 (4)

where Ti is the vector of explanatory variables which violate the assumption of proportional
odds and associated with a vector of regression coefficients g j, which represents the deviations
from proportionality. It can be easily seen from the form that the partial proportional odds
model will reduce to proportional odds model (ordered logit model) if g j = 0. It is remarkable
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that the interpretation of the model should be careful. The total effect of explanatory variables
which violate the proportional odds constraint is the sum of b and g j.

Logit models are very sensitive to multicollinearity. Multicollinearity refers to the
correlation among explanatory variables. It is quite common during the modeling process of
regression analysis. Singularity is the extreme condition of multicollinearity which means
one of the explanatory variables is the linear combination of some other explanatory
variables in a model. The estimation of the model will generate bias if singularity exists.
However, if multicollinearity is not very strong among explanatory variables, whose effect
can be neglected and parameter estimation is valid and unbiased. Many criteria can be
applied to evaluate multicollinearity (Xiaomu, 2010). Tolerance (TOL) and the variance
inflation factor (VIF) are widely used. VIF refers to the ratio of the variance between
explanatory variables with multicollinearity and variance without multicollinearity. TOL is
the reciprocal of VIF and defined as TOL ¼ 1� Ri

2. Where Ri refers to the coefficient
between xi and the rest of the explanatory variables under the condition that xi is the
dependent variable of other explanatory variables. In general, VIF> 10 (TOL < 0.1) is an
indication of strong multicollinearity.

Pseudo R2 is a criterion used in logistic regression to descript the proportion of changes
in dependent variables explained by explanatory variables just like classical R2 in linear
regression. It is defined as Pseudo R2 ¼ 1� LL̂=LL̂0. Where LL̂ is the maximum log-
likelihood of the fitted model and LL̂0 is the maximum log-likelihood of the zero model
(intercept only).

Data
Accident data was obtained from Railway Bureaus. Accidents in fivemonths were gathered
and key information was extracted. Finally, 475 cases of valid data were collected after
cleaning the data, excluding invalid andmissing values.

One of the most critical information of raw data is the reason for the fault of each
accident, which is considered to be the factor resulting in the accident. In total, 14 types of
factors affecting high-speed railway accidents were summarized as shown in Table 1. These
14 factors can be summarized into three categories. The statistical distribution of each factor
is presented in Figure 1.

Table 1.
Factors resulting in
high-speed railway
accident

Category Factors Designation

Facility and equipment factor (F) ATP system fault FAC_1
Turnout indication loss FAC_2
Platform screen door or train door fault FAC_3
Catenary blackout (trip) FAC_4
Objects hanging on catenary FAC_5
Pantograph fault FAC_6
Traction converter fault FAC_7
Carbody’s vibration FAC_8
Locomotive fault FAC_9

Human factor (H) Passenger misconducting or sudden illness FAC_10
Personnel intrusion of railway clearance FAC_11

Environment factor (E) Driving on heavy rain or snow FAC_12
Railway clearance intrusion by objects FAC_13
Train collision against objects FAC_14

SRT
3,1

16



Factors related to facility and equipment include nine detailed types. Accidents caused by
these factors account for 71.2% of the total. On the one hand, it is because the high-speed
railway involves a wide range of equipment and facilities with high technical requirements,
complex management and maintenance difficulties. On the other hand, such a high accident
rate proves that equipment and facility play a vital role in the operation of high-speed
railway. ATP is the abbreviation of an automatic train protection system. It is a safety
control system for ensuring train speed is limited to target safety speed. ATP fault (FAC_1)
is one of the most frequent risk factors of accidents that must be carefully treated. Turnout
indication loss (FAC_2) is a quite common turnout fault referring to no indication of signal
when a turnout is a switch to the lateral passing state (Zhang et al., 2018). Platform screen
door and train door faults (FAC_3) are mainly linkage failure between them resulted from
complex reasons such as signal failure or mechanical failure of equipment. As access for
passengers to enter or exit trains, the linkage failure has a direct threat to passengers’ safety.
Catenary system, pantograph and traction converter are all belong to the traction power
supply system of high-speed railway, whose function is to safely and reliably transfer
electric energy from the power grid to trains. The main faults of the traction power supply
system are concentrated on catenary blackout (FAC_4), objects hanging on catenary
(FAC_5), pantograph fault (FAC_6, including an automatic drop of pantograph during
operation, objects hanging on the pantograph, etc.) and traction converter fault (FAC_7).
Carbody’ s vibration (FAC_8) refers to the body swaying of a train while the train is in
motion (Shanchao et al., 2012). The causation mechanism of this phenomenon is related to
the theory of vehicle stability and will not be presented here. The main locomotive faults
(FAC_9) include braking failure, halfway parking lead by lack of power, etc.

Accidents caused by human factors account for 14.5% of the total. Two factors including
passenger misconducting or sudden illness (FAC_10) and personnel intrusion of railway
clearances (FAC_11) are taken into consideration. For FAC_10, some accidents are resulted
from improper or even illegal behaviors of passengers, such as smoke alarm triggered by
smoking passengers. The condition that passengers with sudden illness need to get off for
treatment is also contained in this factor. For FAC_11, residents living along the railway line
sometimes invade railway clearance which brings potential dangers to traffic safety. With
the improvement of staff management level and automation of high-speed railway,
increasingly fewer accidents are caused by operators’ errors. In addition, among all the valid
accident data, no accident was found to be associated with train operators or other staff of

Figure 1.
Distribution of

high-speed railway
accidents by different

factors
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high-speed railway operation. That is why both human factors are related to non-staff
members of high-speed railway.

Accidents led by environment factors account for 14.3% of the total. At present, most of the
high-speed railways in China are constructed in plain or hilly areas. The operation safety of the
high-speed railway is less affected by topography (Chungang, 2015). Compared with
earthquakes, debris flow or other extreme natural disasters, bad weather such as heavy rain or
snow (FAC_12) is the most common environment condition to be considered. Railway clearance,
which refers in particular to structure clearance here, is a cross-sectional profile perpendicular to
the center line of the railway. The intrusion of railway clearance is strictly forbidden to ensure
safety operation. In this research, the intrusion of railway clearance by objects (collapsed rock,
small animals, etc.) only refers to the intrusion that not collide with trains (FAC_13). If a collision
happens, this accident is attributed to train collision against objects (FAC_14).

In China, railway accidents are divided into four severity levels, namely, super major
accidents, major accidents, relative major accidents and general accidents according to the
standard (Jun et al., 2019). Besides, general accidents are divided into four grades: A, B, C
and D. However, no clear standards for the classification of high-speed railway accidents
were published in China until now. There are great differences between the high-speed
railway and general-speed railway in operation speed, subgrade strength, track radius,
traction power supply system and operation safety management. The most intuitive
difference is the operation speed. High-speed railway operation speed is generally more than
250 km/h. Faster speed also brings about the improvement of transport capacity. In
addition, the high-speed railway is less affected by climate and has a high punctuality rate.
High-speed railway equipment is more advanced, automated and safe. Therefore, the
original railway accident classification standard cannot fully meet the rapid development of
the railway industry, especially the development of the high-speed railway.

The most direct consequences of high-speed railway accidents are the delay of time (DOT)
and influence on subsequent trains (IOST). These two effects are easy to be observed and
recorded. In addition, it should be clarified that no injury or fatality accidents are observed and
recorded. Hence, in this study, a grading method for the severity of general high-speed railway
accidents is proposed based on the DOT and the number of trains influenced by the accident
(IOST). Severity is categorized into four levels from I to IV with the increase of DOT and IOST.
Detailed information of the grading method is given in Table 2. Figure 2 descripts the
distribution of observed accidents on DOT and IOST. Figure 3 demonstrates the percentage of
accidents on each severity level.

Results and discussion
In this research, the partial proportional odds model was fitted in Stata 15.1 with a user-
written program, gologit2 (Williams, 2006). After the selection of explanatory variables
through mixed stepwise method, 10 variables including FAC_1, FAC_3, FAC_5, FAC_6,
FAC_7, FAC_10, FAC_11, FAC_12, FAC_13 and FAC_14 are found to be statistically

Table 2.
Grading method of
high-speed railway
accident

IOST (train)
DOT (min) 0� 1 2� 5 >5

0� 10 I II III
15� 30 I II III
31� 60 I II III
>60 I III IV
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significant (p-value < 0.05). All the explanatory variables are binary. The value = 1
indicates the existence of this factor in an accident (Yes). The value = 0 indicates the
inexistence of this factor in an accident (No).

The results of the multicollinearity check of explanatory variables are given in Table 3. It
can be seen clearly that all the values of VIF are around 1 and far less than 10, which proves
that weak multicollinearity exists and the impact of multicollinearity can be neglected.
Thus, the parameter estimation results are valid.

Figure 2.
Distribution of

observed accidents on
DOT and IOST

Figure 3.
Frequencies of each

severity level of
accidents

Table 3.
Multicollinearity

check of explanatory
variables

Explanatory variables TOL VIF

FAC_1 (Yes = 1; No = 0) 0.707 1.414
FAC_3 (Yes = 1; No = 0) 0.745 1.342
FAC_5 (Yes = 1; No = 0) 0.795 1.259
FAC_6 (Yes = 1; No = 0) 0.850 1.176
FAC_7 (Yes = 1; No = 0) 0.895 1.117
FAC_10 (Yes = 1; No = 0) 0.801 1.248
FAC_11 (Yes = 1; No = 0) 0.850 1.176
FAC_12 (Yes = 1; No = 0) 0.967 1.034
FAC_13 (Yes = 1; No = 0) 0.927 1.079
FAC_14 (Yes = 1; No = 0) 0.770 1.299
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A Brant test was conducted to assess if explanatory variables violate the parallel line
assumption. The results show that the only FAC_14 violates the proportional odds assumption.
The estimation results of the partial proportional model are illustrated in Table 4. All
explanatory variables have one beta. Variable FAC_14 who violates the parallel line assumption
has two gamma coefficients. Three alpha represents the regression intercepts of each logit
function. Table 5 gives themarginal effects of each explanatory variable for accident severity.

Themost effective factor identified to affect accident severity is passenger misconducting or
sudden illness (FAC_10, Coef. = –2.8364). The negative value indicates that the occurrence of
this type of accident brings a relatively low level of accident severity. It can also be proved from

Table 4.
Estimation results of
the partial
proportional odds
model

Partial proportional odds model estimates
Log likelihood = –513.31358

No. of observations = 475
LR x 2 (11) = 185.40
Prob> x 2 = 0.0000
Pseudo R2 = 0.1530

Variables Coef. Std. err. z P>jzj [95% Conf. interval]

Beta
FAC_1 –0.7257 0.2730 –2.66 0.008 –1.2608 –0.1906
FAC_3 –2.3854 0.3773 –6.32 0.000 –3.1249 –1.6458
FAC_5 0.7453 0.3328 2.24 0.025 0.0931 1.3975
FAC_6 0.8353 0.3875 2.16 0.031 0.0759 1.5947
FAC_7 –1.1391 0.5131 –2.22 0.026 –2.1448 –0.1334
FAC_10 –2.8364 0.5097 –5.57 0.000 –3.8354 –1.8375
FAC_11 0.9757 0.3921 2.49 0.013 0.2072 1.7442
FAC_12 2.3862 0.9102 2.62 0.009 0.6022 4.1701
FAC_13 –1.2388 0.5924 –2.09 0.037 –2.3998 –0.0777
FAC_14 0.9823 0.4461 2.20 0.028 0.1079 1.8567

Gamma_2
FAC_14 0.1552 0.3854 –2.64 0.008 –0.6001 0.9106

Gamma_3
FAC_14 –2.8618 1.0840 0.40 0.687 –4.9863 –0.7373

Alpha
_cons_1 0.8560 0.1829 4.68 0.000 0.4975 1.2145
_cons_2 –0.6993 0.1802 –3.88 0.000 –1.0525 –0.3461
_cons_3 –2.0325 0.2209 –9.20 0.000 –2.4656 –1.5995

Table 5.
Marginal effects of
explanatory
variables for accident
severity

Explanatory variables
Severity levels

I II III IV

FAC_1 0.1303 –0.0099 –0.0709 –0.0495
FAC_3 0.4133 –0.0047 –0.2190 –0.1896
FAC_5 –0.1291 0.0015 0.0684 0.0592
FAC_6 –0.1447 0.0017 0.0767 0.0664
FAC_7 0.1974 –0.0023 –0.1046 –0.0905
FAC_10 0.4914 –0.0056 –0.2604 –0.2254
FAC_11 –0.1690 0.0019 0.0896 0.0775
FAC_12 –0.4134 0.0047 0.2191 0.1896
FAC_13 0.2146 –0.0025 –0.1137 –0.0985
FAC_14 –0.1702 –0.0246 0.3442 –0.1494
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the marginal effect of FAC_12 (0.4914 for Level I and�0.0056,�0.2604,�0.2254 for Levels II,
III and IV, respectively), which means that the greatest effect of FAC_10 is to reduce accident
severity to a low level. In general, the most common measure to deal with passengers with a
sudden illness or misconducting behavior in the course of traveling is to contact with
corresponding members (police or medical care) in the next station and transfer the passenger
to themwhen the train arrives. Emergency parking is hardly required which saves a lot of time
and causes less IOST. In contrast of FAC_10, the other human factor, personnel intrusion of
railway clearance (FAC_11) indicates an increase of accident severity level (Coef. = 0.9757). A
train driver is required to slow down the running speed to a limited level and report the
dispatching center as long as he finds someone intruding railway clearance. Only when the
dispatching center confirms that the unrelated personnel have been taken away from the scene
will the train speed return to normal. The whole process may cost a relatively long time which
consequently causes serious delays.

Driving on heavy rain or snow (FAC_12) is another very effective factor (Coef. = 2.3862).
Unlike other natural disasters such as earthquake, flood or landslide which may lead to a
great number of injuries or fatalities, heavy rain or snowmainly reduce the running speed of
high-speed railway trains. High-speed railway trains are forced to limit running speed if
subsystems of the natural disaster monitoring system detect the excess of rainfall or snow
depth. Besides, heavy rain or snow usually lasts in a relatively long duration for several
hours. Therefore, it mainly causes severe delays and consequently impacts the following
trains. That is why in this research, the severity level is considered to be high under the
circumstances of bad weather like heavy rain or snow.

The intrusion of a foreign object (FAC_13) and train collision with a foreign object (FAC_14)
both refer to the structural clearance of high-speed railway is invaded by other structures,
collapsed rocks or small animals, but the key difference is that if they collide with trains. That
is the reason for the totally opposite effect (Coef. = –1.2388 and 0.9823, respectively) of these
two factors on severity level. For FAC_13, when the foreign object intruding railway clearance
is detected by the monitoring system, if not serious, trains usually go through the blocking
section at limited speed. For FAC_14, if a train collides with an object (mostly birds), the train
must take braking measures and stop immediately until the mechanical engineer check if the
collision is severe, which costs considerable time. The subsequent train also has to limit its
running speed when passing through the collision area to ensure safety. It should be
emphasized that FAC_14 violates the parallel line assumption, so gamma_2 of FAC_14 (0.1552)
should be added to beta (0.9823) to get the coefficient of FAC_14 in the second logit function
(0.9823þ 0.1552 = 1.1375). The positive value of beta and gamma_2 illustrates that the severity
of accidents associated with FAC_14 is more severe, which can be proved from the marginal
effects of I and II for FAC_14 (–0.1702 and –0.0246). The same process on gamma_3 is repeated
to get the coefficient in the third logit equation (0.9823 – 2.8618 = –1.8795). The two results
seem to be inconsistent. Because the p-value of gamma_3 is 0.687> 0.05, which means this
coefficient is insignificant. Thus, the effect of gamma_3 is not reliable.

As a key element of the train control system, the ATP system is used for real-time control
of running speed to ensure operational safety. However, ATP fault (FAC_1) is one of the
most frequent accidents in high-speed railway operation. Fortunately, the negative effect of
FAC_1 (Coef. = –0.7257) indicates the severity level tends to be relatively low because most
ATP faults can be resolved by restarting the ATP system in a short time.

The coefficient value of platform screen door and train door fault (FAC_3, Coef. = –2.3854)
is very similar to that of FAC_12, however, which has an opposite direction of effect. As is
mentioned before, linkage failure at the high-speed railway station is the main fault of the
platform screen door and train door. Although these accidents occurred when trains parked in
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stations, statistical results show that nearly 80% of this kind of accident affect no more than
one train and can be fixed in 10min. The marginal effect of FAC_3 on severity I (0.4133)
explains its effect on reducing the severity level of accidents.

Objects hanging on catenary (FAC_5), pantograph fault (FAC_6) and traction converter
fault (FAC_7) are all faults of the traction power supply system of high-speed railway.
However, accidents led by the first two factors tend to be more severe while the traction
converter fault has an effect on reducing accident severity. Reducing running speed and drop
the pantograph are the correct measures to dodge the foreign object when a train driver
observes a foreign object hanging on the catenary system if the train can go through it by
dropping the pantograph. However, if an object hangs on its pantograph or the pantograph
automatically drops during traveling, the train must stop and a mechanical engineer on board
will check the pantograph or clean up the foreign object. That is why the effect of FAC_6
(Coef. = 0.8353) is a little bigger than FAC_5 (Coef. = 0.7453). Trains of China railway high-
speed are all power-distributed whichmeans traction power systems are distributed inmultiple
carriages. The failure of a traction power system has little effect on the whole train. Thus,
FAC_7 has a positive effect on reducing the severity level (Coef. = –1.1391).

Conclusions
This study investigates the impact factors affecting the accident severity of high-speed
railway. A total of 14 factors including ATP system fault, turnout indication loss, platform
screen door or train door fault, catenary blackout (trip), foreign object hanging on the
catenary, pantograph fault, traction converter fault, Carbody’s vibration, locomotive fault,
passenger misconducting or sudden illness, personnel intrusion of railway clearance,
driving on heavy rain or snow, railway clearance intrusion by a foreign object, train collision
against foreign object are taken into consideration.

A grading method for accident severity by DOT and the IOST is proposed. To be more
specific, accident severity is classified into I, II, III, IV with severity level more and more
severe. Ordered probability models are firstly selected as a methodology for the ordinal
nature of accident severity. For the purpose of relaxing the constraint of the parallel line
assumption, a gamma parameterization of a generalized ordered logit model named the
partial proportional odds model is established.

The modeling results show that 10 factors significantly affect the severity level of high-
speed railway accidents (p-value< 0.05). Among these factors, nine factors pass the Brant test
while only one factor, train collision against foreign object violates the parallel line assumption.
Hence, the proportional odds model is established with three alpha coefficients which represent
regression intercepts of each logit function, one beta coefficient for each explanatory variable
and two gamma coefficients for FAC_14 who are relaxed from proportional odds constraint.
The marginal effects of each explanatory variable on severity level are also given in detail.
Passenger misconducting or sudden illness and platform screen door or train door fault are the
two factors which have the biggest effect on decreasing severity level of accidents while driving
on heavy rain or snow has the biggest effect on aggravating accidents.

In summary, the estimated results demonstrate that factors consist of an ATP system fault,
platform screen door or train door fault, traction converter fault and railway clearance intrusion
by foreign objects have an effect on reducing the severity level whose regression coefficients
are negative. On the contrary, the regression coefficients of a foreign object hanging on the
catenary, pantograph fault, passenger misconducting or sudden illness, personnel intrusion of
railway clearance, driving on heavy rain or snow and railway clearance intrusion by the
foreign object are positive, which proves that accidents caused by these factors tend to be more
severe.
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