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Abstract

Purpose – This study aims to propose an efficient method for solving reliability-based design optimization
(RBDO) problems.
Design/methodology/approach – In the proposed algorithm, genetic algorithm (GA) is employed to search
the global optimal solution of design parameters satisfying the reliability and deterministic constraints. The
Kriging model based on U learning function is used as a classification tool to accurately and efficiently judge
whether an individual solution in GA belongs to feasible region.
Findings – Comparedwith existingmethods, the proposedmethod has twomajor advantages. The first one is
that the GA is employed to construct the optimization framework, which is helpful to search the global
optimum solutions of the RBDO problems. The other one is that the use of Kriging model is helpful to improve
the computational efficiency in solving the RBDO problems.
Originality/value – Since the boundaries are concerned in two Kriging models, the size of the training set for
constructing the convergent Kriging model is small, and the corresponding efficiency is high.

Keywords Reliability-based design optimization, Dual-stage adaptive kriging, Genetic algorithm, U learning

function, Failure probability

Paper type Research paper

1. Introduction
Due to machining error, assembly error, mutative load, abrasion and friction, uncertainties
extensively exist in the design, service and maintenance of the structure or system
(Babak et al., 2022; Feng et al., 2019b; Li et al., 2021). Conventional design optimization
(CDO) employs the safety factor to deal with these uncertainties, which may lead to a
conservative design with great weight or large size. Besides, CDO cannot give a
quantitative index about the safety of the designed structure or system. Thus, reliability-
based design optimization (RBDO) is developed to overcome the shortcomings of CDO,
where the uncertainties of inputs are described as randomness by their probability density
functions (PDFs). RBDO is able to help structural designers balance cost and safety,
therefore produce designs which not only are economical but also satisfying reliability
constraints (Aoues and Chateauneuf, 2008; Yang and Hsieh, 2011). The RBDO problem can
be generally formulated as,
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Min
d

CðdÞ

s:t:

8>>><>>>:
PrfgkðX jdÞ≤ 0g≤P *

fk
k ¼ 1; 2; :::; p

hlðdÞ≤ 0 l ¼ 1; 2; :::; q

d
L
≤d ≤d

U
d ∈Rm

(1)

where X ¼ ½X1;X2; � � � ;Xn�T is the n-dimensional random input vector, d ¼ ½d2;
d2; � � � ; dm�T is the m-dimensional design parameter vector which usually is the
distribution parameter (mean, standard deviation, etc.) of the random input, CðdÞ is the
objective function, PrfgkðX jdÞ≤ 0gðk ¼ 1; 2; :::; pÞ represents the failure probability for
the kth performance function, and P *

fk
is the corresponding threshold of the failure

probability, hlðdÞ ðl ¼ 1; 2; :::; qÞ denotes the lth deterministic constraint, dL and dU are the
lower and upper bounds of the design parameter vector d, respectively. According to Eq. (1),
it can be easily observed that the double-layer nested process is involved in the RBDO
problem, where the outer is the multi-parameter design optimization of the design parameter
vector and the inner is the reliability analysis by considering the randomness of the input
vector. Hence, more steps and much computational cost are needed in solving the RBDO
problem compared with the CDO problem.

In recent decades, numerous tools for RBDO have been developed by different scholars
from various engineering fields (Allen andMaute, 2005; Huyse et al., 2002; Gu et al., 2001), and
they can be mainly classified into two groups based on the reliability analysis method
involved (Marcos and Gerhart, 2010), i.e. the approximately analytical technique based
methods and the simulation technique basedmethods. In approximately analytical technique
based methods, the failure probability PrfgkðX jdÞ≤ 0g ðk ¼ 1; 2; :::; pÞ defined in Eq. (1)
is solved by the First Order and SecondMoment (FOSM)method (Roger et al., 1999; Zhao and
Ono, 1999) or improved versions of FOSM, thus the RBDO problem can be rewritten as,

Min
d

CðdÞ

s:t:

8>>><>>>:
βkðdÞ≥ β *

k k ¼ 1; 2; :::; p

hlðdÞ≤ 0 l ¼ 1; 2; :::; q

d
L
≤d ≤d

U
d ∈Rm

(2)

where βkðdÞ ðk ¼ 1; 2; :::; pÞ is the kth reliability index of the corresponding performance
function gkðX jdÞ, and β *

k ¼ −Φ−1ðP *
fk
Þ ðk ¼ 1; 2; :::; pÞ is the kth threshold of the reliability

index in which Φ−1ð$Þ is the inverse function of the cumulative distribution function for the
standard normal distribution. The methods for settling the RBDO problem defined by Eq. (2)
can be divided into three categories, i.e. double-loop methods, single-loop methods and
decoupling methods. Double-loop method is the most direct approach of the approximately
analytical technique based methods, where the outer loop is to optimize the design
parameters and the inner loop is to evaluate the reliability index for the given set of design
parameters (Nikolaidis and Burdisso, 1988; Tu et al., 2001). To reduce the computational cost
of solving the RBDO problem, several so-called single-loop methods were proposed by
different structural designers. For instance, Kuschel and Rackwitz (1997) constructed a
single-layer RBDO model by employing the Karush-Kuhn-Tucker (KKT) conditions
(Bonnans et al., 2003) and Lagrange multipliers, where the inner loop for estimating the
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reliability index is avoided. Other examples of the single-loop methods can be discovered in
Kharmanda et al. (2002) and Mohsine et al. (2006), where an extended formulation was
established for working out the RBDO problem, i.e. the generalized objective function was
indicated as the product of the reliability indices and the original objective function. The basic
idea of the decoupling methods is to extract the information from the reliability analysis
period, which can be used at the optimization process so as to further improve computational
efficiency. Up to our knowledge, the first decoupling method was proposed by Li and Yang
(1994), where each reliability constraint is replaced by a linear approximation formula with
the help of the Taylor expansion and the reliability based sensitivities, then the RBDO
problem can be transformed to solve a series of deterministic optimization problems.
Subsequently, various alternatives have been studied as well, such as the adaptive sequential
linear programming algorithm proposed by Chan and co-workers (Chan et al., 2007),
sequential approximate programming strategy algorithm introduced by Cheng et al. (2006),
sequential optimization and reliability assessment algorithm developed by Du and Chen
(2004), etc. Although the approximately analytical technique based methods have been
developed rapidly in recent decades and some of them are very efficient, the basic framework
of these methods are still based on FOSM method. Because FOSM method is only an
approximate reliability analysis technique, it may bring large error in reliability analysis for
the strong nonlinear performance function, so the optimization results obtained by the
approximately analytical technique based methods might not satisfy the failure probability
constraints defined in Eq. (1).

In the simulation technique based methods, the failure probabilities with respect to each
performance function is estimated by the simulation technique, which might be
computationally expensive, especially for analyzing large scale structures with
complicated finite element models. Thus, the surrogate model (Liu et al., 2019; Zhou et al.,
2019) has been widely used to evaluate the failure probabilities involved in the RBDO, which
can dramatically reduce the total computational cost in the whole optimization process.
Surrogate models can be applied to a particular RBDO problem with two different forms. In
the first form, the surrogate model is employed to directly represent the true performance
function, then the RBDO problem can be solved by replacing the true performance function
with the corresponding surrogatemodel. A typical case of this class of surrogatemodels is the
polynomial chaos technique (Xiu and Karniadakis, 2003), and Anup and Debraj (2016) used
the polynomial chaos technique to solve the RBDO in aeroelastic stability problems. It should
be pointed out that the accuracy of the optimization result obtained by this directly surrogate
model based method would subject to several factors, such as the global precision of the
surrogate model, sample size in evaluating the failure probability, the optimization algorithm
selected and so on. In the second form, the surrogatemodel is used to approximately construct
the failure probability function (Feng et al., 2019a) which is defined as a function of failure
probability with respect to the design parameter vector. Next, by substituting the failure
probability constraint to the proxy failure probability function, the RBDO problem can be
translated into a deterministic optimization problem. Some specific cases of the second form
can be referred to Hurtado (2004), Missoum et al. (2007) and Vincent et al. (2011). This type of
method is very superior in theory, but obtaining the failure probability function with enough
precision especially for multi-dimensional problem is not easy in practice. In addition, most of
existing tools for solving RBDO problem use the gradient based optimization algorithms,
such as sequential quadratic programing and interior–point method, which have quick
astringency, but may converge to the local optimum.

This contribution expects to develop a novel algorithm for RBDO by using dual-stage
adaptive Kriging and genetic algorithm, which has three advantages: 1) accurately
measuring the reliability; 2) better global convergence; 3) high computational efficiency. In
order to achieve this purpose, the simulation technique is used to estimate the failure
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probability of the structure so as to accurately measure the reliability, the genetic algorithm
(GA) is employed to search the global optimum solution, and the adaptive Kriging model is
successively employed to accurately and efficiently judge whether or not a specific sample of
random input vector belongs to failure domain and a certain realization of design parameter
vector pertains to feasible region.

The main content of this contribution is organized as follows. The outline of the proposed
algorithm is presented in Section 2. The algorithm details and implementation are described
in Section 3. Three numerical studies are employed to demonstrate the accuracy and
efficiency of the proposed algorithm in Section 4. Concluding remarks are summarized in
Section 5.

2. Algorithm outline
Generally, solving an optimization problem with simple objective function and complex
constraint is harder than solving that with complex objective function and simple constraint,
therefore the RBDO defined in Eq. (1) is primarily transformed into the following form,

Min
d

CðdÞ � Cmin

Cmax � Cmin

þ
Xp
k¼1

PRk$I
h
PrfgkðX jdÞ≤ 0g � P *

fk

i
þ
Xq
l¼1

PDl$I ½hlðdÞ�

s:t: dL
≤d ≤dU d ∈Rm

(3)

where Cmin and Cmax respectively denote the minimum and maximum values of the objective
function CðdÞ by only considering the lower and upper bounds of the design parameter
vector d, which can be easily obtained without any evaluation of the performance function,

therefore CðdÞ−Cmin

Cmax −Cmin
would be in the interval [0,1], and the units of CðdÞ can be eliminated as

discussed in Fu et al. (2017), I ½input� represents the indicator function, i.e.

I ½input� ¼
�
0 if input ≤ 0
1 if input > 0

(4)

PRkðk ¼ 1; 2; :::; pÞandPDlðl ¼ 1; 2; :::; qÞ respectively express the penalty factors which are
used as a punishment when the design parameter vector does not satisfy the reliability
constraint and the deterministic constraint, respectively.

The penalty function in Eq. (3) is used to identify whether a realization of design
parameters is located in the feasible region. If the realization of design parameters is not
located in the feasible region, a big value will be added to the objective function as a
punishment through the penalty factor. Generally, a big value of penalty factor means a good
effect of punishment. However, a big value of penalty factor also implies high nonlinearity of
the generalized objective function containing the original objective function and penalty
function, which increases the solving difficulty of the optimization problem. On the other
hand, if the value of penalty factor is too small, the event of misjudging the state of the
realization of deign parameters may occur, which will further lead to an inaccurate optimal
result. As the original objective function is primarily normalized in the interval [0,1], the
penalty factor is set to 2 in the proposed method and it is enough to punish the realization of
design parameters not locating in the feasible region.

In order to acquire a global optimum solution, GA is employed to solve the optimization
problem defined in Eq. (3) in this contribution. GA is a computational model inspired by the
Darwin’s biological evolution theory, which learns from the evolutionary law of the biological
world (Mitchell, 1996). The evolution often begins with a population composed of randomly
generated individuals, and then iterative process is gradually performed with the population
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in each iteration referred to as a generation. In each iteration, the fitness of every individual in
current population is calculated, and the fitness function is chosen as one monotonic function
of the optimization goal in general. The higher the fitness of individuals is, the greater
possibility these individuals will be selected to the next generation. And each individual’s
chromosome is modified (combined the crossover and mutation with the genetic operators of
natural genetics) to construct a new generation. The new generation representing the new
solution set is then employed in the next iteration of the algorithm. Frequently, the stop
condition of genetic algorithm can be classified into two types. The first one is that the
number of generations reaches to the given maximum number, and the second one is that the
fitness level of the population reaches to the threshold. Compared to the latter one, the former
one ismore conservative but simpler andmore robust. Thus, the latter one is chosen as amore
stable stop condition in the proposed method. Although this stop condition may lead to a
waste of computational effort, this waste is quite small thanks to the inclusion of
Kriging model.

Compared with the gradient based optimization algorithms, GA has two important
advantages, the first one is that it directly operates on design parameters where the
derivatives of the objective function with respect to design parameters are not needed, and
the second one is that it has the capability of searching global optimal solution. Nevertheless,
repeated fitness function calculation for complicated problems is usually the most limitation
of GA. Fortunately, the occurrence of surrogate models dramatically reduces the
computational cost of GA and expands its application range, especially for the
complicated engineering problems.

For the optimization problem described in Eq. (3), the fitness function FðdÞ can be defined
as the exponential function of the optimization goal, i.e.

FðdÞ ¼ exp

 
−

(
CðdÞ � Cmin

Cmax �Cmin

þ
Xp
k¼1

PRk$I
h
PrfgkðX jdÞ≤0g� P *

fk

i
þ
Xq
l¼1

PDl$I ½hlðdÞ�
)!
(5)

From Eq. (5), it can be observed that the smaller the objective function of the optimization
problem defined in Eq. (3) is, the bigger the fitness of the individual is. In addition, it can be
concluded that the fitness function FðdÞ is comprised of three components, i.e. the first part

related to the original objective function CðdÞ, CðdÞ−Cmin

Cmax −Cmin
; the second part related to the

reliability constraints
Pp

k¼1PRk$I ½PrfgkðX jdÞ≤ 0g−P *
fk
�; and the third part related to the

deterministic constraints
Pq

l¼1PDl$I ½hlðdÞ�. Generally, the most time-consuming work in
reliability analysis or RBDO is the evaluation of the performance function, and the total
number of the performance function evaluation is usually regarded as the total computational
cost in such problems (Cheng et al., 2006; Feng et al., 2020; Wang et al., 2017; Yun et al., 2019).
Thus, the computational cost in estimating FðdÞ only exists in the evaluation of its second

part
Pp

k¼1PRk$I ½PrfgkðX jdÞ≤ 0g−P *
fk
�, and for convenience of expression, the auxiliary

function LkðdÞ ðk ¼ 1; 2; :::; pÞ is introduced as,

LkðdÞ ¼ PrfgkðX jdÞ≤ 0g � P *
fk
; ðk ¼ 1; 2; :::; pÞ (6)

According to Eqs. (5) and (6), it can be seen that the most important and difficult issue in
solving the RBDO by using GA is to judge whether or not every individual representing
design parameter vector in each population is greater than zero, if it is, the indicator function
defined in Eq. (4) is equal to 1, if not, that indicator function is equal to 0. In order to efficiently
achieve this purpose, the surrogate model can be constructed to approximately replace the
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original auxiliary function LkðdÞ. It should be noticed that the surrogate model in this
contribution is only used as a classification tool, i.e. the surrogate model judges whether the
value of the auxiliary function LkðdÞ at a certain individual representing design parameter
vector is larger than zero or not, while accurately evaluating the value of LkðdÞ is not
necessary. Thus, the adaptive Kriging model based on U learning function (Echard et al.,
2011) can be employed in this contribution, which is one of themost widely used classification
tools, and more details of this technique will be introduced in section 3.1. In the first

generation of GA, the roughKrigingmodelL
ðKÞ
k ðdÞ ðk ¼ 1; 2; :::; pÞ is constructed by using a

small part of the individuals in this generation, then this Kriging model will be continuously
updated by orderly adding the new individual of the first generation according to the
selecting criterion until the convergence criterion is satisfied. Next, in subsequent
generations, the incipient Kriging model can employ the model obtained in the previous
generation, then it is continuously updated so as to accurately distinguish the sign of the
individuals in current generation.

In the last paragraph, the process of constructing and updating the Kriging model

L
ðKÞ
k ðdÞ is explained in detail. In this process, the function value LkðdÞ at initial training

individuals and updated training individuals should be accurately estimated. From Eq. (6), it
can be observed that estimating the function value LkðdÞ is essentially a failure probability
estimation problem. By using the Monte Carlo Simulation (MCS) and the Kriging model,
PrfgkðX jdÞ≤ 0g ðk ¼ 1; 2; :::; pÞ can be estimated by,

bPrfgkðX jdÞ≤ 0g ¼ 1� bPrfgkðX jdÞ > 0g≈ 1� 1

NX

XNX

j¼1

I ½gkðx jjdÞ� ðk ¼ 1; 2; :::; pÞ (7)

where x jjd is the jth random sample vector when the design parameter vector is fixed at d,
and NX denotes the total number of the random samples. Obviously, only the sign of the
performance function at each sample, instead of its accurate value, is needed in estimating the
failure probability. Besides, for different design parameter vector, the PDF of the random
input vectorX are different, but the structure of the performance function is the same. Hence,
a single adaptive Kriging model based on U learning function is sufficient to estimate the
failure probabilities under different design parameter vectors. The basic idea of using a single
Kriging model to estimate various failure probabilities is that a Kriging model is firstly built
for accurately recognizing the sign of the performance function with respect to the sample in
the sample pool constructed based on the first individual (representing design parameter
vector) of the first generation in GA. Next, for other individuals, the existing Krigingmodel is
continuously updated in order to accurately distinguish the sign of the performance function
with respect to the sample in the sample pool constructed according to the corresponding
individual. The flowchart of the proposed algorithm for solving the RBDOproblem is given in
Figure 1.

3. Algorithm details
From section 2, it is clear that the main contents of the proposed algorithm include two parts;
the first one is that GA is employed as the optimization tool to obtain the global optimal
solution of the RBDO defined in Eq. (3), and the detailed steps of GA can be found in Leung
and Wang (2001). The second one is that the adaptive Kriging model based on U learning
function is successively used to accurately and efficiently judge whether a certain realization
of design parameter vector pertains to feasible region and a specific sample of random input
vector belongs to failure domain. In this section, this adaptive Kriging model is briefly
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introduced at first, then the detailed implementation of the proposed algorithm in solving
RBDO is summarized in subsection 3.2.

3.1 An adaptive kriging model based on U learning function
In this subsection, the surrogated function is expressed by hðΘÞ, which can be the auxiliary
function LkðdÞ ðk ¼ 1; 2; :::; pÞ or the performance function gkðX jdÞ ðk ¼ 1; 2; :::; pÞ, and
the sample pool of the input vectorΘ is given as θS ¼ fθ1; θ2; � � � ; θNθg, in which Nθ denotes
the total number of the samples in the sample pool.

The fundamental idea of Kriging model is that the function hðΘÞ could be regarded as a

realization of a stochastic field hðKÞðΘÞwhich is introduced as,

hðKÞðΘÞ ¼ f ðΘÞξ þ Z ðΘÞ (8)

in which f ðΘÞ ¼ ½f1ðΘÞ; f2ðΘÞ; � � � ; fNf
ðΘÞ� represents the Nf -dimensional basis function

vector, ξ ¼ ½ξ1; ξ2; � � � ; ξNf
�T denotes the Nf -dimensional regression coefficient vector, and

Z ðΘÞ expresses a stationary Gaussian process with mean zero and the covariance between

any two samples θj1 and θj2 in the sample pool θS is defined in Eq. (9),

cov
�
Z
�
θj1
�
; Z
�
θj2
�� ¼ σ2

ZRZ

�
Z
�
θj1
�
; Z
�
θj2
��

(9)

in which σZ is the standard deviation, RZ is the correlation function that can determine the
smoothness of the Kriging model and the commonly used Gaussian correlative function
(Echard et al., 2011) is employed in this contribution. For any untrained sample θ in the sample

pool θS, the Kriging model prediction is,

h
ðKÞðθÞ∼N

�
μhðKÞ ðθÞ; σ2

hðKÞ ðθÞ
�

(10)

where Nð$Þ denotes normal distribution, and μhðKÞ ðθÞ and σhðKÞ ðθÞ stand for the mean and

standard deviation of the prediction h
ðKÞðθÞ respectively.

Figure 1.
The flowchart of the
proposed algorithm for
solving the RBDO
problem
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When hðKÞðθÞ≥ 0, the probability of misidentifying the sign of hðθÞ can be represented as,

PI ¼ Φ

 
0� 		hðKÞðθÞ		

σhðKÞ ðθÞ

!
¼ Φ

 
−

		hðKÞðθÞ		
σhðKÞ ðθÞ

!
(11)

When hðKÞðθÞ < 0, the probability of misidentifying the sign of hðθÞ can be represented as,

PII ¼ 1�Φ

 
0þ 		hðKÞðθÞ		

σ
hðKÞ ðθÞ

!
¼ Φ

 
−

		hðKÞðθÞ		
σ
hðKÞ ðθÞ

!
(12)

Eqs. (11) and (12) show that whatever the sign of hðKÞðθÞ, the probability of misidentifying the
sign of hðθÞ can be denoted as,

Pmis ¼ Φð−UðθÞÞ (13)

in which UðxÞ is known as the U learning function, and it is given by,

UðθÞ ¼

			hðKÞðθÞ
			

σ
hðKÞ ðθÞ (14)

According to Eqs. (13) and (14), it can be concluded that the smaller the value of UðθÞ is, the
higher the probability of misidentifying the sign of hðθÞ. Thus, the new training sample θnew

could be chosen as the sample with the smallest value of UðθÞ, i.e.
θnew ¼ arg min

θ∈θS
Uð θÞ (15)

It is recommended that the process for iteratively updating the Kriging model can stop if

UðθÞ≥ 2 is valid for any sample in the sample pool θS, which demonstrates that the
probability of misjudging the sign of hðθÞ is equivalent to Φð−2Þ ¼ 0:0228 (Echard
et al., 2011).

3.2 The implementation of the proposed algorithm
A detailed summary of the implementation of the proposed genetic algorithm and adaptive
Kriging model based approach in solving RBDO is revealed in this subsection. It is
demonstrated as follows.

Step 1. Generate an initial population d ð0Þ ¼ fd ð0;1Þ;d ð0;2Þ; � � � ;d ð0;Nd Þg of the design
parameter vector d where Nd denotes the number of individuals in each population, and
initialize the generation number gen to 0, i.e. gen ¼ 0.

Step 2. Randomly select NT
d (NT

d << Nd ) individuals from d ð0Þ, which are recorded as

fd ð0;s1Þ;d ð0;s2Þ; � � � ;d ð0;sNT
d
Þg. Estimate the value of Lkðd ð0;s1ÞÞ ðk ¼ 1; 2; :::; pÞ by the

following steps.

Step 2.1.According to the design parameter vector d ð0;s1Þ, randomly generateNX samples

of the input vector and construct the sample pool x
ð0;s1Þ
S , i.e. x

ð0;s1Þ
S ¼ fxð0;s1Þ

1 ;x
ð0;s1Þ
2 ; � � � ;

x
ð0;s1Þ
NX

g.
Step 2.2. Randomly selectNT

X (NT
X << NX ) training samples from the sample pool x

ð0;s1Þ
S

,

and compute their model outputs. Then, construct the initial Kriging model g
ðKÞ
k ðX Þ by

employing the selected samples.
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Step 2.3.According to the Kriging model g
ðKÞ
k ðX Þ , evaluate the U learning functionUðxÞ

of all the samples in x
ð0;s1Þ
S . If UðxÞ≥ 2 holds for all these samples, go to Step 2.5;

otherwise, go to Step 2.4.

Step 2.4. Select xnew ¼ argmin
x∈x

ð0;s1Þ
S

UðxÞ as the new training sample and compute the

corresponding model output, then update the Kriging model g
ðKÞ
k ðX Þ by adding this new

training sample. Next, go to Step 2.3.

Step 2.5.Based on theKrigingmodel g
ðKÞ
k ðX Þ, identify all the failure samples inx

ð0;s1Þ
S , and

the total number of these failure samples is recorded as N
ð0;s1Þ
F , then Lkðd ð0;s1ÞÞ can be

estimated by Lkðd ð0;s1ÞÞ ¼ N
ð0;s1Þ
F

NX
−P *

fk
.

Step 3. Estimate the value of Lkðd ð0;rÞÞ ðr ¼ s2; :::;NT
d Þ by the following steps.

Step 3.1.According to the design parameter vector d ð0;rÞ, randomly generate NX samples

of the input vector and construct the sample pool x
ð0;rÞ
S

¼ fxð0;rÞ
1 ;x

ð0;rÞ
2 ; � � � ;xð0;rÞ

NX
g.

Step 3.2. Based on the current Kriging model g
ðKÞ
k ðX Þ, evaluate the U learning function

UðxÞ of all the samples in x
ð0;rÞ
S . If UðxÞ≥ 2 holds for all these samples, go to Step 3.4;

otherwise, go to Step 3.3.

Step 3.3. Select xnew ¼ argmin
x∈x

ð0;rÞ
S

Uð xÞ as the new training sample and compute the

corresponding model output, then update the Kriging model g
ðKÞ
k ðX Þ by adding this new

training sample. Next, go to Step 3.4.

Step 3.4. According to the Kriging model g
ðKÞ
k ðX Þ, recognize all the failure samples in

x
ð0;rÞ
S , and the total number of these failure samples is denoted as N

ð0;rÞ
F , subsequently

Lkðd ð0;rÞÞ can be estimated by Lkðd ð0;rÞÞ ¼ N
ð0;rÞ
F

NX
−P *

fk
.

Step 4. Construct the initial Kriging model L
ðKÞ
k ðdÞ ðk ¼ 1; 2; :::; pÞ based on the training

individuals fd ð0;s1Þ;d ð0;s2Þ; � � � ;d ð0;sNT
d
Þg.

Step 5.According to the Krigingmodel L
ðKÞ
k ðdÞ, evaluate the U learning functionUðdÞof

all the individuals in d ð0Þ. If UðdÞ≥ 2 holds for all these individuals, go to Step 7;
otherwise, go to Step 6.

Step 6. Select dnew ¼ argmin
d∈d ð0Þ

UðdÞ as the new training individual and compute the

corresponding function value LkðdnewÞ by the following steps,

Step 6.1. Based on the design parameter vector dnew, randomly generate NX samples of
the input vector and construct the sample pool xnew

S ¼ fxnew
1 ;xnew

2 ; � � � ;xnew
NX

g.
Step 6.2. Based on the current Kriging model g

ðKÞ
k ðX Þ, evaluate the U learning function

UðxÞ of all the samples in xnew
S . If UðxÞ≥ 2 holds for all these samples, go to Step 6.4;

otherwise, go to Step 6.3.
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Step 6.3. Select xnew ¼ argmin
x∈xnew

S

UðxÞ as the new training sample and compute the

corresponding model output, then update the Kriging model g
ðKÞ
k ðX Þ by adding this new

training sample. Next, go to Step 6.4.

Step 6.4. According to the Kriging model g
ðKÞ
k ðX Þ, distinguish all the failure samples in

xnew
S , and the total number of these failure samples is recorded asNnew

F , then LkðdnewÞ can

be estimated by LkðdnewÞ ¼ Nnew
F

NX
−P *

fk
.

Step 7. Update the Kriging model L
ðKÞ
k ðdÞ by adding the new individual dnew.

Step 8. Evaluate the fitness with respect to each individual in d ðgenÞ by using the current

Kriging model L
ðKÞ
k ðdÞ.

Step 9. Population Evolution. Firstly, each individual in current population is selected for
crossover with given probability pc. Secondly, each individual in current population may

mutate with given probability pm. Thirdly, among the individuals in d ðgenÞ and those
generated by crossover and mutation, select the Nd elements with largest fitness to form
the next generation. If gen > genmax (where genmax is the given maximum number of
generation), go to Step 12; otherwise, gen ¼ genþ 1 and go to Step 10.

Step 10. On the basis of current Kriging model L
ðKÞ
k ðdÞ, evaluate the U learning function

UðdÞ of all the individuals in d ðgenÞ. If UðdÞ≥ 2 holds for all these individuals, go to Step
12; otherwise, go to Step 11.

Step 11. Select dnew ¼ argmin
d∈d ðgenÞ

UðdÞ as the new training individual and compute the

corresponding function value LkðdnewÞ by repeating Step 6. Then, go to Step 7.

Step 12. The individual in current population d ðgenÞ with largest fitness can be regarded
as the optimum solution.

4. Numerical studies
In this section, the proposed genetic algorithm and adaptive Krigingmodel based approach is
applied to three examples from the literature in order to compare the accuracy and efficiency
of the proposed approach and existing methods. The parameters of GA and adaptive Kriging
model used in the examples are listed in Table 1.

4.1 Standard RBDO test problem
In this subsection, a commonRBDO test case used inMohsen et al. (2014), Yang andGu (2004)
and Youn and Choi (2004). is employed, which can be expressed as,

Parameter Symbol Value

Maximum number of generation genmax 200
Number of individuals in each population Nd 500
Crossover probability pc 0.7
Mutation probability pm 0.1
Number of samples of the input vector in each population NX 105

Penalty factor PRk or PDl 2

Table 1.
The parameters of GA
and adaptive Kriging

model used in test
examples
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Min
d

CðdÞ ¼ d1 þ d2

s:t:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

Pr

(
g1ðX Þ ¼ X 2

1X2

20
� 1≤ 0

)
≤Φð−3Þ ¼ 0:00135

Pr

(
g2ðX Þ ¼ ðX1 þ X2 � 5Þ2

30
þ ðX1 � X2 � 12Þ2

120
� 1≤ 0

)
≤Φð−3Þ ¼ 0:00135

Pr

(
g3ðX Þ ¼ 80�

X 2
1 þ 8X2 þ 5

�2 � 1≤ 0

)
≤Φð−3Þ ¼ 0:00135

0≤ dj ≤ 10 j ¼ 1; 2

(16)

where X1 and X2 follow normal distribution with means ðd1; d2Þ and standard deviation 0.3.
Mohsen et al. (2014) used five methods, i.e. reliability index approach (RIA), performance
measure approach (PMA), single-loop approach (SLA), sequential optimization and reliability
assessment (SORA) method, and the simulation-based method (SBM) to solve the RBDO
problem defined in Eq. (16), and the corresponding results are established in Table 2, in which
Pfmax denotes the maximum failure probability of all the performance functions under the
design parameter vector.

According to Eq. (16), it can be computed that the maximum and minimum values of the
objective function CðdÞ by only considering the lower and upper bounds of the design
parameter vector d are Cmin ¼ 0 and Cmax ¼ 20. Thus, the RBDO problem defined in Eq. (16)
can be rewritten as,

Min
d

CðdÞ
20

þ
X3
k¼1

2$I ½PrfgkðX Þ≤ 0g � 0:00135�

s:t: 0≤ dj ≤ 10 j ¼ 1; 2

(17)

By employing the proposed genetic algorithm and adaptive Krigingmodel based approach to
solve the problem defined in Eq. (17), it can be obtained that the final optimum design is
fd1 ¼ 3:4498; d2 ¼ 3:2824g, and the convergence of the design parameter variables and cost
is depicted in Figure 2. From Figure 2, it can be observed that the convergence of design
parameter variables and cost is achieved when gen ¼ 102. Table 2 indicates that the final
optimum design obtained by different methods is almost the same, but the reliability
constraints are not satisfied in PMA, SLA and SORA methods. Thanks to the adaptive

Method Cost Pfmax Model evaluations

RIA* 6.7257 0.001349 590
PMA* 6.7251 0.001363 612
SLA* 6.7556 0.001351 144
SORA* 6.7251 0.001363 360
SBM* 6.7457 0.001296 5000
Proposed 6.7322 0.001343 39

Source(s): *Cited from Mohsen et al. (2014)

Table 2.
Optimization results
for standardRBDO test
problem
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Kriging model, the optimum is reached in the proposed method by using only 39 model
evaluations, which demonstrates that the proposed method is more efficient than other
methods listed in Table 2.

4.2 Bracket structure design
The bracket structure taken from Chateauneuf and Aoues (2008) and Vincent et al. (2011) is
shown in Figure 3. This bracket structure is loaded by an external force at its right tip and by
its own weight on account of gravity. The two failure modes taken into consideration are
described as follows.

(1) The maximum bending moment σB in the horizontal beam (recorded as CD)
appearing at point B should not surpass the yield strength σS, thus the first
performance function can be written as,

g1ðσS ;ωCD; t;L;P; ρÞ ¼ σS � σB (18)

in which the maximum bending moment σB can be expressed as,

σB ¼ 6MB

ωCDt
2

MB ¼ PL

3
þ ρgωCDtL

2

18

(19)
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Figure 2.
Convergence of the
design parameter
vector and cost in

example 1

Figure 3.
Bracket structure
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(2) The maximum internal force FAB in the scaffold beam (recorded as AB) should not
surpass the critical buckling force Fbuckling, hence the second performance function
can be written as,

g2ðσS ;ωAB;ωCD; t;L;P; ρÞ ¼ Fbuckling � FAB (20)

in which the critical buckling force Fbuckling and maximum internal force FAB can be
expressed as,

Fbuckling ¼ π2EI

L2
AB

¼ 9π2Etω3
AB sin

2 θ

48L2

FAB ¼ 1

cos θ



3P

2
þ 3ρgωCDtL

4

� (21)

where the eight parameters, i.e. σS, P, E, ρ, L, ωAB, ωCD and t are considered as the random
input variables in this example, and theirs contribution types and parameters are
established in Table 3.
As shown in Table 3, themeans ofωAB,ωCD and t are regarded as three design parameters,

and the expected weight of the structure is regarded as the objective function, which can be
introduced as,

cðωAB;ωCD; tÞ ¼ μρμtμL

 
4
ffiffiffi
3

p

9
μωAB

þ μωCD

!
(22)

thus, the RBDO problem can be formulated as,

Min
d

CðdÞ ¼ μρμtμL

 
4
ffiffiffi
3

p

9
μωAB

þ μωCD

!

s:t:

8>><>>:
Prfg1ðX Þ≤ 0g≤Φð−2Þ ¼ 0:02275

Prfg2ðX Þ≤ 0g≤Φð−2Þ ¼ 0:02275

50≤ μωAB
; μωCD

; μt ≤ 300

(23)

Based on Eq. (23), it can be estimated that themaximum andminimum values of the objective
function CðdÞ by only considering the lower and upper bounds of the design parameter
vector d are Cmax ¼ 6259kg and Cmin ¼ 174kg. Therefore, the RBDO problem defined in Eq.
(23) can be rewritten as,

Variable Distribution type Mean C.o.V

σSðMPaÞ Lognormal 225 0.08
PðkNÞ Gumbel 100 0.15
EðGPaÞ Gumbel 200 0.08

ρðkg=m3Þ Weibull 7860 0.10
LðmÞ Gaussian 5 0.05
ωABðmmÞ Gaussian μωAB

0.05

ωCDðmmÞ Gaussian μωCD
0.05

tðmmÞ Gaussian μt 0.05

Note(s): where C.o.V. denotes the Coefficient of Variance

Table 3.
Distribution types and
parameters of the
random input variables
in example 2
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Min
d

CðdÞ � 174

6085
þ
X2
k¼1

2$I ½PrfgkðX Þ≤ 0g � 0:02275�

s:t: 50≤ μωAB
; μωCD

; μt ≤ 300

(24)

In Chateauneuf andAoues (2008), four existing approaches, i.e. RIA, SORA, subset simulation
(SS), subset simulation and kriging surrogate model (SSþAK), are used for comparison, and
the corresponding results are listed in Table 4. By using the proposed approach to settle the
problem defined in Eq. (24), the final optimum design can be obtained as
fμωAB

¼ 54mm; μωCD
¼ 76mm; μt ¼ 295mmg, and the convergence of the design parameter

variables and cost is drawn in Figure 4. Figure 4 shows that the convergence is achieved
when gen ¼ 119. According to Table 4, it can be seen that the optimal solution obtained by all
themethods except for the SSþAKapproach satisfies the two reliability constraints, but that
obtained by the proposed method has a smallest cost, which illustrates that the proposed
method can get better result compared with the RIA, SORA and SS approaches because the
optimal reliability level in this method is formulated in terms of the failure probability instead
of the reliability index.

Method Optimum Design(mm) Cost(kg) Pfmax Model evaluations

RIA* μωAB
¼ 61

μωCD
¼ 157

μt ¼ 209

1675 0.02027 1340

SORA* μωAB
¼ 61

μωCD
¼ 157

μt ¼ 209

1675 0.02027 2340

SS* μωAB
¼ 58

μωCD
¼ 119

μt ¼ 241

1550 0.02068 107

SS þ Kriging* μωAB
¼ 59

μωCD
¼ 135

μt ¼ 226

1610 0.02386 250

Proposed μωAB
¼ 54

μωCD
¼ 76

μt ¼ 295

1359 0.02237 241

Source(s): *Cited from Chateauneuf and Aoues (2008)

Table 4.
Optimization results
for bracket structure

Figure 4.
Convergence of the
design parameter
vector and cost in

example 2
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4.3 Passive vehicle suspension design
In this subsection, the passive vehicle suspension studied in Mohsen et al. (2014). is
considered as the verification case, and its schematic is shown in Figure 5. The objective of
this problem is to minimize the mean square value of the vertical vibration acceleration of the
vehicle body that satisfies the following four constraints:

(1) the road-holding ability of the vehicle should not less than a certain threshold (g1);

(2) the rolling angle should not exceed a certain threshold (g2);

(3) the suspension’s dynamic displacement should not less than a certain threshold so as
to avoid bumper hitting (g3);

Figure 5.
Passive vehicle
suspension
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(4) the tire stiffness should not less than a certain threshold because the tire life is an
increasing function with respect to the tire stiffness (g4).

The RBDO problem is defined by Eq. (25) where the mean of suspension stiffness c ðkg=cmÞ,
tire stiffness ck ðkg=cmÞ and damping coefficient k ðkg=cm sÞ, i.e. μc , μck and μk are
considered as three design parameter variables. Besides, c, ck and k are regarded as normal
random variables with a standard deviation 10 because of manufacturing variability. Other
deterministic parameters are selected as: A ¼ 1 ðcm2=cycle mÞ, b0 ¼ 0:27, V ¼ 10ðm=sÞ,
M ¼ 3:2633ðkg s2=cmÞ and m ¼ 0:8158ðkg s2=cmÞ.

Min
d

CðdÞ ¼ €Z
2 ¼ �πAV
m2

��
μckμk þ ðM þmÞμ2cμ−1k

�

s:t:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

Pr

(
g1ðX Þ ¼ 1�



πAVm

b0g
2μk

� 

μck

M þm
� μc
M

�2

þ μ2c
Mm

þ μckμ
2
k

mM 2

!
≤ 0

)
≤ 0:15

Pr
n
g2ðX Þ ¼ 1� 7:6394

�
4000ðMgÞ−1:5μc � 1

�−1
≤ 0
o
≤ 0:15

Pr
n
g3ðX Þ ¼ 1� 0:5ðMgÞ1=2

�
μ2kμckμ

−1
c ðM þmÞ−1 þ μc

�−1=2
≤ 0
o
≤ 0:15

Pr
n
g4ðX Þ ¼ 1� ððM þmÞgÞ0:877μ−1ck ≤ 0

o
≤ 0:15

380≤ μc ≤ 490; 1430≤ μck ≤ 1530; 10≤ μk ≤ 60

(25)

Mohsen et al. (2014). employed RIA, PMA, SLA, SORA and SBM to deal with the RBDO
problem defined in Eq. (25), and the results are listed in Table 5. According to Eq. (25), the

Method Optimum design Cost Pfmax Model evaluations

RIA* μc ¼ 400:9787
μck ¼ 1451:7168

μk ¼ 31:6646

314,348,853.14 0.150 146

PMA* μc ¼ 400:9784
μck ¼ 1451:7168

μk ¼ 31:5546

314,348,715.78 0.150 91

SLA* μc ¼ 400:9787
μck ¼ 1451:7168

μk ¼ 31:5522

314,339,509.58 0.150 392

SLA* μc ¼ 400:9787
μck ¼ 1451:7168

μk ¼ 31:5546

314,348,851.01 0.150 736

SBM* μc ¼ 400:8658
μck ¼ 1458:8673

μk ¼ 31:2778

314,319,856.51 0.151 15,000

Proposed μc ¼ 401:0263
ck ¼ 1451:8459
μk ¼ 31:5289

314,294,959.36 0.150 72

Source(s): *Cited from Mohsen et al. (2014)

Table 5.
Optimization results
for passive vehicle

suspension
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maximum and minimum values of the objective function CðdÞby only considering the lower
and upper bounds of the design parameter vector d can be easily computed as

Cmax ¼ 2:743 108kg and Cmin ¼ 5:353 108kg. Hence, the RBDO problem defined in
Eq. (25) can be rewritten as,

Min
d

CðdÞ � 2:743 108

2:613 108
þ
X4
k¼1

2$I ½PrfgkðX Þ≤ 0g � 0:15�

s:t: 380≤ μc ≤ 490; 1430≤ μck ≤ 1530; 10≤ μk ≤ 60

(26)

By employing the proposedmethod to solve the above RBDOproblem, the final optimal solution
can be obtained as fμc ¼ 401:0263kg=cm; μck ¼ 1451:8459kg=cm; μk ¼ 31:5289kg=cmsg
with the maximum failure probability of 0.150, and the convergence of the design
parameter variables and cost is drawn in Figure 6. From Figure 6, it can be observed that
the convergence is achieved when gen ¼ 100. Besides, Table 5 indicates that the proposed
method is more excellent and efficient in solving this RBDO problem because it can get a
better solution from the feasible unit with lower cost and smaller number of model
evaluations. μcμckμk

5. Concluding remarks
Starting with the premise that some existing approximately analytical technique based
methods are lack of precision and some of the simulation technique based methods are not
affordable for numerous complicated engineering problems, the aim of this contribution is to
develop an accurate and efficient algorithm for solving the RBDO problem. The main
contributions of the proposed algorithm are summarized as follows.

Figure 6.
Convergence of the
design parameter
vector and cost in
example 3
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(1) The original RBDO problem with simple objective function and complex constraints
is transformed into the equivalent problem with simple constraints and complex
objective function, which is more convenient to be settled by GA.

(2) When solving the equivalent RBDOproblem by usingGA, the optimal reliability level
is formulated in terms of the failure probability instead of the reliability index.

(3) Among the process of GA, two Kriging models are constructed and adaptively
updated by employing the U learning function in order to drastically improve the
computational efficiency of GA.

The results obtained by employing the proposed technique in three numerical examples are
comparable to those acquired by using the existing algorithms. From the results, it can be
concluded that the proposed technique can produce superior optimal solutions with small
number of model evaluations. However, it should be pointed out that the computational cost of
building aKrigingmodelmaybequite expensive for high dimensionalmodels, thus the efficiency
of the proposed algorithm will be reduced to some extent in dealing with such problems.
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