To read this content please select one of the options below:

A computational investigation for propagation of elasto-viscoplastic zones in the shock loaded circular plates

Asghar Zajkani (Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran)
Abolfazl Darvizeh (Department of Mechanical Engineering, Islamic Azad University – Bandar Anzali Branch, Bandar Anzali, Iran)
Mansour Darvizeh (Department of Mechanical Engineering, University of Guilan, Rasht, Iran)

Engineering Computations

ISSN: 0264-4401

Article publication date: 30 September 2014

156

Abstract

Purpose

The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular plates.

Design/methodology/approach

Constitutive equations are implemented incrementally by the Von-Kármán finite deflection system which is coupled with a mixed strain hardening rule and physical-base viscoplastic models. Time integrations of the equations are done by the return mapping technique through the cutting-plane algorithm. An integrated solution is established by pseudo-spectral collocation methodology. The Chebyshev basis functions are utilized to evaluate the coefficients of displacement fields. Temporal terms are discretized by the Houbolt marching method. Spatial linearizations are accomplished by the quadratic extrapolation technique.

Findings

Results of the center point deflections, effective plastic strain and stress (dynamic flow stress) and temperature rise are compared for three features of the Von-Kármán system. Identifying time history of resultant stresses, propagations of the viscoplastic plastic zones are illustrated for two circumstances; with considering strain rate and hardening effects, and without them. Some of modeling and computation aspects are discussed, carefully. When the results are compared with experimental data of shock wave loadings and finite element simulations, good agreements between them are observed.

Originality/value

This computational approach makes coupling the structural equations with the physical descriptions of the high rate deformation through step-by-step spectral solution of the constitutive equations.

Keywords

Acknowledgements

The authors express their special thanks to Professor Dieter Weichert, Professor Marcus Stoffel and Dr Russell E. Todres for their help to provide experimental setup at the Shock Tube Laboratory in the Institute of General Mechanics, RWTH Aachen University.

Citation

Zajkani, A., Darvizeh, A. and Darvizeh, M. (2014), "A computational investigation for propagation of elasto-viscoplastic zones in the shock loaded circular plates", Engineering Computations, Vol. 31 No. 7, pp. 1401-1443. https://doi.org/10.1108/EC-11-2012-0303

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Related articles