Advanced Search
Journal search
Journal cover: Sensor Review

Sensor Review

ISSN: 0260-2288

Online from: 1981

Subject Area: Electrical & Electronic Engineering

Content: Latest Issue | icon: RSS Latest Issue RSS | Previous Issues


Icon: .Table of Contents.Icon: .

Nanostructured material sensor processing using microfabrication techniques

Document Information:
Title:Nanostructured material sensor processing using microfabrication techniques
Author(s):Gary Hunter, (NASA Glenn Research Center, Cleveland, Ohio, USA), Randy Vander Wal, (USRA at NASA Glenn Research Center, Cleveland, Ohio, USA), Laura Evans, (NASA Glenn Research Center, Cleveland, Ohio, USA), Jennifer Xu, (NASA Glenn Research Center, Cleveland, Ohio, USA), Gordon Berger, (USRA at NASA Glenn Research Center, Cleveland, Ohio, USA), Michael Kullis, (USRA at NASA Glenn Research Center, Cleveland, Ohio, USA), Azlin Biaggi-Labiosa, (NASA Glenn Research Center, Cleveland, Ohio, USA)
Citation:Gary Hunter, Randy Vander Wal, Laura Evans, Jennifer Xu, Gordon Berger, Michael Kullis, Azlin Biaggi-Labiosa, (2012) "Nanostructured material sensor processing using microfabrication techniques", Sensor Review, Vol. 32 Iss: 2, pp.106 - 117
Keywords:Intelligent sensors, Microsensors, Nanotechnology, Sensors
Article type:Research paper
DOI:10.1108/02602281211209392 (Permanent URL)
Publisher:Emerald Group Publishing Limited
Acknowledgements:The authors would like to acknowledge the contributions of J. Wrbanek, Dr M. Lienhard, Dr L. Matus, and Dr M. Zeller of NASA Glenn Research Center; D. Lukco of ASRC Aerospace Corp.; and the technical assistance of C. Hampton, P. Lampard, M. Artale, J. Gonzales, and B. Osborn of Sierra Lobo, Inc.

Purpose – The development of chemical sensors based on nanostructures, such as nanotubes or nanowires, depends on the capability to reproducibly control the processing of the sensor. Alignment and consistent electrical contact of nanostructures on a microsensor platform is challenging. This can be accomplished using labor-intensive approaches, specialized processing technology, or growth of nanostructures in situ. However, the use of standard microfabrication techniques for fabricating nanostructured microsensors is problematic. The purpose of this paper is to address this challenge using standard photoresist processing combined with dielectrophoresis.

Design/methodology/approach – Nanostructures are suspended in photoresist and aligned between opposing sawtooth electrode patterns using an alternating current (AC) electric field (dielectrophoresis). The use of photoresist processing techniques allow the burying of the nanostructures between layers of metal, thus improving the electrical contact of the nanostructures to the microsensor platform.

Findings – This approach is demonstrated for both multi-walled carbon nanotubes and tin oxide nanowires. Preliminary data show the electrical continuity of the sensor structure as well as the response to various gases.

Research limitations/implications – It is concluded that this approach demonstrates a foundation for a new tool for the fabrication of microsensors using nanostructures, and can be expanded towards enabling the combination of common microfabrication techniques with nanostructured sensor development.

Originality/value – This approach is intended to address the significant barriers of deposition control, contact robustness, and simplified processing to realizing the potential of nanotechnology as applied to sensors.

Fulltext Options:



Existing customers: login
to access this document


- Forgot password?
- Athens/Institutional login



Downloadable; Printable; Owned
HTML, PDF (523kb)

Due to our platform migration, pay-per-view is temporarily unavailable.

To purchase this item please login or register.


- Forgot password?

Recommend to your librarian

Complete and print this form to request this document from your librarian

Marked list

Bookmark & share

Reprints & permissions