Search
  Advanced Search
 
Journal search
Journal cover: COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering

ISSN: 0332-1649

Online from: 1982

Subject Area: Electrical & Electronic Engineering

Content: Latest Issue | icon: RSS Latest Issue RSS | Previous Issues

Options: To add Favourites and Table of Contents Alerts please take a Emerald profile

Previous article.Icon: Print.Table of Contents.Next article.Icon: .

Modelling of impulse loading in high-temperature superconductors: Assessment of accuracy and performance of computational techniques


Document Information:
Title:Modelling of impulse loading in high-temperature superconductors: Assessment of accuracy and performance of computational techniques
Author(s):I.O. Golosnoy, (Electrical Power Engineering Research Group, School of Electronics and Computer Science, University of Southampton, Southampton, UK), J.K. Sykulski, (Electrical Power Engineering Research Group, School of Electronics and Computer Science, University of Southampton, Southampton, UK)
Citation:I.O. Golosnoy, J.K. Sykulski, (2010) "Modelling of impulse loading in high-temperature superconductors: Assessment of accuracy and performance of computational techniques", COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 29 Iss: 4, pp.1047 - 1059
Keywords:Diffusion, High temperatures, Modelling, Numerical analysis, Superconductors
Article type:Research paper
DOI:10.1108/03321641011044460 (Permanent URL)
Publisher:Emerald Group Publishing Limited
Abstract:

Purpose – The aim of this paper is to access performance of existing computational techniques to model strongly non-linear field diffusion problems.

Design/methodology/approach – Multidimensional application of a finite volume front-fixing method to various front-type problems with moving boundaries and non-linear material properties is discussed. Advantages and implementation problems of the technique are highlighted by comparing the front-fixing method with computations using fixed grids. Particular attention is focused on conservation properties of the algorithm and accurate solutions close to the moving boundaries. The algorithm is tested using analytical solutions of diffusion problems with cylindrical symmetry with both spatial and temporal accuracy analysed.

Findings – Several advantages are identified in using a front-fixing method for modelling of impulse phenomena in high-temperature superconductors (HTS), namely high accuracy can be obtained with a small number of grid points, and standard numerical methods for convection problems with diffusion can be utilised. Approximately, first order of spatial accuracy is found for all methods (stationary or mobile grids) for 2D problems with impulse events. Nevertheless, errors resulting from a front-fixing technique are much smaller in comparison with fixed grids. Fractional steps method is proved to be an effective algorithm for solving the equations obtained. A symmetrisation procedure has to be introduced to eliminate a directional bias for a standard asymmetric split in diffusion processes.

Originality/value – This paper for the first time compares in detail advantages and implementation complications of a front-fixing method when applied to the front-type field diffusion problems common to HTS. Particular attention is paid to accurate solutions in the region close to the moving front where rapid changes in material properties are responsible for large computational errors.



Fulltext Options:

Login

Login

Existing customers: login
to access this document

Login


- Forgot password?
- Athens/Institutional login

Purchase

Purchase

Downloadable; Printable; Owned
HTML, PDF (437kb)Purchase

To purchase this item please login or register.

Login


- Forgot password?

Recommend to your librarian

Complete and print this form to request this document from your librarian


Marked list


Bookmark & share

Reprints & permissions