To read this content please select one of the options below:

Effects of thermal radiation and magnetohydrodynamics on Ree-Eyring fluid flows through porous medium with slip boundary conditions

K. Ramesh (Department of Mathematics, Symbiosis Institute of Technology, Symbiosis International University, Pune, India)
Sartaj Ahmad Eytoo (Department of Mathematics, Lovely Professional University, Jalandhar, India)

Multidiscipline Modeling in Materials and Structures

ISSN: 1573-6105

Article publication date: 23 November 2018

Issue publication date: 21 February 2019

66

Abstract

Purpose

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and both the plates moving in the direction of flow) of the Ree-Eyring fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the intention of the study is to examine the effect of different physical parameters on the fluid flow.

Design/methodology/approach

The mathematical modeling is performed on the basis of law of conservation of mass, momentum and energy equation. The modeling of the present problem is considered in Cartesian coordinate system. The governing equations are non-dimensionalized using appropriate dimensionless quantities in all the mentioned cases. The closed-form solutions are presented for the velocity and temperature profiles.

Findings

The graphical results are presented for the velocity and temperature distributions with the pertinent parameters of interest. It is observed from the present results that the velocity is a decreasing function of Hartmann number. Temperature increases with the increase of Ree-Eyring fluid parameter, radiation parameter and temperature slip parameter.

Originality/value

First time in the literature, the authors obtained closed-form solutions for the fundamental flows of Ree-Erying fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the results of this paper are new and original.

Keywords

Citation

Ramesh, K. and Eytoo, S.A. (2019), "Effects of thermal radiation and magnetohydrodynamics on Ree-Eyring fluid flows through porous medium with slip boundary conditions", Multidiscipline Modeling in Materials and Structures, Vol. 15 No. 2, pp. 492-507. https://doi.org/10.1108/MMMS-05-2018-0103

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles