Search
  Advanced Search
 
Journal search
Journal cover: International Journal of Clothing Science and Technology

International Journal of Clothing Science and Technology

ISSN: 0955-6222

Online from: 1989

Subject Area: Mechanical & Materials Engineering

Content: Latest Issue | icon: RSS Latest Issue RSS | Previous Issues

 

Previous article.Icon: Print.Table of Contents.Next article.Icon: .

Analysis of tactile perceptions of textile materials using artificial intelligence techniques: Part 2: reverse engineering using genetic algorithm coupled neural network


Document Information:
Title:Analysis of tactile perceptions of textile materials using artificial intelligence techniques: Part 2: reverse engineering using genetic algorithm coupled neural network
Author(s):B. Karthikeyan, (School of Engineering and Textiles, Philadelphia University, Philadelphia, Pennsylvania, USA Department of Electrical and Computer Sciences, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA), Les M. Sztandera, (School of Business Administration, Philadelphia University, Philadelphia, Pennsylvania, USA)
Citation:B. Karthikeyan, Les M. Sztandera, (2010) "Analysis of tactile perceptions of textile materials using artificial intelligence techniques: Part 2: reverse engineering using genetic algorithm coupled neural network", International Journal of Clothing Science and Technology, Vol. 22 Iss: 2/3, pp.202 - 210
Keywords:Artificial intelligence, Mechanical properties of materials, Modelling, Programming and algorithm theory, Textiles
Article type:Research paper
DOI:10.1108/09556221011018667 (Permanent URL)
Publisher:Emerald Group Publishing Limited
Acknowledgements:The research reported was supported in whole by Laboratory for Engineered Human Protection through Grant W911QY-04-0001 from Department of Defense/US Army Natick Soldier Systems Center. The authors would like to acknowledge Contracting Officer Technical Representative Carole Winterhalter, Warfighter Science, Technology and Applied Research Directorate, US Army Natick Soldier Research, Development and Engineering Center, Natick, Massachusetts. The authors also thank Dr Howard Schutz, University of California-Davis, Davis, California, and Visiting Scientist at Natick, Massachusetts, and Dr Armand Cardello, Senior Research Scientist, Natick, Massachusetts.
Abstract:

Purpose – The second of a two-part series, this paper aims to explain the design and development of a hybrid system for reverse engineering.

Design/methodology/approach – A prediction engine to map the perception of tactile sensations using a neural network engine was developed. Since seventeen mechanical properties form the input - and tactile compfort score is used as the output - a direct reversal of the data set becomes impossible, hence, a hybrid approach was employed. The neural net is coupled with a genetic algorithm engine for the reversal process. The trained neural network acts as the objective function to evaluate the property set while the solution set is generated by Genetic Algorithm (GA) engine. Limitation of the GA and a means to overcome it is discussed. Application software based on the current research is also presented.

Findings – Human perception of tactile sensations is non-linear in terms of the mechanical properties of textile materials.

Originality/value – The paper deals with reverse engineering and discusses application software based on the current research.



Fulltext Options:

Login

Login

Existing customers: login
to access this document

Login


- Forgot password?
- Athens/Institutional login

Purchase

Purchase

Downloadable; Printable; Owned
HTML, PDF (69kb)

Due to our platform migration, pay-per-view is temporarily unavailable.

To purchase this item please login or register.

Login


- Forgot password?

Recommend to your librarian

Complete and print this form to request this document from your librarian


Marked list


Bookmark & share

Reprints & permissions