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Abstract
Purpose – Transportation infrastructure asset management has long been an active but challenging
problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations.
Managing a network of transportation infrastructure assets, especially when the number is large, is a
multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation
infrastructure asset management analytical framework to study the impacts of a few key parameters/factors
on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework
incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and
replacement decisions in a finite planning horizon.
Design/methodology/approach – The analytical framework is further developed through a series of
model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show
the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly
model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in
previous research. The proposed methodology can be adapted to different types of assets for solving general
asset management and capital planning problems.
Findings – The experiments and case studies revealed several findings. First, the authors showed the
importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information
of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user
cost of a single facility will have significant impacts on the system cost and correlation between them also
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influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge
variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of
funds to bridges weighing the trade-off between user and agency costs.
Originality/value – On the path forward to develop the next generation of bridge management systems
methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic
deterioration models into bridge MR&R capital planning and decision-making. The authors propose an
optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but
also considers the epistemic uncertainties and variances of the model parameters of Markovian transition
probabilities due to data errors or modeling processes.

Keywords Optimization, Life cycle cost analysis, Infrastructure asset management,
Deterioration model, Maintenance repair and rehabilitation, Transportation asset management

Paper type Research paper

Introduction
Transportation infrastructure asset management has long been an active but challenging
problem for agencies, which urges to maintain the good state of their assets but faces
budgetary limitations. Managing a network of transportation infrastructure assets,
especially when the number is large, is a multifaceted challenge. It requires not only
profound knowledge on deterioration mechanism and efficacy of intervention strategies but
also a good understanding of the costs of management actions and strategies to different
stakeholders. It is essentially a resource allocation problem among a set of elements of one
facility or a network of facilities with multifold trade-offs between upfront and future
expenses, short-term (responsive) fix and long-term (preventive) preservation, agency and
user costs (e.g. level of service), etc. The problem is further complicated by considering the
system uncertainties, such as the stochastic deterioration process of infrastructure, as well
as data and modeling limitations. Addressing this challenge requires innovative approaches
to account for various trade-offs and uncertainties.

Life-cycle cost analysis (LCCA) is a well-recognized concept and methodology for
transportation infrastructure management. Its principle is to make economic decisions
considering initial investments and future expenses and all essential cost components (e.g.
agency and user cost). Typical steps of traditional infrastructure LCCA include defining a
base case and several alternative management strategies, specifying deterioration and cost
parameters, calculating net present values of the total life-cycle cost (LCC) and finally
reviewing and selecting the preferred strategies (NCHRP 12–43). However, traditional LCCA
is only able to assess a limited number of maintenance, repair and rehabilitation (MR&R)
strategies or scenarios. The number of possible decision scenarios could be enormous and
quickly ramp up with problem scale (i.e. problem complexity depending on numbers of
assets, decision cycles, actions, constraints, etc.). It is inefficient and practically difficult to
enumerate all strategies using traditional LCCA for large-scale problems.

In addition, traditional LCCA normally schedules treatments based on deterministic and
static deterioration mechanisms. While the state-of-the-art deterioration models incorporate
stochastic deterioration processes into the infrastructure MR&R optimization (e.g. Markov
models in pavement and bridge management), the “epistemic” uncertainties of the stochastic
deterioration models are rarely considered. The parameters in these models are usually
estimated by statistical analysis outputting single average values. If the estimated values of
the deterioration parameters differ from their “true” values, either above or below, it will
result in suboptimal management solutions and consequently excessive cost to agencies and
users. This “internal” error in deterioration modeling inevitably happens due to lack of
knowledge, data error and model limitation and such uncertainty are known as “epistemic
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uncertainty” in statistical theory. Existing infrastructure management optimization models
generally take single estimated values (such as the mean values) of the deterioration model
parameters and ignore their variances, which could have a non-negligible impact on the
results.

This study develops an LCCA-based modeling and analytical framework for managing a
network of transportation infrastructure assets. The proposed methodology framework is
applicable to general infrastructure types, such as bridges, pavement, pipelines, railways,
waterways. Using the bridge as an example, the framework is developed in the context of
strategic management of a network of bridge inventory and can be effectively used at the
operational-level management of other infrastructure kinds. We use Markov decision
process (MDP) optimization techniques to compute the best out of all possible combinations
of MR&R decision scenarios for a number of assets over a dynamic, multi-year time horizon.
On top of the inherent stochasticity in infrastructure deterioration, we proposed a simulation
model to account for the probability distribution and variances of model parameters.

Literature review
The current infrastructure asset management literature develops and optimizes an
integrated, multidisciplinary set of strategies with the fundamental goal to minimize the
LCC and extend the service life of the assets (Cagle, 2003). In this section, we summarize a
literature review that covers important concepts and methodological taxonomy of previous
research studies of infrastructure asset management and LCCmodeling.

Life-cycle cost analysis
LCCA is a core concept in developing infrastructure asset management systems. The central
principle is to make economic decisions considering initial investments and future expenses,
as well as the LCC components. The conventional LCCA methods usually involve
identifying a number of promising alternatives for various combinations of MR&R
strategies. Once selected, each alternative is then analyzed with the alternative’s activity
profiles and cash flows for project-level and network-level decisions. The typical steps entail
defining a base case and several alternative management strategies, specifying deterioration
and cost parameters, calculating the net present values of the total LCC and finally
reviewing and selecting preferred strategies (Hawk, 2003). In particular, it involves decision-
making among preventive maintenance, repair and replacement intervals, evaluating new
maintenance materials and techniques and responding effectively to funding constraints
(Thompson et al., 2012). To obtain precise outcomes requires a good understanding of the
costs associated with different intervention strategies incurred by different stakeholders. In
fact, it is essentially a resource allocation problem addressing multifold trade-offs among
upfront and future expenses (on short-term repair or replacement and long-term preventive
preservation), investment priorities to certain facilities over other facilities, cost incurred by
different stakeholders, i.e. agency and user costs (and other social costs), etc. While simple
LCCA identifies best MR&R strategies by evaluating and comparing a set of alternatives
using equivalent uniform annual cost, equivalent uniform annual cost or internal rate of
return, the state-of-the-art LCC models use optimization techniques to minimize the expected
LCC of keeping the facilities above a minimum service level while satisfying agency budget
and policy constraints (Thompson et al., 2012). For instance, Hawk (2003) provided a
systematic overview of such methodology applied to bridges.
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Bridge maintenance, repair and rehabilitation capital planning and
optimization
Strategic capital planning for transportation infrastructure asset management is a complex
decision-making process, involving the identification, screening, evaluation, comparison and
prioritization of multiple activities under alternative funding scenarios. It is especially
challenging for agencies when managing a large number of assets that compete for limited
financial, material and manpower resources to produce smooth cash flows across different
financial cycles. To that extend, the optimization models are developed to determine MR&R
decisions for a single or multiple facilities over a planning horizon with the objective to
minimize total expected system costs associated with agency and user costs (Liu and
Madanat, 2013). The literature of transportation infrastructure asset management
optimization systems can be primarily categorized based on the scope (project or network
levels), uncertainty consideration (deterministic or stochastic), time and state spaces
(continuous or discrete, finite or infinite horizon), etc.

For a single bridge (facility/project-level) problem, the prevailing bridge management
literature applies MDPs and dynamic programming for optimizing MR&R decisions of a
single bridge facility and the variations components are mainly the deterioration models.
More recently, novel approaches for stochastic deterioration modeling (e.g. hazard-based
duration models), adaptive control methods (e.g. certainty equivalent control) and reliability-
based modeling has been developed to investigate bridge deterioration and MR&R
optimization (Hensher and Mannering, 1994; Mishalani and Madanat, 2002; Liu and
Madanat, 2013; Robelin and Madanat, 2007; Thoft-Christensen, 1995; Frangopol, 1999;
Frangopol and Das, 1999; Das, 2000; Frangopol et al., 2000a, 2000b). For network-level
problems, the overarching approaches of optimization can be grouped into two categories.
The top-down approach aggregates facilities having similar structural systems, traffic and
environmental characteristics into mutually exclusive and collectively exhaustive
homogeneous groups. This method addresses the trade-off between rehabilitation of a small
number of facilities and maintenance of a larger number of facilities. However, it falls short
in accounting for all the detailed project-specific information, mostly relying on the
experience of in-charge engineers.

Alternatively, the bottom-up approach first selects a small set of optimal (or near-
optimal) sequences of MR&R activities for each facility, covering the desired planning
horizon (Yeo et al., 2012). For a given budget, this approach then selects the combination of
sequences (one for each facility) that meets the budget constraint while optimizing a system-
wide objective (Robelin and Madanat, 2006). Compared to the top-down approach, the
bottom-up approach preserves the identity of individual facilities, with all its information
(structure, materials, history of construction, MR&R, traffic loading and environment)
available. In the meantime, this significantly adds up to the complexity of system-level
decision-making procedures.

Recent studies proposed dependency-based models to model the functional and economic
dependencies between the facilities by incorporating nonlinear constraints. For example,
contiguous facilities are best rehabilitated in the same year to reduce delay costs during
the rehabilitation or the other way around when two facilities provide alternative routes.
The central challenge to such a problem is the increased computational complexity due to
the additional constraints and nonlinearity. The Heuristics algorithms are among the
recently developed solutions to solve such computational problems (Yeo et al., 2012). More
recently, Wu et al. (2017) developed a life-cycle optimization model using the semi-Markov
process for highway bridge maintenance. Nazari et al. (2017) integrate the simultaneous
network optimization and facility-level latent MDP into a unifying framework that
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optimizes spatial and temporal distributions of inspection andMR&R decisions for a system
of infrastructure facilities considering measurement uncertainty. Boomen et al. (2020)
developed MDP-based optimization models that incorporate the flexibility to choose
between multiple successive intervention strategies, regular asset degradation, structural
failure andmultiple price uncertainties.

Measurement of uncertainties in bridge deterioration
The deterioration of an infrastructure facility, such as a bridge, follows a stochastic process
that highly depends on the continuous variation of several factors, many of which are
generally not captured by available data (Mishalani and Madanat). To date, only a few
researchers have addressed uncertainty in estimating the progression of deterioration in
bridge components (Mishalani and Madanat, Agrawal, Babanajad). Among all, Madanat
and Ben-Akiva (1994) were among the first to apply a methodology for MR&R activity
selection that accounts for the presence of both forecasting and measurement uncertainty.
This methodology is the latent MDP, an extension of the traditional MDP that relaxes the
assumptions of error-free annual facility inspections. Later, Smilowitz and Madanat (2000)
extend this methodology to include network-level constraints. Most existing bridge
management systems (BMS) and life-cycle models share similar theoretical bases while the
differences rely mostly on the deterioration models. The state-of-art optimization theory,
techniques and computational advances are not fully explored or implemented, especially
for large-scale network-level problems in which the computational complexity is a major
challenge. The development of the next generation of BMS is expected to be an integration
of the most advanced data-driven, reliability-based deterioration models and LCC
optimization methodologies.

On the path forward to develop the next generation of BMS methodologies, we make an
exploration of incorporating the epistemic uncertainties of the stochastic deterioration
models into bridge MR&R capital planning and decision-making. We propose an
optimization approach that does not only incorporate the inherent stochasticity of bridge
deterioration but also considers the epistemic uncertainties and variances of the model
parameters of Markovian transition probabilities due to data errors or modeling processes.
We simulate how these uncertainties affect the cost estimation and optimal decision. The
approach presented here is also useful for risk reduction of budget overruns by explicitly
considering its variances quantified through our proposed model.

Markov decision process optimization model formulation
In this section, we formulate a general version of a network-level bridge MR&R problem
based on MDP theories. The top-down formulation concept in Liu and Madanat (2013) is
adopted to optimize the MR&R decisions on a strategic level. The core model will be
presented as mixed-integer programming, which minimizes the total user and total agency
costs during a projected time horizon.

Two types of MDP policies are explored including a randomized and a non-randomized
policy. Non-randomized MDP provides the deterministic (discrete) MR&R solutions that can
be implemented directly, i.e. which action to take in each decision cycle (e.g. year-based). It
models the decision-making process considering all possible combinations of MR&R
strategies for a network of bridges over a multi-year horizon. In comparison, the randomized
MDP provides a probabilistic spectrum of MR&R actions instead of a deterministic solution
in each decision cycle. To obtain implementable action items, an additional step of random
sampling (simulation) of the developed probabilistic solution is required. Randomized MDP
models are often used because their computational advantages are given that they are
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essentially continuous optimization problems. Conversely, the computational need for non-
randomized MDP is much higher though it leads to the theoretically “exact” optimal
solution. To handle this challenge and obtain an immediately usable solution, the proposed
core model adopts a hybrid of the two MDP policies. It includes both non-randomized
(discrete) decisions for the first year and randomized (continuous) decisions for the years
after. In other words, it makes actual MR&R decisions for the current planning year and
only estimates the expected future cost considering a probabilistic MR&R strategy. Such a
hybrid MDP model satisfies agencies’ needs for both short-term and long-term asset
management and more importantly, is much more computationally tractable for large-scale
asset inventories.
Input parameters

t [T= {1,2,. . .,T}: year t in a planning horizon from year 1 toT.
k [K: bridge facility k in the set of bridge facilities K.
a [A:MR&R action a in a set of actions A.
s [ S: condition state s in a set of discrete conditions S.
sk: initial condition state of facility k at the beginning of the current year.
a: discount factor, a ¼ 1

1þið Þwhere i is the annual interest rate.

Ct
k;a: agency cost of implementingMR&R action a on facility k in year t .

Ut
k;s: user cost associated with facility k at condition state s in year t .

Pt
k;a ¼ Pt

k;a s; s
0� �h i

jSj�jSj
: transition matrix for facility k with the application of MR&R

action a and Pt
k;a s; s

0� �
is the (s,s0) entry of it.

Bt: annual budget in year t .

Objective function
The objective function contains two components: user cost and agency cost for the first year
and the user cost and the agency cost for the all following years. The system objective is to
minimize the system costs, which is the sum of agency costs and user costs over a specified
planning horizon. As we discussed previously, the core model is based on a hybrid of the
non-randomized and randomized MDP policies. In the first year, MR&R actions (variable x)
need to be determined deterministically, while in all following years the probabilities of
actions (variablew) are determined. Thus, the objective function and constraints for the first
year and the rest of the years are formulated separately shown in the following equation:

min
w;x

X
k2K

"X
a2A

C1
k;a � ð

X
s2S

U1
k;sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

current year agency costs

þ

X
s2S

U1
k;s � ð

X
a2A

xk;a;sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
current year user cost

þ
X

t2Tnf1g

X
a2A

at�1Ct
k;a � ð

X
s2S

wt
k;a;sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

discounted agency costs in future years

þ
X

t2Tnf1g

X
a2A

at�1Ut
k;a � ð

X
a2A

wt
k;a;sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

discounted user costs in future years
�

(1)

Decision variables
xk,a,s [ {0,1}: binary variable with 1 assigning action a to facility k and 0 otherwise, for the
current year, i.e. year t = 1 only.wt

k;a;s 2 0; 1½ �: represents the probability of facility k in state
s and assigned with action a at the beginning of year t > 1.

SRT
3,3

254



The timing of actions is assigned with the assumption that the agency cost, C, is
incurred at the beginning of each year while the user cost, U and condition rating are
evaluated at the end of each year. Therefore, the decision variable, w0

k;a;s, represents the
initial condition at the beginning of the first year. The Markov transition matrix of the first
year P1 is also known at the beginning of the first year while the transition process is
completed at the end of each year.

Constraints
Constraints contain the state transition for each year, the budget limitation for each year and
the state condition constraint for a group of bridge during the same year.X

a2A

X
s2S

xk;a;sP1
k;a s; s

0� �
¼

X
a0 2A

w2
k;a0 ;s0 ; 8s

0 2 S; k 2 K (5)

X
a2A

X
s2S

wt
k;a;sP

t
k;a s; s

0� �
¼

X
a0 2A

wtþ1
k;a0 ;s0

;8s0 2 S; k 2 K; t 2 T nf1;Tg (2)

X
k2K

X
a2A

X
s2S

xk;a;s
� �

� C1
k;a#B1 (3)

X
k2K

X
a2A

X
s2S

wt
k;a;s

� �
� Ct

k;a#Bt ;8t 2 T nfTg (4)

0#wt
k;a;s# 1; 8s 2 S; a 2 A; k 2 K; t 2 T nf1g (6)

xk;a;s 2 f0; 1g; 8s 2 S; a 2 A; k 2 K (7)

xk;a;s ¼ 0;8s 6¼ sk; a 2 A; k 2 K (10)

X
a2A

xk;a;sk ¼ 1;8k 2 K (8)

X
a2A

X
s2S

wt
k;a;s ¼ 1;8k 2 K; t 2 T nf1g (9)

Constraint (2) describes the Markov transition process from the first year to the second year.
The probability of each bridge staying at a certain condition state is dependent on the action
and its corresponding transition matrix. Similarly, constraint (3) describes the similar
process from year 2 to T. Constraints (4) and (5) impose budget for year 1 and year 2–T,
respectively. Constraints (6) and (7) define variable types. Furthermore, we also add
auxiliary constraints, which are unnecessary for the model definition but facilitate
computation, i.e. constraints (8)–(10). Constraints (8) specify that all decision variables in the
first year with a condition that is the actual initial condition of a bridge should equal to 0.

Markov
decision
process

255



Constraint (9) ensures that only one action can be selected for each bridge in the first year.
Finally, constraint (10) stipulates that the sum of probabilities of taking all actions must
equal to 1 for years 2 toT.

Case study
An illustrative case study is set up herein based on synthetic data to test and validate the
proposed framework. Default values of a benchmark scenario are chosen for deterioration
transition probabilities and costs as follows:
Planning horizon: T = 20 year.
Number of bridge facilities: K = 100.
MR&R actions: A = {Repair, Do-nothing (DN)}.
Discrete conditions: S = {Good,Bad}.
Initial state: all bridges are assumed in a “Good” condition state.
Discount factor and annual interest:

a ¼ 1
1þ ið Þ ¼

1
1þ 0:06

¼ 0:9434

Annual budget: Bt = $20,000 per year.
User cost ($/year): randomly generated following a normal distribution with a mean of

$800 and standard deviation $100 across an inventory of 100 bridges; user cost only exists
when the condition is bad.

Agency cost ($/repair action): randomly generated following a normal distribution with a
mean of $1,400 and standard deviation of $200 across the inventory.

Total costs = user costþ agency cost (for all 50 years of the planning horizon).
Deterioration and repair mechanisms: Markov transition matrices where p = 0.4, p1 = 0.3,

p2 = 0.1 are chosen as default values (Table 1). Note that realistically p > p1 > p2 should be
hold.

In the benchmark case, we use the same deterioration models for all bridges
(homogenous case) and we will perform a heterogeneous deterioration model case in the
subsections to follow.

Benchmark scenario results –maintenance, repair and rehabilitation decision
We use the designed data presented above as a benchmark scenario. The core model is able
to make deterministic MR&R decisions (discrete solution) only for the first year and
estimate the expected cost (based on randomized MR&R decision strategy) in all remaining
years, designated herein as the prediction results. The core model is in essence a mixed-
integer program (MIP) in which the majority of the decision variables are continuous (i.e.
randomized MR&R decision variables). It can be directly solved by commercial solvers or
commonly used MIP algorithms. In this study, we coded the simulation process in R and the
core MIP model in general algebraic modeling system and solved it using solver CPLEX. To

Table 1.
Markov transition
matrices for do
nothing (DN) and
repair in the case
study

Do nothing Bad Good Repair Bad Good

Bad 1 0 Bad p1 1�p1
Good p 1�p Good p2 1�p2

SRT
3,3

256



obtain discrete MR&R action solutions for all periods in the planning horizon, a simulation
model was used that samples the MR&R decisions and the condition ratings, based on the
randomized solution of the prediction results. For example, the core model was solved for
year 1 obtaining the MR&R decision x (binary variable). Then, the bridge condition rating
was simulated in the second year based on the transition probability corresponding to the
MR&R decision x and the initial condition rating in the first year. The MR&R decision was
simulated by sampling the discrete distribution of the randomized MR&R solution. Based
on the simulated MR&R action and new condition rating in the second year, a similar
process can be applied to obtain realized values of the two variables for all the following
years. A complete, discrete MR&R solution for all years can be obtained at the end year of
such a process. Note that such simulation is able to provide a solution sample, which may
not be exactly optimal (in comparison to a fully non-randomized policy MDP model). The
simulation results (e.g. the mean of total cost) converge to the prediction results if the same
simulation process is repeated a sufficient number of times.

Under the benchmark scenario setting, the optimization model is run with the simulated
randomized agency and user cost input to solve for the 100-bridge inventory over a 20-year
horizon. Results of some example bridges are illustrated in Figure 1. We found that the
repair decision is directly dependent on the ratio between user cost and agency cost. To
further investigation into the results, repair decisions of all 100 bridges are ranked from high
to low based on this ratio and we group the bridges into four categories each containing 25
bridges; Table 2. The first category contains the bridges with the highest ratio, while the last
category contains the bridges with the lowest ratio.

The bridge numbers in bold, red font are those that will never be “repaired” in the model
result during the first 20 years and they all belong to Category IV. For Category I and
Category II in which the user/agency cost ratio (U/A ratio) is high, the same decision
mechanism is resulted – always “repair” when the bridge is in a “bad” condition state;
Figure 1, where red squares stand for the action of “repair.” For Category III where the user/
agency cost ratio is lower than Category I and Category II, we do not always “repair” when
bridges become “bad”; Figure 2. For example, the bridge no. 90 will not be repaired in year 9
when it degrades to a “bad” condition state and so will bridge no. 61 in year 5 and after year
8. For Category IV in which the user/agency cost ratio is the lowest, more bridges will not be
“repaired”when they are in “bad” condition; Figure 3.

Figure 1.
Condition state and
repair decision for
sample bridges in

Category I and
Category II
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Deterioration probability “epistemic” uncertainties impact the total cost
To investigate how uncertainties of deterioration model parameters affect the optimal
decision and cost estimation, the transition probability p in the decision-making model was
compared against the actual p that the bridges inherently follow to naturally deteriorate. To

Table 2.
Four categories of
bridges classified by
the ratio of user cost/
agency cost

Category I Category II Category III Category IV
Biggest rate Second biggest rate Second smallest rate Smallest rate

Bridge no. 75 Bridge no. 10 Bridge no. 18 Bridge no. 22
Bridge no. 45 Bridge no. 70 Bridge no. 28 Bridge no. 8
Bridge no. 11 Bridge no. 88 Bridge no. 94 Bridge no. 42
Bridge no. 80 Bridge no. 55 Bridge no. 16 Bridge no. 29
Bridge no. 17 Bridge no. 27 Bridge no. 81 Bridge no. 47
Bridge no. 26 Bridge no. 67 Bridge no. 56 Bridge no. 43
Bridge no. 51 Bridge no. 13 Bridge no. 76 Bridge no. 5
Bridge no. 53 Bridge no. 37 Bridge no. 44 Bridge no. 40
Bridge no. 50 Bridge no. 2 Bridge no. 66 Bridge no. 91
Bridge no. 62 Bridge no. 4 Bridge no. 100 Bridge no. 74
Bridge no. 32 Bridge no. 48 Bridge no. 9 Bridge no. 24
Bridge no. 93 Bridge no. 73 Bridge no. 57 Bridge no. 15
Bridge no. 96 Bridge no. 63 Bridge no. 90 Bridge no. 97
Bridge no. 83 Bridge no. 25 Bridge no. 87 Bridge no. 38
Bridge no. 14 Bridge no. 49 Bridge no. 86 Bridge no. 3
Bridge no. 46 Bridge no. 82 Bridge no. 21 Bridge no. 64
Bridge no. 39 Bridge no. 85 Bridge no. 6 Bridge no. 34
Bridge no. 92 Bridge no. 33 Bridge no. 59 Bridge no. 78
Bridge no. 20 Bridge no. 30 Bridge no. 84 Bridge no. 69
Bridge no. 71 Bridge no. 41 Bridge no. 23 Bridge no. 77
Bridge no. 19 Bridge no. 95 Bridge no. 60 Bridge no. 65
Bridge no. 68 Bridge no. 31 Bridge no. 72 Bridge no. 35
Bridge no. 36 Bridge no. 58 Bridge no. 12 Bridge no. 7
Bridge no. 1 Bridge no. 54 Bridge no. 98 Bridge no. 89
Bridge no. 52 Bridge no. 99 Bridge no. 61 Bridge no. 79

Figure 2.
Condition state and
repair decision for
sample bridges in
Category III
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avoid complication, we test only the DN Markov matrix parameter p (the deterioration
probability from “good” to “bad” when “doing nothing”) with the repair transition
probabilities, which were kept the same as the benchmark case (p1 = 0.3 and p2 = 0.1).

We call the former p Decision-Making P, noted as DMP; and actual p Condition
Generation P, noted as CGP. DMP is considered as an estimated deterioration rate that is
used in the prediction model, while CGP is considered as the natural deterioration rate and is
used in simulating the condition rating transition in each year. Homogenous for all bridges,
we set both DMP and CGP in the range of 0.2–0.6, so there are a total of 25 combination
scenarios of different DMP and CGP values. The 50-year total cost is calculated by summing
up the first-year costs of each decision cycle in a 100-year rolling horizon.

In Table 3, the predicted costs in the second row are obtained directly from the
optimization model under different p values (which we call decision-making probability –
DMP). Under each DMP, the actual costs in that column are computed from simulation
under each CGP from 0.2 to 0.6 and under theMR&R actions determined by the optimization
model using the corresponding DMP value. The results in Table 3 reveal that for a certain
CGP, the total cost is almost the lowest when DMP is equal to CGP, i.e. the numbers on the
diagonal line, which represent the cases when the true deterioration probability happens to
be exactly the same as the user parameter. This verifies our initial postulate that inaccurate

Figure 3.
Condition state and
repair decision for
sample bridges in

Category IVa

Table 3.
Total cost of 50-year

time horizon in
different combination

scenarios of DMP
and CGP values

DMP
CGP DMP = 0.2 DMP = 0.3 DMP = 0.4 DMP = 0.5 DMP = 0.6

Predicted cost 740,885 1,006,881 1,226,706 1,407,163 1,521,997
Actual cost
(simulation)

CGP = 0.2 739,995 742,165 745,480 789,306 1,121,201
CGP = 0.3 1,002,979 1,007,332 1,009,216 1,030,996 1,248,843
CGP = 0.4 1,229,312 1,230,125 1,228,215 1,238,869 1,356,369
CGP = 0.5 1,418,983 1,417,435 1,414,033 1,408,375 1,448,594
CGP = 0.6 1,573,440 1,568,551 1,570,593 1,556,277 1,524,880
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information of p will lead to suboptimal solutions. This also highlights the importance of
accurate deterioration modeling in asset management. If the deterioration probability
parameter used for the MR&R decisions is different from the actual deterioration
probability, it results in unreliable total cost. This happens inevitably because of data and
model limitations and such uncertainty is the so-called epistemic uncertainty in the
statistical modeling of the deterioration process.

Alternatively, when DMP was kept fixed, the total cost increases dramatically with CGP.
This implies that the simulated (representing the actual) cost varies largely depending on
the actual deterioration probability. Accurate cost estimation would be difficult without a
good knowledge of actual deterioration probability. However, if we look at the results
horizontally, the cost differences are much smaller. Therefore, we can conclude that the
effects of deterioration model parameter p on the cost estimation highly outweigh the effects
of theMR&R decisions in the optimization framework.

Impacts of user and agency costs on the total cost
In practice, agencies often make MR&R decisions dynamically on a rolling horizon basis. To
emulate such a decision process, we solve the core optimization model in rolling decision
cycles, each of which, for example, covers a 20-year planning horizon. We call such a
decision process dynamic simulation and decision process (DSDP), which is capable to
provide an MR&R solution for the immediate decision period while incorporates the long-
term cost projection into the future for a certain cycle length. Figure 4 illustrates the DSDP
as a sequential process in comparison with the prediction case in which conditions and costs
during the entire planning horizon are simultaneously estimated upfront.

The results of DSDP under the benchmark parameter settings are obtained by solving
for MR&R decisions for all 100 bridges over a 20-year horizon. For example, we solve the
core model for year 1 obtaining the MR&R decision x (binary variable). Then we simulate
the bridge condition rating in the second year based on the transition probability
corresponding to the MR&R decision x and the condition rating in the previous year. Then
we use this information as an input to solve the core model for year 2 and repeat this process
year by year for all subsequent years.

Sensitivity analysis is of importance for assessing the impacts of the ratio between user
cost and agency cost on the total cost. In reality, user cost and agency cost are likely to be
correlated; for example, larger bridges with high user costs tend to cost more for repair. To

Figure 4.
Illustration of the
dynamic simulation
and decision process
(DSDP)
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emulate this observation, we assume the user and agency cost follow a multi-normal
distribution across the bridge population. We randomly generate 9 data sets, using different
mean values for user and agency cost across bridges. The parameter r represents the
correlation level between agency and user cost. Higher r means a higher degree of
correlation, where r = 1 indicates a full correlation. Table 4 lists input data and parameter
values for the sensitivity analysis.

Figure 5 visualizes how total cost varies with the user cost. Starting from each year
through the next 50 years is considered as a decision cycle. We run the model for a total of 50
decision cycles. As shown in the figure, when the correlation coefficient between user and
agency costs is 0.6 and unit agency cost is fixed at $800, the total cost of each decision cycle
increases with the user cost. Also, the variation tendency (curve shape) of the total cost for
these three different user cost sets is similar. Besides, note that the total costs for the initial
years are much smaller than the following years. This is because the initial condition states
of bridges are all “good” and the action of “repair” is not needed. Therefore, the agency and
user costs are both at a lower level in the initial years and the total cost ramps up in
consecutive years and gradually becomes stable.

We also investigated the impact of correlation between user and agency costs on the total
cost. In this experiment, the agency cost mean is fixed to $800 and the user cost mean (m ) is
fixed to $1,400. In Figure 6, the total cost of each decision cycle will increase when the
correlation coefficient increases. The underlying principle is harder to perceive in this case.
If user and agency costs are fully correlated (r = 1), the user/agency cost ratio is almost
fixed and the same for all bridges. This reveals that the effect of different bridges on the total
cost is the same and no bridges save cost more than others. However, if r = 0.6, there will be
some bridges having a higher user/agency cost ratio so that repairing these bridges will
bring more benefit in terms of reducing the total cost. Therefore, the total system cost is
lower in this case than that in r = 1.

Table 4.
Agency and user cost

mean, standard
deviation and

correlation
parameters

Cost items Correlation r = 0.6 r = 0.8 r = 1.0

Agency cost (for the repair action)
($)

Mean 800 800 800
Standard deviation 100 100 100

User cost
($/year)

Mean (m ) 1,400/1,500/1,600 1,400/1,500/1,600 1,400/1,500/1,600
S.D. 200 200 200

Figure 5.
Total cost curves in
50 decision cycles by
solving DSDPmodel
with different user
cost mean values
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Optimal budget
One of the key research questions of the LCCA analysis is how to determine the optimal
budget. Through our experiment, we demonstrated that there is actually an optimal budget
that can achieve the lowest total system cost. We perform a sensitivity analysis on an
annual budget from $10,000 to $50,000. We run the core model, i.e. prediction model, with
the objective function to minimize the user cost only and the annual budget to vary. Figure 7
shows that the optimum annual budget does exist at the lowest point of the total cost curve.
When the annual budget is $30,000, we can get the minimum total cost of $1,189,218.
Beyond this point, the reduction of user cost cannot offset the increase in agency cost
(budget used). This implies that it is not “more spending the better” and there is a socially
optimal point to which degree infrastructure should be maintained.

Concluding remarks and future research
The analytical framework in this paper provides a quantitative method to assess a number of
factors and concerns, such as the impact of bridge deterioration model on system cost estimation

Figure 6.
Total cost curves
over the 50 decision
cycles by solving
DSDPmodel with
different correlation
coefficients

Figure 7.
Sensitive analysis
results of annual
budget levels and
optimal budget
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and optimal decision, the trade-off between early intervention and preservation extend service life
and reduce future cost, the costs and benefits of taking actions today and in future in terms of life
cycle cost, the allocation of limited funds to a large number of bridge assets, the compromise
between agency and user cost under a limited budget and the impact of uncertainties due to data
andmodel limitations on system cost estimation and optimal decision.

Our experiments and case study revealed several findings. First, we showed the importance of
the deterioration model parameter (i.e. Markov transition probability). The results are highly
dependent on the deterioration model used. Inaccurate information of p will lead to suboptimal
solutions and results in excessive total cost. Second, both agency cost and user cost of a single
facility will have significant impacts on the system cost and correlation between them also
influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to
budge variations within a certain range. The difference between the model estimation and the
simulated cost is not statistically significant. Heterogeneity and variance of deterioration model
parameter (i.e. transition probability p) across bridges offset each other reducing the total deviation
with the predicted value, but lead to larger variance. Four, the case study results coincide with our
intuition that the bridges with relatively higher user costs should have priority to be repaired given
a limited budget. The model minimizes the total cost by optimizing the allocation of funds to
bridgesweighing the trade-off between user and agency costs.

The model and analytical framework, when packaged into bridge management systems,
could be a useful tool for assisting stakeholders with the efficient allocation of available
funding and decision-making for MR&R planning and budgeting. As an initial step, this
study is a stepping stone for long-term research efforts into the more advanced and
comprehensive analytical framework and the next generation of bridge management
systems. Given the complexity of bridge management problems, structural deterioration
mechanism, factor correlations and element interdependencies, uncertainties, heterogeneity,
network connectivity and special agency concerns need to be further studied. The ultimate
goal is to help the industry move toward data-driven bridge management practices to make
better-informed and robust decisions.

One of the research questions that are of interest to the industrial is budget reliability. For
example, what is the sufficient budget at 95% of a chance to maintain the network bridges at
desired condition level? To answer the question, reliable and robust optimization theories can be
applied. Extension of the current model could also be made to incorporate network connectivity
concerns, for instance, repairing certain bridges at the same time to use an economy of scale or
avoiding repair certain bridges at the same time to maintain network connectivity for some
essential routes. Another future research direction would be optimizing the MR&R of the entire
bridge system of heterogeneous and interdependent structural components. Most existing studies
either focus on bridge deck only or ignore the interdependencies among elements and subsystems.
Advanced “system of systems” modeling and simulation approach could be applied to improve
system reliability and reduce the real total LCC.
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