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Abstract
Purpose – Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and
tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during
emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness
and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres
and medical staff to save lives effectively.
Design/methodology/approach – This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address
uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated
casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.
Findings – Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights
include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster
response within the critical first 72 h.
Originality/value – This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response.
The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing
resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Keywords Humanitarian logistics, Disaster management, Emergency medical services, Casualty management, Facility location,
Stochastic optimization

Paper type Research paper

1. Introduction

Emergency events database recorded 7,348 disasters
worldwide, which affected more than four billion people,
caused the loss of 1.2 million people’s lives and resulted in
economic losses of around US$2.97tn between the years 2000
and 2019. These numbers indicate not only the devastating
effects of large-scale disasters but also the value of fostering
greater awareness of the threat of disasters to take effective steps
to protect lives. Humanitarian logistics (HT) and disaster
management are globally significant due to the increasing
frequency and severity of natural and man-made disasters,
impacting communities, economies and human lives across
borders. International collaboration, proactive preparedness,
efficient response and innovative solutions are essential to
address these challenges effectively in an interconnected world.
The onset of the COVID-19 pandemic has further highlighted

the existing deficiencies in disaster risk management,
underscoring the necessity for a systematic and multi-hazard
approach (Nandi, 2022). In recent years, despite the
developments in disaster management and the increasing
number of studies conducted for disaster preparedness and
response, more studies are still needed to minimize risk and
makemore compatible and realistic plans.
Disaster management and HT consist of many activities such

as preparation, relief supply distribution, casualty transportation,
facility location, evacuation planning, network design and
coordination. These are challenging processes and contain many
uncertainties such as the time, location and severity of a disaster,
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number of casualties, demand for relief supplies andmedical care
and disruption to transportation networks and buildings. One of
the most challenging processes is the emergency medical
response to the casualties after mass casualty events (MCEs).
This process contains the location of temporary medical centres
(TMCs)/field hospitals, casualty triage and transportation,
medical staff planning, emergency vehicle routing, etc.
Emergency medical services (EMS) play a crucial role in

mitigating the severe impact of MCEs on casualties. By
establishing a well-prepared and validated EMS system as part
of emergency management, the morbidity and mortality
associated with MCEs can be reduced. Alongside this,
emergency medical centres (EMCs), which encompass
hospitals and TMCs, hold a vital function in treating the
injured and minimizing loss of life. While existing hospitals
constitute a key component of post-disaster medical response,
it is important to acknowledge that their capacity is often
insufficient during MCEs. Consequently, the prompt setup of
TMCs in appropriate locations immediately after a disaster
becomes imperative to provide effective care for a large number
of injured individuals. Hence, strategic planning for TMC
locations and optimizing resource utilization becomes
paramount to effectively respond to the needs of as many
injured individuals as possible.
In the context of natural disasters, effective medical staff

planning for medical centres is of utmost importance. Equally
vital is the strategic planning of medical centre locations to
ensure comprehensive services for all assigned casualties.
Consequently, a well-thought-out approach involving the
positioning of TMCs and the allocation of medical staff to these
centres, considering expected casualties in disaster-stricken
regions, becomes essential for a responsive and efficient
casualty management system. It is crucial to note that not only
the bed capacities of EMCs but also the availability of medical
staff should be factored in when assigning casualties to these
facilities. This comprehensive approach ensures that casualties
receive appropriate and timely care within EMCs.
Although local and national governments have made efforts

to respond promptly to disasters and make efficient use of
resources, several studies indicate that disaster preparedness
remains relatively low, even in areas prone to disasters (Altay
and Green, 2006; Kohn et al., 2012). In the literature, it is
stated that because the resources available after the disaster are
not sufficient for an effective response, the problems of both the
location selection of medical centres and the casualty
transportation are of great importance (Xiang et al., 2009; Liu
et al., 2023). In addition, the importance of triage and TMCs to
effectively use the limited medical resources and to mobilize
these resources to save more patients is emphasized (Salman
and Gül, 2014; Farahani et al., 2020; Oksuz and Satoglu,
2020). Moreover, historical instances reveal that imbalances
occurred, with excessive medical staff present in certain
disaster-stricken regions while inadequate resources were
available in others. Addressing this challenge necessitates a
strategic allocation of medical personnel based on available
resources, ensuring their efficient deployment to affected areas.
This approach aims to rectify disparities and optimize the
distribution ofmedical staff to disaster zones.
Assuming that all expected casualties occur immediately

following a disaster can lead to inefficient utilization of EMC

capacities, resulting in a lower-than-expected number of
treated casualties. To address this concern, adopting a dynamic
model that forecasts casualties over a designated time frame
would enable more effective and practical use of EMC
capacities. Natural disasters such as earthquakes, floods and
hurricanes exhibit varying impacts on people over time. For
instance, the initial 72h post-earthquake are critical, with a
significant influx of casualties in the initial 12h. Consequently,
estimating expected casualties should occur periodically within
defined time frames. Moreover, it is imperative to assess each
disaster type based on its unique characteristics and accordingly
determine appropriate time segments. By doing so, optimal
resource utilization (including medical centres, staff and supplies)
can be achieved, ensuring timely responses to casualties.
This study explores the optimal location and number of

TMCs, the distribution of casualties from disaster areas to
EMCs and the required medical staff allocation to EMCs to
effectively and promptly serve the affected population while
considering various factors. The main goal is to reach as many
injured people as possible in the aftermath of a disaster and thus
save more lives. To achieve this objective, we have put forth a
multi-objective stochastic model designed to address the
dynamic challenges of TMC location planning, casualty
allocation and medical staff assignment. The focal point of this
endeavour is tominimize three critical factors:
1 the overall expected number of casualties left untreated;
2 the total expected demand weighted distance between

disaster regions and EMCs; and
3 the cumulative expected number of required medical staff

(comprising doctors and nurses) for the medical facilities.

The noteworthy contributions of this study are presented in the
following:
� As far as our research indicates, no existing study in the

available literature has explored the combined aspects of
multi-period TMC location planning, casualty allocation
and medical staff planning within an uncertain context.

� From the theoretical perspective, a novel multi-objective
dynamic stochastic optimization model was developed for
the addressed problem.

� In addition, a-reliability levels (chance constraints) were
first described for the problem and used in the model.

� Discrete-time Markov Chain approach was applied in the
model to reflect the stochastic nature of the casualties’
health condition.

� From the practical perspective, the capacities of medical
centres are divided into bed and outpatient care capacity
to be realistic.

� The possibilities for road and hospital damage are
considered.

� Distance limit constraints were used to ensure that
immediate casualties were not assigned to hospitals
located far away.

� The capacities of themedical centres are updated dynamically
according to the assigned casualties in each period.

� From the managerial point of view, several strategic and
operational decisions are provided regarding the required
number and optimal locations of TMCs, additional
capacity needs, the necessary medical staff and the
optimal allocation of casualties.
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To validate our proposed model, a practical case study was
conducted in the Kartal district of Istanbul, recognized as one
of the most vulnerable areas in the event of a potential
earthquake. To estimate the number of casualties in each sub-
district, we referred to the “Possible Earthquake Loss Estimate
Booklets” (IBB-KRDAE, 2020). For solving the multi-
objective model within this case study, we used the
AUGMECON2 method (Mavrotas and Florios, 2013) and
subsequently analysed the obtained results. The examination of
these case study outcomes has yielded valuable managerial
insights regarding the optimal number and placement of
TMCs, the required medical staff and the distribution of
casualties.
The structure of the paper is outlined as follows: Section 2

offers an extensive examination of the existing literature onHT.
Section 3 elaborates on the methodology, encompassing the
definition of the problem, model formulation and the
methodology used for finding solutions. Sections 4 and 5 delve
into the case study and computational results, respectively. To
conclude, the paper presents the conclusions and significant
findings.

2. Literature review

The increasing need for efficient allocation of scarce resources
highlights the importance of operations research (OR) as a vital
discipline, offering tools to enhance relief and development
operations within HT (Van Wassenhove and Pedraza
Martinez, 2012). The HT or disaster management operations
consist of many problems such as facility location, inventory
management, relief distribution, casualty transportation/
allocation, emergency vehicle routing, evacuation and medical
staff planning. The number of academic studies on these topics
has increased rapidly in the past decades. Farahani et al. (2020)
undertook an extensive review of existing literature in the field
of HT and put forth prospective avenues for future research
across various problem domains. As indicated in their review,
there remains an unmet requirement for pragmatic and true-to-
life investigations concentrating on diverse facets of disaster
management.
Different disaster types possess distinct characteristics that

necessitate tailored preparedness and response strategies.
Earthquakes, for instance, strike suddenly and without
warning, causing building collapses and structural damage.
Floods, on the other hand, result from heavy rainfall or storm
surges, affecting large areas and leading to widespread
displacement. Hurricanes and typhoons, with predictable
paths, bring powerful winds and flooding. Wildfires are
characterized by rapid, unpredictable spread in dry, windy
conditions, whereas tornadoes are violently rotating columns of
air with limited predictability. Volcanic eruptions vary in size
and impact, unleashing lava flows, ash clouds and pyroclastic
flows. Pandemics, such as COVID-19, disrupt global systems
with rapid and widespread infectious transmission. Man-made
disasters such as terrorism, war and biological/chemical threats
require complex humanitarian responses to address both
immediate and long-term consequences. Understanding these
characteristics of disasters is pivotal for effective disaster
management andHT.

Right after an MCE such as a disaster, we may be faced with
many casualties in a very short period. These casualties require
immediate care, and their life depends on a quick response.
Therefore, managing the EMS system and resources is crucial
in the first few hours of a disaster, and a successful emergency
medical response will significantly increase the survival rate
of the casualties. The morbidity and mortality associated
with the MCEs can be decreased by providing a well-planned
EMS system. The most critical problems for the EMS after
a disaster are TMC/field hospital location planning, casualty
transportation/allocation, emergency vehicle routing and medical
staff assignment.
In Table 1, the studies considered these problems are

presented and classified according to different categories.
Even if these problems are related to each other, the
studies have generally focused on one or two of them in the
proposed models. A limited number of studies consider
the medical staff assignment problem for the post-disaster
emergency medical response. Furthermore, it is worth noting
that there is currently no existing study in the available
literature that simultaneously addresses the interconnected
challenges of facility location, casualty allocation and medical
staff assignment problems. Because these problems are
related to each other, it is important to consider them
simultaneously.
According to the objective function, coverage is the most

used criterion in the studies. Coverage is defined differently,
such as minimizing untreated casualties or unmet demand,
maximizing treated/assigned casualties or total lifesaving and
demand satisfaction. Cost is the second most used objective in
the models. It is the most critical factor in traditional supply
chains but is also used in humanitarian supply chains.
However, in some studies, it was argued that saving human life,
namely, maximizing the number of people reached (coverage)
or minimizing unmet demand, should take priority over other
purposes (Turkeš et al., 2019). On the other hand, in some
problems, there has been a necessity to consider the cost in the
objective functions such as transportation cost of casualties,
setup cost of TMCs or penalty costs. Another fact is having
limited resources such as budget, vehicles and relief supplies.
Response time and distance are similar objective functions
considered in the EMS studies. Distance is sometimes defined
as response time by considering the transportation time of
casualties. For more information on the objective functions,
readers should refer to the papers of Holguín-Veras et al.
(2013) and Turkeš et al. (2019) that analysed the objectives
used in the humanitarian logistic models. Holguín-Veras et al.
(2013) suggested using social costs, including logistics costs
and deprivation costs of the victims’ suffering. Turkeš et al.
(2019) suggested using the minimization of unmet demand in
the objective function instead of cost.
In the literature, the time horizon is mostly considered as a

single period. It means that decisions are made one-off and do
not change over time. Because available treatment resources
such as bed capacity and available medical staff of EMCs are
limited and change over time, the decisions must be made
dynamically by considering a multi-period, especially for the
first 72h. Besides, the demand for medical care for casualties
differs in time after the disaster. For example, in the aftermath
of an earthquake, most of the demand occurs in the first 12h,
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and it continues to decrease as time passes. On the other
hand, this demand cannot be precisely determined in
advance. However, in deterministic studies, the demand and
other uncertain parameters are estimated in some cases and
used to test the proposed models. The authors mostly used
stochastic programming models to consider uncertainty by
defining different scenarios for possible disasters. In the
following sub-sections, we further classified and discussed the
studies.

2.1 Facility location
The domain of facility location studies is primarily concerned
with spatial aspects of operations, investigating how facilities
impact factors such as costs, services and response times.
Within the HL literature, these studies can be generally
categorized into three main groups: relief supplies warehouses,
shelter sites/collection points and the location of TMCs/field
hospitals. These inquiries frequently factor in elements such as
response times to demand, distances between disaster-affected
zones and relief/medical centres, transportation expenses and
the level of demand satisfaction when determining suitable
locations. Additionally, some facility location studies take
equity and fairness into consideration, aiming to ensure a
balanced distribution of relief supplies to all demand points or
to provide a timely and equitable response to casualties. This
equitable approach is often reflected in objective functions that
strive to minimize parameters such as the maximum distance
between demand points and facilities (Jia et al., 2007; Huang
et al., 2010) or the maximum response time to any demand

point (Lu et al., 2013). Furthermore, Erbeyo�glu and Bilge
(2020) introduced a fairness perspective by defining specific
time frames and fulfilling a predetermined portion of demand
within each frame.
Within the literature, the location challenges of relief supplies

warehouses, shelters and casualty collection points (CCPs)
have been frequently explored. Conversely, the problem of
determining optimal locations for TMCs has been the subject
of a relatively smaller number of investigations. Ahmadi-Javid
et al. (2017) highlighted the scarcity of studies using stochastic
programming and robust optimization techniques for medical
centre location problems. Jia et al. (2007) introduced a
stochastic p-median model aimed at determining optimal
medical centre locations. Their approach accounted for
demand uncertainty, facility damage probabilities and capacity
fluctuations. This model’s efficacy was evaluated across various
potential disaster scenarios in Seattle. Aydin (2016) proposed a
stochastic p-median model cantered around establishing field
hospital locations for potential earthquakes in Istanbul’s
Zeytinburnu district. The model also incorporated the
possibility of existing hospitals being rendered non-functional.
Fereiduni and Shahanaghi (2017) presented a single-objective
mathematical model to address a broader network design
problem encompassing TMC locations, relief supply
distribution and evacuation considerations. This model sought
to minimize overall transportation, inventory holding and
facility setup costs. Liu et al. (2019) took a comprehensive
approach by integrating both TMC location and casualty
allocation concerns. Their model aimed to maximize expected

Table 1 Classification of the relevant studies

Author Year

Problem type Objective function Time horizon Uncertainty
Facility
location

Casualty
allocation

Medical staff
assignment

Response
time Distance Cost Coverage

Single-
period

Multi-
period Deterministic Stochastic

Jia et al. 2007 � � � � �

Salmer�on and Apte 2010 � � � � �

Özdamar and Demir 2012 � � � �

Toro-Díaz et al. 2013 � � � � � �

Wilson et al. 2013 � � � � �

Salman and Gül 2014 � � � � � �

Lodree et al. 2014 � � � �

Repoussis et al. 2016 � � � �

Shahriari et al. 2017 � � � � �

Caunhye and Nie 2018 � � � � �

Niessner et al. 2018 � � � � � �

Gu et al. 2018 � � � � �

Mills et al. 2018 � � � �

Pouraliakbarimamaghani
et al.

2018 � � � � � �

Wang et al. 2019 � � � � � � �

Liu et al. 2019 � � � � � �

Shavarani et al. 2019 � � � � � �

Ghasemi et al. 2020 � � � � � �

Oksuz and Satoglu 2020 � � � � �

Adarang et al. 2020 � � � � � �

Sun et al. 2021 � � � � � �

Ghasemi et al. 2022 � � � � � �

Chang et al. 2023 � � � � � �

This paper � � � � � � � �

Note: �Valid feature of the study
Source: Table created by authors
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survivals while minimizing operational expenses. This
deterministic bi-objective model was solved using the
«-constraint method.
Oksuz and Satoglu proposed a two-stage stochastic

programming model for location planning of TMCs and
transportation of casualties. It is aimed at minimizing the total
setup cost of TMCs and the expected total transportation cost
of casualties. A real case study was conducted for possible
earthquake scenarios, and sensitivity analysis was made for
important parameters. Adarang et al. (2020) introduced a bi-
objective mixed-integer programming framework addressing
the location-routing predicament, which encompassed hospitals,
TMCs and emergency vehicles, including ambulances and
helicopters. Their model pursued two primary objectives: firstly,
it aimed to minimize relief time, and secondly, it sought to
minimize the cumulative location cost for TMCs and transfer
points, along with the routing expenses for vehicles. Ghasemi
et al. (2020) proposed a multi-objective stochastic programming
model for location planning of relief distribution and TMCs and
allocating vehicles and relief commodities. A simulation model
was used to determine the demand for relief commodities,
includingwater, food, blood, blankets and tents. A real case study
was conducted for possible earthquake scenarios expected to
occur in Tehran. The proposed model was solved using an
epsilon-constraint approach and a non-dominated sorting
genetic algorithm (NSGA-II).
Sun et al. (2021) proposed a bi-objective robust optimization

model for facility location, resource allocation and casualty
transportation in a three-level rescue chain. Themodel uses the
injury severity score (ISS) for casualty categorization and
accounts for uncertainties in demand and transportation time.
The aim is to minimize both total ISS and system costs, using
penalty coefficients for untransported casualties and unmet
relief supplies. The robust optimization method and the
«-constraint method are used to develop and solve the model,
respectively. Turkeš et al. (2022) analysed the impact of various
factors and their interactions on facility location decisions for
inventory pre-positioning in emergency preparedness. They
carried out an experimental study to determine key factors in
decision-making and to provide robust guidelines that can be
applied across different disasters in the context of HT. Chang
et al. (2023) focused on optimizing CCP locations and
allocating EMS resources to enhance casualty survival rates in
mass casualty incidents (MCI). They use a hybrid simulation-
optimization approach, considering the stochastic and dynamic
nature of MCI logistics and develop a novel two-stage
sequential algorithm. They applied their algorithm to a
potential earthquake scenario in Tainan City and investigated
the influence of different resource levels and road damage
degrees on location-allocation decisions and expected delivery
times. Recently, Liu et al. (2023) considered the location of
EMCs in megacities for public health emergencies. The
authors proposed a genetic algorithm for this problem and
conducted a case study for Guangzhou city of China. Chang
et al. (2023) considered the CCP location and resource
allocation problem by investigating the impact of varying
degrees of scarce emergency medical resources and road
damage on the expected total delivery time of all casualties and
the location-allocation. The authors proposed a simulation-

optimization methodology for this problem and conducted a
sensitivity analysis.

2.2 Casualty allocation/transportation
Casualty transportation, encompassing the evacuation and
transfer of injured individuals from affected regions to EMCs,
stands out as a pivotal undertaking in disaster response (Safeer
et al., 2014). In studies related to casualty transportation, a
predominant approach involves the minimization of distances
and transportation durations (Horner and Widener, 2011;
Wilson et al., 2013; Yi and Kumar, 2007) or the maximization
of service levels and the number of treated casualties in the
objective functions (Feng and Wang, 2003; Yi and Özdamar,
2007). Moreover, a subset of these studies focuses on casualty
transportation via specialized emergency vehicles like ambulances
and helicopters. In this context, Barbaroso�glu et al. (2002) directed
their attention to helicopter-based casualty transportation, with the
principal objective being the minimization of the number of
helicopter trips needed.
In certain research studies, there is a concurrent consideration

of both facility location and challenges related to casualty
transportation or medical supplies distribution. Salmer�on and
Apte (2010) developed a two-stage stochastic programming
model that encompassed the location of warehouses, medical
centres, ramp areas and shelters. This model also accounted for
the distribution of materials and the transportation of casualties.
Özdamar and Demir (2012) introduced a hierarchical clustering
and network design model designed to transport casualties from
disaster zones to EMCs and to distribute aid supplies to those
casualties. Their model aimed to minimize the overall estimated
transportation time, thus optimizing vehicle utilization. Toro-
Díaz et al. (2013) presented a nonlinear mixed-integer stochastic
programming model that simultaneously addressed ambulance
distribution and location challenges. They used a genetic
algorithm to solve this model, considering fairness by minimizing
the variance of individual response times to casualties. The
model’s objectives included either response time minimization or
maximum coverage, with the authors noting that better results
were achieved by prioritizing response timeminimization.
Salman andGül (2014) introduced amulti-periodmathematical

model that addresses the identification of optimal locations for new
TMCs to be established. This model encompasses the
determination of centre capacities at the commencement of each
period, along with the relocation of casualties to these centres. The
primary objective of this model is the minimization of cumulative
transportation and waiting times for casualties, as well as the total
setup cost associated with the new facilities. Rath et al. (2016)
developed a two-stage stochastic programmingmodel to determine
the locations of warehouses and the allocation of vehicles in the
transportation system for delivering aid supplies. They compared a
heterogeneous vehicle fleet to a homogeneous fleet to analyse the
impacts on the solution. Repoussis et al. (2016) introduced a
mixed-integer programming model that simultaneously addresses
ambulance dispatching, casualty allocation and treatment
sequencing. The model’s objectives are twofold: the minimization
of both the aggregate response time and the totalflow time required
for all casualties. To evaluate their model, a hypothetical scenario
involving a terror attack was used as a testing case. Shahriari et al.
(2017) proposed a bi-objective mixed-integer programming
framework that revolves around the location planning of ground
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and air ambulance bases, as well as helipads. Additionally, the
transportation of casualties for emergency medical response was
incorporated into their model. It aims to minimize travel time and
maximize service level by considering the demand uncertainty. A
case study was conducted for Lorestan in Iran for an MCE, and a
sensitivity analysiswasmade for different parameters.
Gu et al. (2018) devised a mixed-integer programming

model targeting the location planning of TMCs, the allocation
of casualties to these centres and the distribution of medical
supplies, all within a constrained budget. Their primary
objective was to maximize the count of treated casualties. They
also proposed a greedy algorithm tailored for handling large-
scale instances of the problem. Caunhye and Nie (2018)
examined the casualty allocation issue from a distinct angle by
considering the movements of self-evacuees. They put forth a
three-stage stochastic model that addressed the location of
alternate medical centres alongside the allocation of casualties.
To solve this problem, the authors introduced a Benders
decomposition-based algorithm in addition to a two-stage
approximation model. Mills et al. (2018) studied the casualty
transportation problem, including allocating ambulances to
patient locations and transporting the patients to the medical
centres after the disaster, by simulation. Alizadeh et al. (2019)
proposed a multi-period robust stochastic optimization model
for the casualty allocation and location problem. The number
of casualties and the transportation capacity were considered
uncertain parameters. A computational study was made for a
hypothetical case of a gas leak in Bhopal, India. Caglayan and
Satoglu (2021) developed a multi-objective two-stage
stochastic programming model to minimize the number of
untransported casualties, additional ambulance requirements
and total transportation time. The proposed model was applied
to a district in Istanbul, Turkey, in the context of a major
earthquake. The study highlights the importance of a data-
driven decision support tool for directing ambulances based on
hospital capacity availability.
Ghasemi et al. (2022) focused on earthquake preparedness

and response planning by proposing a scenario-based
stochastic multi-objective location-allocation-routing model
that simultaneously considers pre- and post-disaster. The
model aims to minimize total relief supply chain costs,
unsatisfied demands for relief staff and the probability of
unsuccessful evacuations. The model is solved using the
epsilon-constraint method and three metaheuristic algorithms
for different problem scales. Recently, Babaqi and Vizvari
(2023) investigated the casualty transportation problem for
post-disaster emergency response. The transportation of
casualties by ambulances to hospitals is considered by defining
a deadline for transferring casualties to the hospital. They
proposed an integrated approach using a mathematical model
and heuristics for this problem.

2.3Medical staff planning/assignment studies in
humanitarian logistics
The medical staff assignment problem within the context of
emergency response has received comparatively less attention
in the literature despite its paramount importance in ensuring
adequate medical care during casualty transportation. Various
aspects of this problem have been explored in existing
literature. Lodree et al. (2019) proposed a queueing network

framework for efficiently allocating medical staff (both doctors
and nurses) to different classes of casualties, aiming to effectively
manage the abrupt surge in medical response demand. They
modelled the queueing network as a stochastic dynamic
programming challenge with a finite horizon in discrete time. In
their study, three heuristic policies were devised, and they also
accounted for heterogeneous team collaboration, combining
doctors and nurses to handle immediate casualties effectively.
In recent studies, Niessner et al. (2018) presented three

simulation-optimization models that address the dynamic
allocation of medical staff (including physicians and medics) to
field hospitals. The overarching goal of these models was to
minimize rescue time and the count of deceased patients. The
authors tested their proposed models using a gas explosion
scenario and explored various policies to enhance their
applicability. Pouraliakbarimamaghani et al. (2018) introduced
a multi-objective integer programming model for the strategic
placement of TMCs near hospitals alongside the allocation of
casualties. This approach took into account both the medical
staff and bed capacity of hospitals. The authors appliedNSGA-
II and a non-dominated ranking genetic algorithm to solve this
complex problem across 15 hypothetical cases. Shavarani et al.
(2019) devised a bi-objective mixed-integer nonlinear model
tailored to the assignment of medical staff (comprising
surgeons and anaesthetists) to operating rooms within hospitals
during MCEs. Their model sought to minimize both the
expected number of functioning operating rooms and the
anticipated distance between critically injured individuals and
suitable operating rooms. For a potential earthquake scenario
in Tehran, the authors proposed using simulated annealing,
genetic algorithms and particle swarm optimization algorithms,
with objectives weighted to strike a balance between the two
goals. Recently, Ahadian et al. (2023) considered the allocation
of medical staff to prevent a shortage of hospital beds for the
management of pandemic waves. The authors proposed a
mixed-integer linear programming model for this problem by
considering several performance ratios such as the ratio of
hospitalized patients to the specialized personnel assigned to
each hospital.
Summing up the review, it becomes evident that the issues

related to location planning of TMCs, casualty transportation
and medical staff assignment under uncertain conditions have
been explored with relatively limited attention in the existing
literature. Moreover, the notable observation is that no study
has been conducted to address these interconnected problems
simultaneously. Despite the importance of emergency medical
response planning for casualty management, this subject has
received relatively less attention in the literature (Gupta et al.,
2016). Farahani et al. (2020) also stated the need for integrated
andmulti-period planning of the EMS and consideration of the
dynamic behaviour of casualties’ health conditions and
suggested these issues for future research. In light of these
observations, our proposed model stands to significantly
contribute to the HT literature by addressing an important gap
in research that has not been adequately explored thus far.

3. Problem definition and stochastic model

The most frequently used optimization approach is deterministic
programming, where all parameters are assumed to be known
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with certainty. It does not account for uncertainty and is used
when the problem is entirely deterministic. However, stochastic
programming deals with optimization problems involving
uncertainty or randomness in decision-making. It is used when
the parameters of a model are not known with certainty due to
the probabilistic nature of the problem by considering different
scenarios and their probabilities. On the other hand, dynamic
modelling deals with problems where decisions evolve, and
optimization involves a sequence of decisions made at different
periods (Puterman, 2014). It is commonly used in problems with
a temporal aspect, such as supply chain logistics, project
management and resource allocation over time. Dynamic
modelling often uses dynamic programming, Markov decision
processes and control theory to optimize decisions over time
(Yaesoubi and Cohen, 2011). The objective of dynamic
modelling is to find a policy or strategy that maximizes or
minimizes an objective function over a specified time horizon
while considering dynamic constraints.
In the following, we first present the problem’s definition,

which includes an explanation of the emergency medical
response system’s network structure. We then delve into the
description of the Markov Chains, illustrating the progression
of health conditions for both treated and untreated casualties.
Moving forward, we outline the specifics of the multi-objective
stochastic model. Subsequently, we provide a detailed account
of the solution methodology, using the AUGMECON2
approach.

3.1 Problem definition
The configuration of the post-disaster emergency medical
response system, which is the focal point of this study, is
illustrated in Figure 1. In this proposed system, immediate
casualties (T1) are exclusively transferred to hospitals due to
their requirement for advanced medical care beyond the
capabilities of TMCs. For delayed and minimal casualties, the
option exists for them to be transported to either TMCs or

hospitals. The assumption is made that the medical staff
conducts triage classification within safe zones after the disaster
event. Our consideration involves a medical staff composed of a
doctor and a nurse, who cater to the number of casualties
assigned to EMCs to ensure comprehensive care provision. For
this reason, we establish a defined maximum threshold for the
number of casualties that a doctor and nurse can effectively
attend to within a given timeframe. The service duration for
each casualty category (T1, T2 andT3) is determined based on
expert input. Additionally, it assumed that an adequatemedical
staff is allocated to EMCs from a coordinating centre in
alignment with the requirements.
To capture the dynamic nature of such incidents, we

introduced a multi-period approach and focused on planning
for the initial 72h following the disaster, according to the
recommendation made by Russell et al. (1995). This time
frame was divided into four distinct periods: 0–12h, 12–24h,
24–48h and 48–72h. Each period was assigned a predefined
casualty rate, denoting the proportion of the total expected
casualties for that specific period. These casualty rates were
established based on the findings of Rawls and Turnquist
(2012), who conducted a study concerning the dynamic
allocation of emergency supplies amid uncertainty to meet all
demands within disaster-affected regions.
We incorporated the inherent uncertainty of casualties’

health conditions into the model using a discrete-time Markov
Chain framework, similar to the approaches followed by Saoud
et al. (2006) and Wilson et al. (2013). This scheme delineates
three distinct states to capture the health condition of a
casualty, namely, healing, deterioration and stable states. In the
case of treated casualties, all three states of healing, deterioration
and stability are considered, as depicted in Figure 2. For
untreated casualties, the consideration extends to only the
deterioration and stable states, as represented in Figure 3. To
characterize the transition probabilities of the casualties’ health
conditions, two transitionmatrices are used.

Figure 1 Network design of post-disaster emergency medical response system
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Expanding upon the existing triage classifications for casualties,
we introduced two additional categories: “discharged” and
“dead.” In each successive period, the capacity of EMCs is
adjusted based on the probabilities of casualties being
discharged (DC) or deceased (D). Furthermore, untreated
casualties from preceding periods are carried over to
subsequent periods. Concurrently, the EMC capacity is
categorized into two distinct classes: bed capacity and
outpatient care capacity. Specifically, bed capacity is reserved
for casualties of types T1 and T2, whereas outpatient care
capacity accommodates casualties of type T3. The dynamics
inherent in these events are accounted for periodically,
encompassing the fluctuation in anticipated casualty numbers
and the practical capacities of EMCs over time.

3.2 Stochastic model
We formulated a multi-objective dynamic stochastic
programming model to address the challenges of TMC
location, casualty allocation and medical staff assignment in
extensive emergency scenarios. The subsequent sections
outline the sets and indices, parameters and decision variables
integral to themodel’s structure and formulation.
Sets and indices:
I, i ¼ set and index of demand points, i[I;
J, j ¼ set and index of EMCs (hospitals1TMCs), j[J;
JH ¼ set of existing hospitals;
JT ¼ set of TMCs;
S, s ¼ set and index of possible scenarios, s[S;
P, p¼ set and index of periods, p[P;
t ¼ classification of casualties following triage, t ¼ T1, T2

orT3; and
k ¼ capacity category of EMCs (for bed capacity k¼ 1, for

outpatient care capacity k¼ 2).
Parameters:
Ps ¼ probability of scenario-s occurrence;
dij ¼ distance between demand point-i and EMC-j;
DL ¼ distance limit for assigning type-T1 (immediate)

casualties from location-i to EMC-j;

Capjk ¼ initial quantity of capacity of type-k available at EMC-j
before the occurrence of the disaster;

M ¼ a large positive number;
f sij ¼ ratio of the increment in distance on road i–j under

scenario-s;
gsj ¼ ratio of the decrease in capacity for hospital-j in

scenario-s;
T1sip ¼ number of immediate casualties at demand point-i

during period-p of scenario-s;
T2sip ¼ number of delayed casualties at demand point-i during

period-p of scenario-s;
T3sip ¼ number of minimal casualties at demand point-i

during period-p of scenario-s;
a ¼ reliability level;
Dj ¼ initial number of available doctors at hospital-j;
Nj ¼ initial number of available nurses at hospital-j;
upst ¼ max. number of type-t casualties that a doctor can

treat during period-p of scenario-s;
gpst ¼ max. number of type-t casualties that a nurse can

treat during period-p of scenario-s;
Patt ¼ the transition probability of the health condition of

treated casualties (t¼T1, T2 orT3); and
Pntt ¼ the transition probability of the health condition of

untreated casualties (t¼T1, T2 orT3).
Decision variables:
Tps
ijt ¼ number of type-t casualties in demand point-i and

assigned to EMC-j in period-p of scenario-s;
Nonpsit ¼ number of untreated type-t casualties in demand

point-i in period-p of scenario-s;
Cappsjk ¼ available capacity of type-k of EMC-j in period-p of

scenario-s;
Depsj ¼ number of additional doctors required at hospital-j

in period-p of scenario-s;
Nepsj ¼ number of additional nurses required at hospital-j

in period-p of scenario-s;
Dtpsj ¼ number of doctors to assign to TMC-j in period-

p of scenario-s;
Ntpsj ¼ number of nurses to assign to TMC-j in period-p of

scenario-s;
Xps

ijT1 ¼ 1, if EMC-j serves immediate casualties in demand
point-i in scenario-s; and 0, otherwise; and

ds ¼ 1, if all casualties can be assigned to EMCs in
scenario-s; and 0, otherwise.

Model formulation:
Objective-1:

Min
X

s2SPs

X
p2P

X
t2T

X
i2INonpsit (1.1)

Objective-2:

Min
X

s2SPs

X
i2I

X
j2J

X
t2T

X
p2Pdij 11 f sij

� �
Tps
ijt (1.2)

Objective-3:

Min
X

s2SPs

X
p2P

X
j2JHDepsj 1Nepsj 1

X
p2P

X
j2JTNtpsj 1Dtpsj

� �

(1.3)

Subject to
Capacity constraints for assigned casualties:

Figure 2 The Markov Chain illustrating the health condition transitions
for treated casualties (D: dead, DC: discharged)

Figure 3 The Markov Chain illustrating the health condition transitions
for untreated casualties
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X
i2I

X
t2T1;T2

Tps
ijt � Cappsj1 8j 2 JHð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ

(2)

X
i2IT

ps
ijT2 � Cappsj1 8j 2 JTð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ (3)

X
i2IT

ps
ijT3 � Cappsj2 8j 2 Jð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ (4)

Capacity updating through the periods:
For pre-disaster (p¼P0);

Cap0sjk ¼ Capjk 8j 2 Jð Þ; 8k 2 Kð Þ; 8s 2 Sð Þ
(5)

For post-disaster (p¼P1):

Cap1sjk ¼ Cap0sjk 1� gsj
� � 8j 2 Jð Þ; 8k 2 Kð Þ; 8s 2 Sð Þ

(6)

Cappsjk ¼ Capp�1;s
jk �

X
i2I

X
t2T1;T2

Tp�1;s
ijt 1

X
i2IT

p�1;s
ijT1 PaT1D

1
X

i2IT
p�1;s
ijT2 PaT2T3 (7)

8k 2 K1ð Þ; 8j 2 JHð Þ; 8p 2 P2;P3;P4ð Þ; 8s 2 Sð Þ

Cappsjk ¼ Capp�1;s
jk �

X
i2I T

p�1;s
ijT2 1

X
i2IT

p�1;s
ijT2 PaT2T3 (8)

8k 2 K1ð Þ; 8j 2 JTð Þ; 8p 2 P2;P3;P4ð Þ; 8s 2 Sð Þ

Cappsjk ¼ Capp�1;s
jk �

X
i2IT

p�1;s
ijT3 1

X
i2IT

p�1;s
ijT3 PaT3Dc (9)

8k 2 K2ð Þ; 8j 2 Jð Þ; 8p 2 P2;P3;P4ð Þ; 8s 2 Sð Þ

Casualty assignment (demand) constraints:X
j2JHT

ps
ijT1 1NonpsiT1 ¼ T1sip 8i 2 Ið Þ; 8p 2 P1ð Þ; 8s 2 Sð Þ

(10)

X
j2JT

ps
ijT2 1NonpsiT2 ¼ T2sip 8i 2 Ið Þ; 8p 2 P1ð Þ; 8s 2 Sð Þ

(11)

X
j2JT

ps
ijT3 1NonpsiT3 ¼ T3sip 8i 2 Ið Þ; 8p 2 P1ð Þ; 8s 2 Sð Þ

(12)X
j2JHT

ps
ijT1 1NonpsiT1 ¼ T1sip 1Nonp�1;s

iT1 PnT1T1

1Nonp�1;s
iT2 PnT2T1 �Nonp�1;s

iT1 PnT1D (13)

8i 2 Ið Þ; 8p 2 P2;P3;P4ð Þ; 8s 2 Sð Þ
X

j2JT
ps
ijT2 1NonpsiT2 ¼ T2sip 1Nonp�1;s

iT2 PnT2T2

1Nonp�1;s
iT3 PnT3T2 �Nonp�1;s

iT2 PnT2T1

(14)

8i 2 Ið Þ; 8p 2 P2;P3;P4ð Þ; 8s 2 Sð Þ

X
j2JT

ps
ijT3 1NonpsiT3 ¼ T3sip 1Nonp�1;s

iT3 PnT3T3;

8i 2 Ið Þ; 8p 2 P2;P3;P4ð Þ; 8 2 Sð Þ (15)

Distance limit for immediate casualties (T1):

dij 11 f sij
� �

Xps
ijT1 � DL; 8i 2 Ið Þ; 8j 2 JHð Þ; 8s 2 Sð Þ 8p 2 Pð Þ

(16)

Assignment constraints for immediate casualties (T1):

Tps
ijT1 � Xps

ijT1M 8i 2 Ið Þ; 8j 2 Jð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ (17)

Tps
ijT1 � Xps

ijT1 8i 2 Ið Þ; 8j 2 Jð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ (18)

Medical staff assignment constraints:
X

i2IT
ps
ijT2 = upsT2 � Dtpsj 8j 2 JTð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ (19)

X
i2I

X
t2T2;T3

Tps
ijt = gpst � Ntpsj 8j 2 JTð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ

(20)

X
i2I

X
t2T1;T2

Tps
ijt = upst � Dps

j 1Depsj 8j 2 JHð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ
(21)

X
i2I

X
t2TT

ps
ijt = gpst � Nps

j 1Nepsj 8j 2 JHð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ
(22)

a-reliability (chance-constraints):

X
s2SPsds � a (23)

X
i2INonpsit � M 1� dsð Þ 8p 2 Pð Þ; 8s 2 Sð Þ 8t 2 Tð Þ

(24)

X
i2INonpsit � 1� dsð Þ 8p 2 Pð Þ; 8s 2 Sð Þ 8t 2 Tð Þ (25)

Binary and positive variables:

Xps
ijT1; ds 2 0;1f g; 8i 2 Ið Þ; 8j 2 Jð Þ; 8p 2 Pð Þ 8s 2 Sð Þ

(26)

Tps
ijt ; Nonpsit ;Depsj ;Nepsj ;Dtpsj ;Ntpsj � 0 and integer; (27)

8i 2 Ið Þ; 8j 2 Jð Þ; 8t 2 Tð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ

Cappsjk � 0; 8j 2 Jð Þ; 8k 2 Kð Þ; 8p 2 Pð Þ; 8s 2 Sð Þ (28)

In objective function-1, the goal is to minimize the expected
number of untreated casualties across all scenarios. The
variable “Non” is computed within Constraints (10)–(15),
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considering the projected casualties at demand points and the
casualties that have been assigned.
In objective function-2, the aim is to minimize the expected

demand-weighted distance between disaster areas and EMCs.
This function also accounts for road failures through distance
increase ratios. In objective function-3, the goal is to minimize
the expected number of additional doctors and nurses required
in hospitals, as well as the number of doctors and nurses needed
in TMCs. To calculate the variables “De”, “Ne”, “Dt” and
“Nt.” Constraints (19)–(22) take into consideration the
existing number of doctors and nurses within hospitals,
alongside the number of casualties assigned to EMCs.
Constraint (2) guarantees that the cumulative number of

type-T1 and T2 casualties assigned to hospital-j from various
demand points does not surpass the bed capacity of hospital-j
during period-p of scenario-s. Similarly, Constraint (3) ensures
that the total number of type-T2 casualties allocated to TMC-j
from different demand points is below the bed capacity of
TMC-j within the same period-p of scenario-s. Furthermore,
Constraint (4) enforces that the total number of type-T3
casualties assigned to EMC-j from different demand points
remains within the outpatient capacity of EMC-j during
period-p of scenario-s. These constraints exhibit minor
distinctions attributed to the problem definition: solely
hospitals can accommodate type-T1 (immediate) casualties,
and whereas type-T1 and T2 casualties use bed capacity
(k ¼ 1), type-T3 casualties use outpatient care capacity (k ¼ 2)
within EMCs.
Constraint (5) defines the initial capacities of EMCs before

the disaster as the capacities in period-0. Subsequently, after
the disaster unfolds (period-1), the available capacity of EMCs
is adjusted in line with the damage ratio gsj

� �
of EMCs, as detailed

in Constraint (6). It is important to note that damage probability
is pertinent only to hospitals, as TMCs are established post-
disaster. Following the initial period, the available bed and
outpatient capacities of EMCs are dynamically updated in
Constraints (7)–(9). In these constraints, alongside the capacities
and the casualties assigned in the preceding period, the transition
probabilities of patients’ health conditions are considered to
recalibrate the EMC capacities. In this manner, Constraint (7)
updates the bed capacity of hospitals, factoring in the death
probabilities of immediate casualties and the healing probabilities
of delayed casualties from the previous period. Similarly,
Constraint (8) adjusts the bed capacity of TMCs, accounting for
the healing probability of delayed patients and the previously
assigned delayed patients. Finally, Constraint (9) updates the
outpatient care capacity of EMCs, taking into account the
healing and discharge probabilities of patients from the previous
period.
The number of casualties assigned to EMCs is determined

by considering the expected casualties in each disaster area and
the total number of untreated casualties in that area from the
previous period. Untreated casualties are attempted to be
assigned to EMCs by carrying them over to the next period. For
the first period, the number of expected casualties in each
disaster area is equal to the total number of assigned and non-
assigned casualties in that area. Constraints (10)–(12) refer to
these equations for type-T1, T2 andT3 casualties, respectively.
Additionally, the deterioration probability of the health condition
of untreated casualties is considered in the subsequent periods

while updating the capacity of the EMCs. To determine the
demand for immediate casualties in the next periods, we consider
two transition probabilities of health conditions: one for
transitioning to a stable state and another for transitioning from
delayed to immediate condition, as described in Constraint (13).
Similarly, for delayed casualties, two health condition transition
probabilities are considered: transitioning to a stable state and
transitioning from a minimal state to a delayed state, as outlined
in Constraint (14). Finally, the demand for minimal casualties is
determined only by considering the stable states from the
previous period, as presented inConstraint (15).
In Constraint (16), a distance limit is set for type-T1

(immediate) casualties to prevent their assignment to hospitals
located at a substantial distance. Constraints (17) and (18) are
formulated to ascertain the presence of assignments for type-
T1 casualties from demand point-i to EMC-j in period-p of
scenario-s. Accordingly, Xps

ijT1 will assume a value of 1 if an
assignment exists and 0 otherwise. Thus, the distance limit
applies exclusively to pertinent assignments.
Medical staff assignment constraints are outlined in

Constraints (19)–(22). Constraint (19) determines the
allocation of doctors from the coordination centre to each
TMC based on the count of delayed casualties assigned to that
TMC and the maximum number of delayed casualties that a
doctor can attend to in a period. Constraint (20) calculates the
required number of nurses in each TMC, accounting for the
assigned delayed and minimal casualties. For hospitals with
existing medical staff, the surplus doctors and nurses required
are calculated. Constraint (21) determines the count of
additional doctors needed in hospitals for immediate and
delayed casualties, considering the current doctors within the
hospitals. Similarly, Constraint (22) computes the
supplementary nurses needed in hospitals for all assigned
casualties, factoring in the existing nurses.
Constraint (23) establishes the reliable set, delineating the

scenarios encompassed within the model. Constraints (24) and
(25) stipulate that scenarios lacking untreated casualties across
all periods are included in the reliable set. Finally, Constraints
(26)–(28) govern binary, positive integer and positive variables,
respectively.

3.3 Solution approach
The notion of an optimal solution in the realm of multi-
objective modelling is referred to as Pareto optimal. A solution
is considered Pareto optimal if there is no way to enhance any of
its objective functions without concurrently undermining the
performance of other objective functions. The ensemble of
Pareto optimal solutions constitutes a set known as the Pareto
set, as elucidated byMavrotas (2009).
For solving multi-objective models, the e-constraint method

offers an efficient approach. Mavrotas (2009) introduced an
enhanced rendition of this method called augmented
e-constraint method (AUGMECON), which addresses the
limitations of the classical e-constraint method. Furthermore,
Mavrotas and Florios (2013) further refined this approach,
called AUGMECON2, a particularly effective strategy for
addressing multi-objective integer programming problems
(Mavrotas and Florios, 2013). The notations used in the
AUGMECON2 are as follows:
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ej: the parameters for the right-hand side for the specific
iteration drawn from the grid points of the objective functions
2, 3,. . ., j.
rj: the range of the respective objective functions 2, 3,. . ., j.
qj: the length of the equal intervals of the objective functions

2, 3,. . ., j.
sj: the surplus variables of the respective constraints and eps

e 10�6; 10�3
� �

.
Suppose that we have an optimization problem with

objectives-j (j¼ 1,. . .n):

Max fj xð Þ

s.t:

C xð Þ � 0; x � 0

The steps of AUGMECON2 are summarized below:
1 Solve the model for each objective-j separately.
2 Build the pay-off table according to the objective

function results found in Step 1.
3 Find the minimum and maximum value of each (j–1)

objective function, and call them fjmin and fjmax.
4 Find the range of each (j–1) objectives as follows: rj ¼

fjmin � fjmax.
5 Divide the range of each objective function into n

equidistant grids, as long as qj¼ rj/(n� 1).
6 Define a slack variable sj (sj � 0) for each of the jth

objective functions to the model. Add a constraint for
each (j–1) objectives as follows:

fj xð Þ � sj ¼ ej (29)

7 Convert the objective function in the following form:

Max fj xð Þ1 eps
s2
r2

10:1
s3
r3

1 . . . 1 10� j1 2ð Þ sj
rj

� 	
(30)

8 Include the original constraints in the model. Hence,
build the complete model.

9 At each iteration-i, compute ej ¼ fjmin 1 qji and change
the right-hand side of the jth constraint as ej. Solve the
model and save the results.

10 Complete n-iterations and complete the algorithm.

Because our model has multiple objectives, and
AUGMECON2 is one of the most suitable algorithms for
solving multi-objective problems, we used it to solve our
problem. For a more detailed explanation of this algorithm,
readers may refer to (Mavrotas and Florios, 2013).

4. Case study

To validate the proposed model, we conducted a real case
study focusing on the Kartal district in Istanbul, an area
projected to be significantly affected by a potential earthquake
in Istanbul. Kartal, being the 11th most densely populated
district in Istanbul, is home to approximately 470,000
residents. The district comprises 20 sub-districts, each serving
as a demand point, and hosts 11 existing hospitals. In addition
to the pre-existing hospital infrastructure, we identified 74

potential TMC locations. These candidate TMC locations
encompass a range of spaces including schoolyards, mall
parking lots and other suitable areas. The selection of these sites
was guided by distinct criteria and involved leveraging tools
such as GoogleMaps and theKartal city guide website (Url–1),
as visually represented in Figure 4.
We used casualty estimates derived from the “Possible

Earthquake Loss Estimate Booklets” (IBB-KRDAE, 2020), a
collaborative study between the IstanbulMetropolitanMunicipality
(IBB) and the Kandilli Observatory and Earthquake Research
Institute (KRDAE). This comprehensive source provided
projections for casualty figures across different sub-districts.
Specifically, for a potential earthquake scenario of magnitude 7.5,
we focused onKartal’s sub-districts. Table 2 offers a presentation of
the expected casualty numbers corresponding to this specific
earthquake scenario. These estimates, delineated by sub-districts,
were distributed across periods in alignment with predefined rates.
Specifically, the rates for the four periods were established as
follows: 0.6, 0.25, 0.10 and 0.05.This signifies that 60%of the total
expected casualties manifest in the first period, a distribution
consistentwith the approach taken byRawls andTurnquist (2012).
A collection of 20 scenarios was generated, encompassing the

central scenario (S1) and progressively evolving towards more
pessimistic projections as the scenario numbering ascends.
Commencing from S2, it was hypothesized that the casualty
count would increment by 10% compared to the preceding
scenario. As a result, the most substantial estimate of anticipated
casualties emerged in S20, effectively characterizing it as a
pessimistic scenario. The occurrence probabilities of these
scenarios were configured within the range of 0.01–0.1, reflecting
their likelihood of transpiring.
The bed capacity and the current medical staff numbers in

hospitals were sourced from the Statistical Report of Public
Hospitals (2017). It was postulated that the outpatient care
capacity of a hospital would be three times its bed capacity.
Meanwhile, the bed and outpatient care capacities allocated to
TMCs varied based on the location’s suitability, falling within the
ranges of 40–120 and 360–1,080, respectively. Furthermore, a
working assumption was made that 60% of the medical staff
available in hospitals would be accessible during the phase of
post-disastermedical response.
The time taken for medical care provided by doctors and

nurses for each casualty category (T1, T2 and T3) has been
determined based on insights from experts in the field.
Specifically, the service time for a doctor is projected to span
between 30–120min for an immediate (T1) casualty, 15–
60min for a delayed (T2) casualty and 5–15min for a minimal
casualty. Additionally, the service time of nurses has been set at
half the duration of doctors’ service time. Subsequently, a
maximum threshold has been established for the number of
casualties that a doctor and nurse can effectively attend to
within a specified period for each scenario.
Various methodologies exist in the literature to address link

or road failures in the event of a disaster. In our study, we have
adopted the probabilistic approach to account for link failures,
wherein we factor in the potential increase in distance due to
road damage as indicated by the damage ratios of the roads for
each scenario. Similarly, when dealing with disaster operations,
it is common to consider the impact of partial or complete
damage to facilities. In our analysis, we have considered the
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possibility that hospitals may sustain partial damage following a
disaster, resulting in adjustments to their capacities according to a
designated capacity decrease ratio. We have chosen to distribute
the damage ratios of roads uniformly within a range of 3%–38%,
and for hospitals, the damage ratios are also uniformly distributed
ranging from 0%–32%. These ranges have been determined
based on a comprehensive report (JICA, 2002) jointly prepared
by the IBB and the JapanCooperationAgency.
To establish the transition probabilities governing the health

condition changes of casualties, we developed two distinct
transition matrices. These matrices are pivotal in defining the
likelihood of health condition transitions for casualties,
encompassing various triage categories. Our model includes not
only the triage categories but also two supplementary categories:
DC and D. For treated casualties, the transition probabilities that
dictate their health condition shifts are outlined in Table 3. It
captures the dynamics of health improvements and deteriorations
for casualties under medical treatment. Conversely, Table 4
delineates the transition probabilities governing untreated

casualties’ health conditions. In this context, it is assumed that
untreated casualties experience higher probabilities of health
condition deterioration compared to their treated counterparts.

5. Computational results

The Pareto optimal (non-dominated) solutions generated by
the proposed multi-objective model were obtained using the
CPLEX 12.6 solver on a personal computer with an i7-4510U
CPU2.0GHz for the real case study. In this analysis, a distance
limit of 7 km was applied for immediate (T1) casualties, and an
a-reliability level of 0.9 was selected. The model was initially
solved for each of the three objective functions independently,
resulting in a pay-off table as depicted in Table 5. The
computational times required for solving each objective
function were 54 s, 17.1min and 83 s, respectively.
As illustrated in Table 5, the minimization of the expected

number of untreated casualties (obj-1) yields an outcome of
24,158.83 for the expected total demand-weighted distance

Figure 4 The map of sub-districts (demand points), hospitals and candidate TMC locations in Kartal
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between demand points and EMCs (obj-2), with a
corresponding expected number of medical staff needed for
EMCs (obj-3) amounting to 66. In contrast, prioritizing the
minimization of obj-2 results in obj-1 reaching 2839, whereas
obj-3 becomes 79.48. Finally, if the focus shifts to minimizing
obj-3, obj-1 will be reduced to 420, whereas obj-2 will have a
value of 23,840.53.
From the pay-off table, we calculated the ranges of the second

and third objective functions as r2 ¼ 18702.07 and r3 ¼ 78.41,
respectively. Then, we divide the two ranges into 30 equal
intervals (q) with step2 ¼ 623.4 and step3 ¼ 2.61. The
AUGMECON2process for all grid points is as follows:
For i¼ 0 to 30
e3¼ 1.071 i x 2.61
For j¼ 0 to 30
e2¼ 5456.761 j x 623.4
Solvemodel
Next j
Next i

Pareto optimal solutions were successfully identified by
encompassing the permissible ranges for obj-2 and obj-3.
Through this approach, we achieved Pareto optimal solutions
across 26 out of 30 grid points, as detailed in Table A1.
Unfortunately, the model could not converge to a solution for
the initial four experiments (e1 to e4) within the allocated
7,200-s time frame. The average CPU time for the 26 Pareto
optimal solutions amounted to 158 s. The a-reliability level was
set to 0.9 for this case study. Upon examining Table A1, it is
evident that the expected total number of untreated casualties
(Z1) for all Pareto optimal solutions is zero. This outcome
signifies the realization of the a-reliability level at a full 100%,
as all expected casualties were effectively allocated to EMCs.
To facilitate a comprehensive understanding, Figure 5 presents
a comparative assessment of the objective values for Z2 andZ3.
A noticeable trend emerges, where an increase in the total

expected distance correlates with a decrease in the expected
number of required medical staff. This outcome can be
attributed to the model’s strategy of assigning casualties across
extended distances, thus contributing to a reduction in the
necessary medical staff. This approach arises from the fact that
hospitals, which already possess medical staff, are being used,
even if the distance between demand points and hospitals is
substantial.

Table 2 Estimated number of casualties based on an earthquake scenario

Sub-districts Dead Immediate (T1) Delayed (T2) Minimal (T3)

Atalar 12 5 33 68
Cevizli 9 5 27 57
Cumhuriyet 2 0 12 28
Cavusoglu 7 3 20 40
Esentepe 5 2 21 48
Gumuspinar 7 3 22 49
Hurriyet 13 7 48 107
Karlıktepe 11 6 33 68
Kordonboyu 10 5 29 55
Orhantepe 18 8 57 114
Orta 3 1 10 23
Petrol Is 11 5 31 63
Soganlik Yeni 6 2 20 45
Topselvi 8 4 22 44
Ugur Mumcu 16 8 47 91
Yakacik Carsi 5 3 21 48
Yakacik Yeni 7 4 24 50
Yali 11 7 29 56
Yukari 6 3 16 31
Yunus 9 6 31 63
Total 176 87 553 1,148

Source: Table created by authors; IBB-KRDAE (2020)

Table 3 The Markov chain matrix indicating the transition probabilities of
the health condition of treated casualties

States D T1 T2 T3 DC

D 1
T1 0.15 0.6 0.25
T2 0.1 0.2 0.7
T3 0.05 0.15 0.8
DC 1

Source: Table created by authors

Table 4 The Markov Chain matrix indicating the transition probabilities of
the health condition of untreated casualties

States D T1 T2 T3

D 1
T1 0.6 0.4
T2 0.55 0.45
T3 0.25 0.75

Source: Table created by authors

Table 5 Pay-off table

Objectives Z1 (untreated) Z2 (distance) Z3 (med.staff)

Min Z1 (untreated) 0 24,158.83 66
Min Z2 (distance) 2,839 5,456.76 79.48
Min Z3 (med.staff) 420 23,840.53 1.07

Source: Table created by authors

Figure 5 The comparison of obj-2 (distance) and obj-3 (medical staff)
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Upon evaluation of the Pareto optimal solutions, Experiment-5
emerged as the most effective solution. This selection is rooted
in the fact that we grant higher priority to minimizing the
distance/response time (obj-2) compared to the requirement
for medical staff (obj-3). Consequently, the outcomes
presented pertain to the solution derived from Experiment-5,
characterized by the lowest obj-2 value. Figure 6 illustrates the
expected number of necessary TMCs, doctors and nurses for
each scenario under Experiment-5. Notably, the number of
TMCs generally increases as scenarios transition from
optimistic (S1) to pessimistic (S20). This trend emerges
because the model strives to allocate all casualties to medical
centres with a 0.9 a-reliability level, thereby minimizing
untreated casualties. Consequently, additional TMCs are
opened to facilitate this objective. In tandem, as the number of
anticipated casualties escalates across scenarios, the requisite
medical staff also witnesses a proportional rise. Moreover,
themodel accords priority to existing hospitals, thereby curbing
the need for deploying additional medical staff to medical
centres.
Figure 7 illustrates the outcomes concerning the number of

casualties assigned to EMCs corresponding to each demand
point, focusing on the worst-case scenario (S20) within
Experiment-5. Given that all expected casualties were feasibly
assigned to EMCs for this case study, the figure effectively
delineates the demand for each disaster area (sub-district). As
evidenced, D14, D17 and D19 sub-districts exhibit a higher
expected number of casualties in contrast to others. While D14
and D17 boast larger populations, D19’s population is smaller
than certain sub-districts such as D2 and D15. This divergence
might be attributed to factors underlying the study conducted
by IBB-KRDAE (2020), which deemed disaster area D19 as
posing a higher risk.

In this study, a holistic perspective is presented in contrast to
the previous studies, as the TMCs to be located and the
number of medical personnel to be allocated are planned
simultaneously for disaster response. Hence, realistic and
applicable results have been obtained. In addition, treatment
and deterioration of the casualties’ health status were modelled
as Markov Chains, and these transitions were included in the
proposed stochastic programming model constraints, which is
another unique aspect of our study.

6. The managerial and theoretical implications

The significant contributions of this study to the fields of
disaster management and HT that offer valuable insights
for both practical and academic endeavours are explained
below:
Managerial implications:

� Resource allocation: This study highlights the critical
importance of efficient resource allocation, including the
strategic positioning of TMCs and the allocation of
medical staff. This has practical implications for disaster
management agencies and health care organizations in
optimizing their response capabilities.

� Multi-period planning: The adoption of multi-period
planning models, as proposed in this study, can improve
the responsiveness of EMS over time. This approach
enables better resource utilization and the ability to
adapt to the changing dynamics of disaster-affected
regions.

� Dynamic capacity updates: The consideration of dynamic
capacity updates based on assigned casualties in each
period is a novel approach. This can guide disaster
response decision-makers in effectively managing and

Figure 6 The expected number of TMCs, doctors and nurses needed for each scenario
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expandingmedical centre capabilities during ongoing disaster
situations.

Theoretical implications:
� Multi-objective model: This study introduces a novel multi-

objective dynamic stochastic optimization model,
addressing the combined aspects of multi-period TMC
location planning, casualty allocation and medical staff
planning within an uncertain context. This model
contributes to the theoretical foundation of disaster
management.

� a-Reliability levels: The application of a-reliability levels
(chance constraints) is a theoretical innovation in
addressing disaster response challenges. This approach
can inspire further research into more robust and reliable
models for disaster planning.

� Discrete-time Markov Chain: The incorporation of a
discrete-time Markov Chain approach to reflect the
stochastic nature of casualties’ health conditions adds to
the theoretical sophistication of the model. This approach
has the potential for broader application in related fields.

� Realistic capacity division: The division of medical centre
capacities into bed and outpatient care capacity, along
with considering possibilities for road and hospital
damage, contributes to more realistic theoretical models
for disaster response.

� Distance limit constraints: The use of distance limit
constraints ensures that immediate casualties are not
assigned to hospitals located far away, and this is a
valuable contribution to the theoretical framework of
disaster response optimization.

7. Conclusion

In this study, a post-disaster emergency medical response
system has been considered, including the location planning of
medical centres, the allocation of casualties and medical staff
assignment. A multi-objective dynamic stochastic model was
used in emergency response such as the health condition of
casualties, possibilities of damage to roads and estimated
hospitals and a-reliability levels for untreated casualties. To the
best of our knowledge, there is no past study that considers
multi-period planning of the TMCs locations, assignment of

casualties and medical staff planning simultaneously under
uncertainty, for disaster response. Besides, we aimed multiple
objectives and embedded the patients’ health status transition
probabilities into our model with Markov Chains. These are
the unique aspects of our study.
The subjects investigated within this study encompass vital

and top-priority planning considerations, aligning with the
tenets outlined in Turkey’s Disaster Response Plan and the
National Earthquake Strategy and Action Plan. As these
reports are authored by the Disaster and Emergency
Management Presidency (AFAD), the designated body
responsible for disaster coordination and planning, the findings
of this study hold the potential to furnish managerial
perspectives for AFAD’s operations. Furthermore, the
addressed issues bear relevance to the city and regional
planning department and local municipalities, particularly in
terms of formulating strategies for TMCplacements.
The study does entail certain academic and managerial

constraints about the addressed issues. A foremost limitation
revolves around the task of pinpointing the optimal locations
for the potential TMCs ahead of a disaster occurrence. This
decision carries strategic significance and mandates adherence
to official plans. Ideally, collaboration with local institutions
should guide the selection of candidate sites, enabling
alignment with the evolving urban landscape. Such a proactive
approach is essential, given the risk of candidate locations
losing suitability over time because of urban development
activities. Consequently, periodic assessments are imperative to
ensure the ongoing viability of the chosen sites. Another
notable limitation pertains to the collection of data for
envisaged disaster scenarios. This step is pivotal and demands a
realistic approach anchored in official reports and relevant
studies. The accurate compilation and generation of data bear
equal weight to the precise modelling of the problem itself.
Thoroughly vetted and accurate data serves as the foundation
for robust analysis and sound decision-making, amplifying the
importance of this data collection process.
A pivotal aspect within the post-disaster medical response

system involves the accurate coordination of medical staff,
considering the inherent uncertainty surrounding casualty
numbers within the affected regions. The allocation of
casualties to EMCs and the associated need for medical
resources are elaborately linked. To ensure a swift and efficient
medical response, it is imperative to holistically plan the
resource allocation across EMCs. In addressing this challenge,
the AUGMECON2 method, as introduced by Mavrotas and
Florios (2013), proved instrumental in tackling the multi-
objective model proposed for the case study. The findings were
comprehensively evaluated, and emphasis was placed on the
most impactful Pareto optimal solution. The outcome
indicated that both the existing hospitals and recommended
TMCs are equipped to accommodate the anticipated volume
of casualties following a potential earthquake in Kartal across
all scenarios. However, the number of TMCs necessitated
post-earthquake deployment exhibited variations based on the
respective scenarios. Instances of heightened expected casualty
figures corresponded to an increased demand for TMCs. For
instance, the worst-case scenario required the establishment of
50 TMCs, whereas the base scenario necessitated 21. Further
insights were derived, determining the requisite medical staff

Figure 7 The number of assigned casualties to the EMCs according to
each demand point
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complement for each EMC. This insight informed the
determination of surplus doctors and nurses needed in
hospitals, as well as the corresponding medical staff allocation
for TMCs. The solution time associated with the proposed
model remained acceptable within the context of the case
study. Nevertheless, for larger-scale scenarios, the potential
exists for escalated computation times. In such scenarios, the
application of meta-heuristic algorithms can be a valuable
strategy to expedite solution times. Additionally, the
implementation of techniques such as Bender’s decomposition
or effective cutting plane methodologies can effectively address
problems while maintaining a manageable computational
overhead.
This study relies on some assumptions and data sources,

including casualty estimates. Inaccuracies in these assumptions
can impact the validity of the model’s results. The proposed
models may require real-time data and information exchange
for optimal decision-making, which can be challenging to
implement in disaster-affected areas with disrupted
communication. The study primarily focuses on logistical
and resource allocation aspects and does not account for
external factors such as political, economic and regulatory
considerations, which can significantly impact disaster
management strategies. In future studies, a more nuanced
classification of casualties could yield valuable insights,
particularly by incorporating factors such as the nature of
injuries or specific medical requirements. This classification
can inform the allocation of casualties to EMCs based on
their specialized capabilities. Hospitals, for instance, exhibit
varying capacities for critical facilities such as operating
rooms, dialyzers and respirators. Moreover, a detailed
consideration of TMCs’ equipment profiles is essential.
While certain TMCs may possess specialized equipment,
especially those situated in expansive venues like sports halls,
a standardized equipment assessment might not hold for all.
An often-overlooked aspect of EMS research pertains to
deceased patients. Therefore, broadening the scope of
casualty types, encompassing immediate, minimal and
deceased patients, stands as a crucial avenue for exploration.
Additionally, the influence of secondary disasters, such as
tsunamis and aftershocks following the primary event, is an
area ripe for investigation. Such subsequent events can
severely impact emergency response efforts, necessitating
specialized strategies for effectivemanagement. By comprehensively
addressing these aspects, future studies can provide an enriched
understanding of post-disaster medical response, equipping disaster
management authorities with well-rounded insights to handle
complex scenarios.
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Table A1 Pareto optimal solution results

Experiment Z1 Z2 Z3

1 NA 6,080 98
2 NA 6,703 95
3 NA 7,327 92
4 NA 7,950 82
5 0 8,574 77
6 0 9,197 74
7 0 9,821 66
8 0 10,444 59
9 0 11,067 51
10 0 11,691 38
11 0 12,314 38
12 0 12,938 32
13 0 13,561 32
14 0 14,184 22
15 0 14,808 22
16 0 15,431 22
17 0 16,055 22
18 0 16,678 22
19 0 17,301 22
20 0 17,925 22
21 0 18,548 19
22 0 19,172 19
23 0 19,795 17
24 0 20,418 14
25 0 21,042 12
26 0 21,665 12
27 0 22,289 12
28 0 22,912 12
29 0 23,535 9
30 0 24,159 6

Source: Table created by author
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