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Abstract

Purpose — Climate analogues have been extensively used in ecological studies to assess the shift of
ecoregions due to climate change and the associated impacts on species survival and displacement, but they
have hardly been applied to urban areas and their climate shift. This paper aims to use climate analogues to
characterize the climate shift of cities and to explore its implications as well as potential applications of this
approach.

Design/methodology/approach — The authors propose a methodology to match the current climate of
cities with the future climate of other locations and to characterize cities’ climate shift velocity. Employing a
sample of 90 European cities, the authors demonstrate the applicability of this method and characterize their
climate shift from 1951 to 2100.

Findings — Results show that cities’ climate shift follows rather strictly north-to-south transects over the
European continent and that the average southward velocity is expected to double throughout the twenty-
first century. These rapid shifts will have direct implications for urban infrastructure, risk management and
public health services.

Originality/value — These findings appear to be potentially useful for raising awareness of stakeholders
and urban dwellers about the pace, magnitude and dynamics of climate change, supporting identification of
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the future climate impacts and vulnerabilities and implementation of readily available adaptation options,
and strengthening cities’ cooperation within climate-related networks.

Keywords Awareness-raising, Climate analogues, Climate shift, Climate velocity, Urban adaptation

Paper type Research paper

1. Introduction

It is by now widely acknowledged that climate change will pose significant threats to
both urban systems and city dwellers (Bulkeley, 2013). Because urban areas hold more
than half of the world’s population and most of people’s assets, it is of utmost importance
to define adequate adaptation strategies (Lee and Lee, 2016). Their strict implementation
at the urban level is supposed to significantly reduce the inhabitants’ vulnerability to
climate change and ensure the quality of life for future generations. Nevertheless, despite
an overwhelming scientific evidence of increasing climatic threats, urban adaptation
strategies are more often absent than present, even in countries of the global North.
Although a certain number of cities self-reported to be actively engaged in climate
adaptation and mitigation at the local scale (Aylett, 2015), Reckien et al. (2013) found that
72 per cent of 200 European major cities have not yet implemented a climate adaptation
plan. Such lack of political commitment is explained by numerous factors (Juhola, 2016),
including insufficient funding, time-scale mismatches between political mandate and
climate change (Bicknell ef al., 2009; Hallegatte, 2009), underlying uncertainties of climate
projections (Schneider, 2006) and misunderstanding of the forthcoming climate impacts
(Van der Linden et al., 2014). Moreover, among the great number of factors identified as
drivers of urban adaptation planning (Reckien et al, 2015), efficient and easy-to-
understand scientific information and knowledge (Archie et al., 2014; Mycoo, 2015),
involvement in climate-related cities’ networks and strong community engagement
(Bulkeley et al., 2011) are identified to play an important role. Consequently, there is a
growing need of new and innovative methods that: (i) raise urban residents and
stakeholders’ awareness about the potential impacts of climate change; (ii) provide easily
understandable scientific information about the future impacts and adequate adaptation
options; (iii) foster cities’ collaboration within climate-related networks.

The climate analogues approach has the potential to address this need. This method — also
known as the “climate twins approach” (Ungar et al., 2011) — is designed to match the future (or
past) climate of a given location with the current climate of another location. This way, a pair of
climate analogues is made of two different geographical locations sharing a significantly
similar climate for a different time period. Such approach has been initially developed in the
field of ecological studies, with the purpose of investigating climate change impacts on the shift
of ecological communities and species habitat and the appearance of novel climate and
ecoregions (Saxon et al, 2005; Peacock and Worner, 2006; Williams and Jackson, 2007, Veloz et
al., 2012a, 2012b), as well as the implications of such shift for species’ survival and abundance
(Anderson et al, 2013; Leibing et al, 2013). Climate analogues have also been used in
agricultural studies to identify potential cultivars better suited to future climatic conditions
(Webb et al, 2013) and to investigate adaptation solutions existing today, based on the
assumption that the future of one farmer is similar to the present of another one, located in a
different region (Ramirez-Villegas et al., 2011).

This approach has also shown a great potential for raising awareness about the
magnitude and pace of climate change. For instance, Ungar et al (2011), CSIRO-Bureau of
Meteorology (2016) and Rohat et al. (2016) developed user-friendly climate analogue tools
which provide an intuitive visualization of potential climate change impacts. In the same
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line, Kopf et al (2008) and Climate Communication (2014) used climate analogues to
communicate about the amplitude of climate change to a lay audience, whereas Beniston
(2013) matched the past and current climates to provide easy-to-understand information
about the celerity of climate change in the past decades.

However, the application of this approach in urban areas has largely been
underused so far. The few climate analogues studies focusing on cities have shown
that climate analogues can help assessing economic damages of climate change
(Hallegatte et al., 2007) and identifying both adequate adaptation policies (Kellett et al.,
2011) and best practices of climate adaptation (Rohat ef al., 2016). Nevertheless, none of
these studies used climate analogues to characterize the velocity of cities’ future
climate shift — i.e. the speed and orientation of the geographical displacement over
time — and to explore its potential implications on urban dwellers and on the design of
adaptation strategies.

In this interdisciplinary effort, we propose a climate-matching method that reliably
matches the current and future climates of any location worldwide, and we show how it can
be used to assess the associated shift velocity. Employing a large sample — 90 different cities —
we exemplify the applicability of this method and characterize the climate shift of
European cities from 1951 to 2100. We then discuss the potential implications of such cities’
climate shift and provide insights into the possible use of the proposed approach, e.g. for
raising awareness of both city dwellers and decision-makers about the pace, magnitude,
and dynamics of climate change, for supporting the identification and implementation of
adequate adaptation strategies, and for enhancing cities’ cooperation within transnational
climate-related networks.

2. Methods and materials
2.1 Climate-matching approach
In the past few years, two main methods to match one climate with another have been
described. One is based on the aggregation of different climate statistics within a
similarity index — e.g. the CCAFS index (Climate Change, Agriculture and Food Security;
Ramirez-Villegas et al, 2011; Leibing et al, 2013) or a simpler index using the
standardized Euclidean distances (SEDs) (Williams and Jackson, 2007; Veloz et al,
2012a) — whereas the other is based on a comparison between a set of univariate climatic
criteria and a set of arbitrarily established thresholds (Hallegatte et al., 2007; Ungar et al.,
2011; Rohat et al., 2016). While the latter allows an easy control of the climate analogues’
quality — in terms of climatic proximity — the use of a similarity index allows ranking
them and hence identifying the climatically closest one. Nevertheless, Grenier et al. (2013)
showed that the uncertainty associated with the choice of climate models and scenarios is
largely superior to the variation resulting from the use of different climate-matching
approaches.

In this study, we applied a combination of the two foregoing methods to:

(1) match the climate of any location of interest (LOI) with other locations sharing
similar climate — but at a different time period — which we named the LOI's climate
analogues; and

(2) determine the best climate analogue — i.e. the one sharing the most similar climate
—for a given LOI and time period.

Although climate has been traditionally characterized by a specific combination of various
variables (IPCC, 2001), matching one climate with another requires relaxing this definition.
Because the climate-matching method developed in this study is used to investigate cities’



climate shift, we took into account climate variables that both represent the overall
climate and have a major influence on the functioning of urban areas. Trade-offs have to
be made between including the numerous climatic variables that determine a city’s
climate and keeping low the number of climatic variables to identify a substantial
number of climate analogues. This led us to select the five following quantities: monthly
mean temperature and monthly mean precipitation, which are the two most essential
climatic determinants (Holdridge, 1947); monthly minimal temperature for winter months
(December, January and February) and monthly maximal temperature for summer
months (June, July and August), which are, respectively, the indicators of cold and warm
spells (Ungar et al., 2011); and annual total precipitation, which is an important climatic
factor for water management in cities (Hallegatte et al, 2007). These variables were
computed monthly (or annually in case of the annual total precipitation variable) and
averaged over five 30-year periods, namely, P1 (1951-1980), P2 (1981-2010), P3 (2011-
2040), P4 (2041-2070) and P5 (2071-2100).

To identify the climate analogues of a given LOI and time period, we first computed and
averaged (as per grid points in the computational domain) the Euclidean distances between
the LOI's current climate (P1) and the future climate (P2, P3, P4 or P5) of all the grid points,
for the five climatic variables (methodology available as Appendix). Second, we compared
the averaged Euclidean distances (five per grid points) with specific thresholds. We
arbitrarily fixed these thresholds at 1°C for the three temperature variables and 25 per cent
of the LOI's mean value (over the reference time period) for the two precipitation variables. If
the averaged Euclidean distances for the five climate variables are under their respective
thresholds, then the grid point’s future climate is considered as similar to the current LOI's
climate. Third, we applied an altitude filter to select the grid points that are located within a
200-meter range (above or below) of the LOI's altitude. Although applying such altitude
filter is uncommon in climate analogues studies (Hallegatte ef al,, 2007; Beniston, 2014), we
argue here that it enables a more precise computation of the velocity of latitudinal climate
shifts (Section 2.4). The remaining grid points — i.e. those which share significantly similar
climate to the LOI and which have passed through the altitude filter — are considered as the
LOI's climate analogues (for a given future time period). Finally, we computed their
similarity index based on an unweighted SED metric (Appendix) and ranked those to
identify the best one, in terms of climatic proximity. Such workflow (Figure 1) is repeated for
every LOI and for each of the four 30-year time periods (i.e. P2, P3, P4 and P5).

2.2 Climatic data

Data sets for the case study presented in this paper were extracted from the European
project ENSEMBLES (2009), which provides daily values at a horizontal grid-spacing of 25
km, from 1951 to 2100, under the A1B scenario of Special Report on Emission Scenarios of
the Intergovernmental Panel on Climate Change. To reduce the uncertainties associated with
the use of a single regional climate model (RCM), we computed multimodel means of the five
climatic variables used in the climate-matching method. Climatic projections originated
from seven different RCMs, namely, CNRM-RM4.5 (CNRM, 2008), KNMI-RACMO2 (van
Meijgaard et al, 2008), OURANOS-MRCC4.2.1 (Plummer et al, 2006), SMHI-RCA3
(Kjellstrom et al., 2005), DMI-HIRHAMS (Christensen et al., 2007), GKSS-CCLM4.8 (Bohm
et al., 2006) and METEO-HC-HadRMQO (Collins ef al., 2006). The five climatic variables were
computed monthly (and annually for the variable of annual total precipitation) for the five
30-year periods and for all the grid points (32,300 in total) of the 25-km grid-spacing
computational domain.
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2.3 Transects

According to studies applying the Koppen climate classification in Europe (de Castro et al,
2007; Gerstengarbe and Werner, 2008), the European historical climate is represented by a
temperate climate in Western Europe, a continental climate in Eastern Europe and a
subtropical climate in the Southern part. Jylhd ef al (2010) recently showed that European
climates tend to move northeastwards. In this study, there is no attempt to assess the shift of
European climatic zones, but rather the positional shift — mainly southwards — of European
cities’ climate. Beniston (2013) showed that European isotherms have been moving northwards
in the past decades, along several north-to-south transects. In the same line and following the



existing studies assessing the European climate shift (Jylhi et al, 2010; Beniston, 2013, 2014,
2015), we developed three north-to-south transects, namely an Eastern Europe transect, a
Continental transect, and a Maritime transect (Figure 2). These allow investigating the potential
differences of climate shift over the European continent. Each of these is made of 30 different
cities that have been chosen with regard to both their geographical location (proximity with a
selected transect and distance with other cities) and regional importance (size of the population
and administrative role). Overall, these 90 cities (Appendix Table Al) are located across 22
European countries, are distributed within several climatic zones, and host approximately 416
million inhabitants, i.e. more than half of the European population (Eurostat, 2012).

2.4 Southward velocity
To assess the southward climate shift velocity — i.e. the speed (in kilometres per year) of the
expected southward positional change — of each city of the three transects, we first
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Figure 2.

Map displaying the
location of the 90
cities forming the
three north-to-south
transects, namely,
Maritime transect
(+), Continental
transect (e) and
Eastern Europe
transect (A)
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computed the latitudinal distance between the city and its best climate analogue (for each
30-year time period), using the Haversine formula (Sinnott, 1984). We then divided the
latitudinal distance by the number of years between the reference period and the projected
period, which can vary from 30 years up to 120 years. Applying this method, we estimated
the southward velocity of every city’s climate shift for the seven following shifts:

(1) P1-P2:From 1951-1980 to 1981-2010 (30-year shift).
(2) P2-P3: From 1981-2010 to 2011-2040 (30-year shift).
(3) P3-P4: From 2011-2040 to 2041-2070 (30-year shift).
(4) P4-P5: From 2041-2070 to 2071-2100 (30-year shift).
(5) P1-P3: From 1951-1980 to 2011-2040 (60-year shift).
(6) P3-P5: From 2011-2040 to 2071-2100 (60-year shift).
(7)  P1-P5: From 1951-1980 to 2071-2100 (120-year shift).

3. Results

3.1 Applicability of the method

Out of the 360 different attempts (90 cities and four future 30-year time periods) to identify a
climate analogue, 304 were successful (success rate of 84 per cent), highlighting the
applicability of this method over the European continent. Among the 90 investigated cities,
70 cities were found to have reliable climate analogues for each of the four 30-year future
time periods. For the other 20 cities, no climate analogue was found for at least one future
time period. Among them, two cities, namely Geneva (Switzerland) and Sofia (Bulgaria), did
not have any climate analogues for the four future time periods. Most of these 20 cities are
located at the edge of the European domain; hence their respective climate analogues are
presumably located outside Europe. For instance, climate analogues of the cities located in
the Iberian Peninsula (extreme south of the computational grid), e.g. Vigo (Spain), Faro
(Portugal), and Porto (Portugal), are presumably located in North Africa. However, for other
cities such as Geneva (Switzerland), no climate analogue was found simply because its
future climate does not currently exist in Europe. This may be because of the appearance of
novel climates in a changing climate context (Williams and Jackson, 2007).

3.2 Direction of shifts

Results showed that climate analogues are always located southwards of their
respective city of reference. This rather expected result highlights the well-known
equator-ward displacement of the climatic zones (i.e. from north to south in case of
Europe). One of the added values of the method as applied here lies in the identification
of transects of climate shift. To assess whether or not European cities’ climate shift
follows the three predetermined transects, we computed the longitudinal distance
between each climate analogue and their reference transect (Maritime, Continental, or
Eastern Europe). Results showed that the longitudinal distance between climate
analogues and their reference transect ranges from 0 to 218 km (68 km in average) for
climate analogues of the Continental transect, from 0 to 715 km (88 km in average) for
the ones of the Maritime transect, and from 0 to 428 km (average of 75 km) for the ones
of the Eastern Europe transect. In addition to this great spatial proximity — in terms of
longitudinal distance — between climate analogues and their reference transect, spatial
analysis of the results showed that these three transects of climate shift very rarely



overlap with each other (Figure 3). This emphasizes the future north-to-south transect-
oriented shift of European cities’ climate.

3.3 Speed of southward velocity
Table I summarizes the main findings resulting from the southward velocity computation
carried out for European cities’ climate shift, for the three north-to-south transects and for all
the shift time periods (see Appendix Table AIl for all detailed results). Overall, the
southward velocity of European cities’ climate shift greatly differs depending on both their
geographical location and the shift time period.

Among the four 30-year shifts, the slowest southward velocity was found for the cities of
Jonkoping (Sweden) and Cordoba (Spain), with a speed of 0.9 km year ! for the P2-P3 shift.
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Figure 3.

Map displaying the
investigated cities
and their respective
climate analogues for
the four future 30-
year time periods,
according to the
Maritime (+),
Continental (e) and
Eastern Europe (A)
transects
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Table 1.

Minimum, maximum
and mean southward
climate shift velocity
for the three
transects and the
seven shift time
periods

Zurich (Switzerland) and Cracow (Poland) exhibited the fastest southward velocity, 34.0 and
38.1 km year !, respectively, for the P4-P5 shift.

Throughout the entire study period P1-P5 (i.e. from 1951-1980 to 2071-2100), Andorra-la-
Vella (Andorra) and Berlin (Germany) showed the slowest (2.9 km year ') and quickest (13.2
km year ') climate shift, respectively. Such pace results in considerable displacement of
climate in space over the European continent throughout the twenty-first century. As an
example, Berlin’s climate in 2071-2100 (P5) will be located not less than 1,584 km
southwards (South Spain) than its climate in 1951-1980 (P1).

When averaging the southward velocity of cities’ climate shift per transects, results
showed that the cities of the Maritime transect tend to migrate southwards slower (7.3
km year ! for the P1-P5 shift) than the cities of the two other transects (8.2 and 8.0 km
year 1). Such conclusion would need to be strengthened by integrating more cities,
although it corroborates findings from an earlier study based on rather similar
transects (Beniston, 2013).

Results also indicated that the southward velocity of European cities’ climate shift is not
constant from 1951 to 2100, and instead significantly accelerates throughout the twenty-first
century (Table I and Figure 4). It starts from an average of 7.0 km year* for the P1-P2 shift
and almost doubles to reach an average of 13.4 km year ™! for the P4-P5 shift. Computations
of the averaged southward velocity for the two 60-year shifts also confirmed this finding. It
starts from an average of 5.9 km year ! for the P1-P3 shift and almost doubles to reach 11.3
km year ! for the P3-P5 shift. Such doubling of speed is exemplified in Figure 5 for cities of
the Continental transect.

A sensitivity analysis has also been performed — using the second best climate analogue of
each LOISs rather than their best climate analogues — and showed similar results, in particular
for the averaged result over transects and shift time periods (Appendix Table AIII).

4. Discussion
4.1 Implications
Up until now, most of the research on climate analogues and climate shift has aimed to
assess the survival and abundance of species as well as the ecological changes of their
habitat in response to the shift of climatic conditions. Recent findings (Ash et al., 2016)

Transects
Shift time period ~ Velocity (km year™))  Continental ~E.Europe  Maritime  Average (km year™})

P1-P2 Min-max 1.9-15.0 2.0-20.0 0.8-22.3

Mean 7.3 7.8 59 7.0
P2-P3 Min-max 0.9-15.3 39-14.2 2.8-245

Mean 5.3 7.1 75 6.6
P3-P4 Min-max 2.0-29.6 5.0-30.1 2.8-34.3

Mean 11.3 113 104 11
P4-P5 Min-max 5.6-34.0 2.0-38.1 39-25.6

Mean 14.1 15.2 10.7 134
P1-P3 Min-max 09-11.4 24-11.3 20-12.1

Mean 55 6.3 59 59
P3-P5 Min-max 5.1-19.7 5.1-20.2 39-21.1

Mean 119 11.9 9.9 11.3
P1-P5 Min-max 3.0-132 54-11.3 4.0-10.9

Mean 82 8.0 7.3 79
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highlighted that species either shift their distribution to track climate change or adapt
to the changes in their local environmental conditions. Similarly, climate shift in cities
will threaten urban dwellers’ quality of life and alter cities’ functioning because of the
new climate-related issues that will appear along the climate shift. Nevertheless,
contrary to plants and other animal species, cities’ residents are unlikely to shift their
distribution to track climate change, and hence will rather have to adapt to these
changing conditions.

We have shown that European cities’ climate will shift southwards with an average
speed of 7.9 km year ! from 1951-1980 to 2071-2100 (P1-P5), under the A1B IPCC SRES
scenario. This means that within one human generation (i.e. 25 years), European cities’
climate will shift 200 km southwards in average. Such rapid climate shift will
undoubtedly have negative implications on the 416 million inhabitants of the 90
investigated cities, and potentially also on many more in similar cases. Moreover, cities’
residents will have to not only face the changing climatic conditions but also cope with
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Figure 4.
Southward velocity of
the investigated cities

for each 30-year shift
time period

Figure 5.
Southward velocity of
the Continental
transect’s cities for
the two 60-year shift
time periods, namely,
P1-P3 and P3-P5
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Figure 6.

Climate shift over the
European continent
for the cities of
Aarhus (Denmark),
Berlin (Germany) and
Warsaw (Poland), for
the four 30-year shift
time periods, namely,
P1-P2 (from 1951-
1980 to 1981-2010),
P2-P3 (from 1981-
2010 to 2011-2040),
P3-P4 (from 2011-
2040 to 2041-2070)

and P4-P5 (from 2041-

2070 to 2071-2100)

the acceleration of the rate at which these changes occur, which is expected to double
throughout the twenty-first century.

Such finding emphasizes on the strong dynamics of climate change, underlining that
climatic conditions will change faster in the near future, without ever reaching an
equilibrium state. Hence, an adaptation measure that is efficient at a certain period of time
will not necessarily be efficient at another future time period. This brings attention to the
fact that both dynamics and acceleration of the rate at which climatic conditions are
changing must be taken into account when designing adaptation strategies in urban areas.
Although we conducted the analysis over Europe only, findings are likely to be of similar
magnitude in other continents.

4.2 Potential uses

In addition of being scientifically based, findings of climate analogues studies are thought to
be easily understandable, hence can successfully raise awareness of a lay audience about
climate change issues (Kopf ef al., 2008; Jylha et al., 2010; Beniston, 2014; Rohat et al., 2016).
Despite being based on a rather complex method, our study is no exception. Its findings,
straightforward and readily comprehensible, can potentially raise awareness of urban
dwellers and decision-makers about both the magnitude and the pace of climate change,
particularly when graphically displayed at city scale (Figure 6). Indeed, when cities’
residents and stakeholders visualize on a map that their city’s climate is shifting at several
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hundred kilometres southwards, they may immediately realize what climate change
actually means in terms of the changing climatic conditions and what the magnitude of
these changes is. As an example, Figure 6 shows that Berlin’s climate is shifting throughout
Europe to reach North Spain by the end of the twenty-first century (2071-2100). Knowing
that the climate in North Spain is much hotter and drier, with more frequent and intense heat
waves, residents of Berlin could easily apprehend the magnitude of climate change and
immediately envision the type of future climatic conditions they will have to cope with.
Furthermore, displaying the different locations of Berlin’s future climate — at different future
time periods — might also raise awareness about the pace and dynamics of climate change,
emphasizing on the fact that the speed of change is greatly increasing throughout the
twenty-first century.

In addition of being a potentially efficient tool to raise awareness and communicate
about climate change to a lay audience, the approach described in this paper might also
be of great use for decision-makers and urban practitioners in charge of designing and
implementing adaptation strategies in urban areas. Indeed, by closely looking at the
current climatic conditions of the cities located southwards — along a given transect —
decision-makers can readily envision the future climate impacts and vulnerabilities
that their respective city will face. In the same line, by looking at the adaptation options
that are currently implemented in the cities located southwards, urban practitioners can
immediately and easily identify the ones that would have to be implemented in their
own city to be well-adapted to the future climatic conditions. Such use of the climate
analogues approach as decision-support tool shows great potential (Rohat et al., 2016)
but remains poorly explored. Hallegatte ef al. (2007) showed that climate analogues
could help assessing economic impacts of the future climate change and Kellett et al.
(2011) demonstrated that such approach allows identifying adequate adaptation
policies, although some limitations have been recently pointed out (Kellett et al., 2015).
One of the added values of our approach lies in the fact that it allows identifying climate
analogues for several future time periods. This means that urban practitioners and
decision-makers can identify the future climate impacts and efficient adaptation
options for different future time periods, by looking at their city’s climate analogue for
these different periods, such as short-term (2011-2040), medium-term (2041-2070) and
long-term (2071-2100) future. To exemplify this point, we computed the return periods of
daily maximum temperatures for Aarhus, Berlin and Warsaw and their respective climate
analogues for the four future 30-year time periods (Appendix Table AIV). Besides highlighting
the great climate proximity between cities and their climate analogues, such results may be of
valuable use for identifying future heat-related climate impacts and potential adaptation
strategies — through knowledge sharing with climate analogues — for different time horizons of
climatic challenges.

Finally, it is worth mentioning that using such approach as a decision-support tool
for climate adaptation in urban areas would undeniably strengthen the collaboration
among FEuropean cities, which is thought to be an important trigger for the
implementation of efficient adaptation strategies in urban areas (Reckien et al., 2015).
Particularly along a given transect, cities could share experience, adaptation options
and best practices. Such transect-oriented network could be embedded within the
existing climate-related cities’ networks, such as C40-Cities Climate Leadership Group
or Covenant of Mayors.

While these potential uses appear promising and beneficial, limitations must be indicated
at this point:
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¢ On the one hand, certain limitations are inherent to the climate analogues approach.
By taking into account only a limited number of climate statistics (five in this
study), such method simplifies the definition of what climate really is. For instance,
these five climate parameters do not integrate wind speed and humidity (which both
play a role in the perceived temperature) and do not account for the local parameters
of urban areas — e.g. the urban heat island — which can largely influence the climate
and its impacts. Moreover, climate models’ outputs that represent historical climate
(1951-1980 and 1981-2010) are subject to spatially uneven biases that may lead to
differences with weather stations data.

*  On the other hand, certain factors can hinder the exchange of adaptation strategies
between cities sharing similar climate at different time periods. For example, two
cities of a similar transect might be too different — in terms of size, population’s
characteristics, functioning, shape, etc. — to efficiently share their adaptation options
and best practices, which are often tightly linked to local characteristics. Moreover,
the climate-related policies and infrastructures of a city might stem from political
choices rather than from climatic conditions (Kellett et al., 2015), hence limiting the
utility of sharing adaptation measures between cities. Finally, cities are not always
well-adapted to their current climate, meaning that their adaptation strategies
should not be taken as an example of good practices. In this case, knowledge
sharing would only allow identifying future impacts and vulnerabilities.

5. Conclusion

This paper has introduced and described a climate-matching method that can potentially be
applied worldwide. As long as reliable climatic projections are available, it allows
identifying and ranking climate analogues of any cities. This method also enables assessing
the velocity of their climate shift, for any future time periods.

We exemplified this approach for the European continent and applied it on 90
different European cities. We successfully determined (84 per cent of success rate) their
climate analogues for four time periods, namely 1981-2010, 2011-2040, 2041-2070 and
2071-2100.

On the basis of the spatial analysis of these climate-matching results, we have shown
that European cities’ climate will strictly shift southwards in the future. More specifically,
this equator-ward climate shift appears to follow particular north-to-south transects, such as
the three transects (Maritime, Continental and Eastern Europe) that we predetermined.
Using these findings, we computed the southward velocity of this climate shift. Despite the
heterogeneity of the results, the averages analysis has highlighted a significant rise
(doubling) of the southward climate shift velocity throughout the twenty-first century. It
reaches not less than 13.4 km year ! in average for the shift from 2041-2070 to 2071-2100
(P4-P5). This finding is in line with other studies (Burrows et al, 2011; Chen et al, 2011,
Diffenbaugh and Field, 2013). Such climate shift and increase of velocity have direct
implications for urban inhabitants, who will have to adapt to this rapid climate shift and to
the wide range of new climate-related issues that will occur in cities at a constantly growing
pace.

One of the major added values of this study is that the findings are both scientifically
sound and easily understandable by a lay audience. As a result, these can be used to raise
awareness of both stakeholders and urban dwellers about the existence, the magnitude, the
pace, and the dynamics of climate change. Knowing that their city’s future climate will be
similar to the current climate of other cities located southwards and that such shift is



expected to double throughout the twenty-first century, people may immediately envision
what the future climate will look like in their city and at what pace these changes will occur.
Furthermore, we have shown that such approach may also be used as a decision-support
tool. It enables cities to learn from each other, in terms of future impacts and vulnerabilities
as well as in terms of adaptation options, policies and best practices. Because of the
southward climatic shift, knowledge transfer between European cities will be made from
southern cities to northern cities, along the same transect. Such practical application of
climate analogues might strengthen collaboration between cities and enhance their
involvement in climate-related networks. Despite some limitations, mainly associated with
the climate matching method and with the differences between cities’ characteristics, this
exploratory study shows a great potential for future development, particularly regarding
its applications as both a communication and decision-support tool in urban areas. On the
basis of this exploratory study, further research could integrate different IPCC scenarios
(such as the new set of representative concentration pathways) to assess the influence that
different radiative forcing has on the southward climate velocity of cities. Further studies
could also empirically test the efficiency of such approach as an awareness-raising tool.
Finally, on the basis of specific case studies and with the help of cities” stakeholders and
policymakers, further research could also demonstrate the applicability of such approach as
an efficient decision-support tool for designing and strengthening adaptation strategies in
urban areas, at different time horizons.
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Appendix. Supplementary Material — Equations
Equation for computing the averaged Euclidean distances (£D,,,) between the LOI's future climate
and the current climate of a given grid point, for the five climate variables:

n
EDm,g = Z abs (A(m)f) — B(;n)[/n

m=1
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where abs is the absolute value, A4 is the LOI's value for the month  for the future time period f, and European
B 1s‘t}.1e given grid point’s value for the month m at the current time period ¢. For monthly mean cities’ climate
precipitation and monthly mean temperature variables, number of months » = 12; for minimum shift
winter temperature and maximum summer temperature variables, » = 3; for annual total

precipitation variable, z = 1.

Equation for computing the similarity index of climate analogues, based on standardized Euclidean

distances (SED): 445

8
SED = "[EDuyg(s) — Xs/ s

v=1

where ED,,q,) is the averaged Euclidean distance for the climate variable v, Xv and ov are,
respectively, the mean and the standard deviation of the set of ED,,, for all the grid points, for the
climate variable v.
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Table Al

List of the 90
investigated cities,
with their
coordinates, altitude
and population

Transect City Latitude Longitude Altitude (m)  Population (inhab.)

Continental Ostersund 63.167 14.667 330 45,000
Falun 60.6 15.616 110 37,000
Orebro 59.26 15.22 40 100,000
Linképing 58.4 15.61 60 98,000
Jonkoping 57.75 14.167 110 85,000
Vixjo 58.86 14.8 170 56,000
Berlin 52.467 13.35 40 3,500,000
Leipzig 51.333 12.417 110 523,000
Dresden 51.05 13.73 120 524,000
Erfurt 50.97 11.03 190 206,000
Bayreuth 49.95 11.58 340 73,000
Frankfurt 50.1 8.683 100 681,000
Nuremberg 49.45 11.083 320 506,000
Stuttgart 48776 9.17 250 607,000
Strasbourg 48.583 7.75 140 272,000
Basel 4755 7.6 260 165,000
Zurich 47.378 8.54 410 379,000
Besancon 47.24 6.03 250 117,000
Geneva 46.217 6.15 370 189,000
Lyon 45.767 4.833 170 485,000
Clermont-Ferrand 45.78 3.08 410 140,000
Grenoble 45.187 5.72 220 156,000
Valence 44.93 4.89 130 62,000
Rodez 44.35 2.567 630 25,000
Toulouse 43617 1.45 140 442,000
Andorra la Vella 42.51 1.523 990 23,000
Saragossa 41.65 -0.9 210 666,000
Valladolid 41.63 —4.72 700 307,000
Madrid 40.417 -3.717 650 3,165,000
Cordoba 37.883 —4.767 130 329,000

Eastern Europe St. Petersburg 59.917 30417 20 5,222,000
Pskov 57.8 28.433 50 205,000
Velikiye Luki 56.33 30.533 100 99,000
Rezekne 56.5 27.34 160 33,000
Daugavpils 55.875 26.53 110 90,000
Polotsk 55.483 28.8 130 83,000
Vitebsk 55.183 30.167 160 348,000
Kaunas 54.89 23.89 30 309,000
Vilnius 54.667 25.317 100 536,000
Minsk 53.92 27.49 210 1,894,000
Bialystok 53.34 23.166 130 295,000
Pinsk 52.12 26.1 140 135,000
Brest-Litovsk 52.08 23.7 170 323,700
Warsaw 52.217 21.005 110 1,715,000
Lodz 51.783 19.467 210 722,000
Lublin 51.248 22.57 190 348,000
Lutsk 50.75 25.335 190 212,000
Cracow 50.067 19.933 220 759,000
Lviv 49.85 24.02 290 724,000
Kosice 48716 21.25 200 241,000
Budapest 47.498 19.04 110 1,732,000
Debrecen 47529 21.639 120 205,000

(continued)




European

Transect City Latitude  Longitude  Altitude (m) Population (nhab)  Cities’ climate
Mukacheve 4845 2275 120 86,000 shift
Cluj-Napoca 46.76 23.583 340 304,000
Timisoara 45.76 21.23 90 307,000
Belgrade 44.817 20.467 170 1,352,000
Prishtina 42.66 21.166 650 146,000 447
Sofia 42.7 23.33 550 1,212,000
Plovdiv 42.146 24.75 170 339,000
Skopje 41.997 21.433 250 537,000

Maritime Trondheim 63.6 10.383 10 179,000
Bergen 60.383 5.333 10 266,000
Haugesund 59.43 5.28 15 37,000
Stavanger 58.967 5.75 10 129,000
Kristiansand 58.15 8 10 88,000
Aalborg 57.05 9.919 10 204,000
Aarhus 56.15 10.22 20 320,000
Herning 56.762 8.317 50 87,000
Esbjerg 55.467 8.467 20 116,000
Bremen 53.083 8.8 10 547,000
Groningen 53.218 6.56 10 190,000
Amsterdam 52.38 49 10 780,000
Rotterdam 51.917 4.483 10 611,000
Calais 50.95 1.85 10 73,000
Lille 50.65 3.083 20 228,000
Rouen 49.433 1.083 20 111,000
Caen 49.18 —-0.37 20 109,000
Rennes 481 —1.667 40 208,000
Brest 48.39 —4.48 50 140,000
Vannes 47.65 —2.76 30 54,000
Nantes 47.233 —1.538 10 293,000
Bordeaux 44833 —0.567 10 244,000
San-Sebastian 43.32 —1.98 10 187,000
Bilbao 43.25 —2.933 20 347,000
Santander 43.46 —-3.805 10 176,000
Gijon 4353 —57 20 276,000
Vigo 42.23 —8.67 10 295,000
Porto 41.15 —8.617 50 231,000
Lisbon 38.733 -9.133 50 531,000
Faro 37.03 -791 20 65,000

Source: http://ec.europa.eu/eurostat/statistics-explained/index.php/Statistics_on_European_cities Table Al
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Table AIIL
Sensitivity analysis
showing the absolute
difference of
minimum, maximum

Transects
Shift time period ~ Velocity (km year™!)  Continental — E.Europe Maritime Average (km year™ )

and mean southward  p;_py Min-max 1505 1214 0407
climate shift velocity Mean 0.2 0.3 0.1 0.2
(for the three P2-P3 Min-max 1.1-32 0521 20-1.3
transects and the Mean 0.2 0.3 04 04
seven shift time P3-P4 Min-max 0.9-0.8 19-31 0.8-24
periods) when Mean 0.2 0.4 0.2 0.3
computations are P4-P5 Mm-max 0.?)-%.8 1.%)—%.4 O.é—g.S 03
ean } . . .

Easfdlfm t?e second ) po Min-max 0725 0531 1517

est climate Mean 02 0.1 0.1 0.1
analogues (for each  pg ps Min-max 0.64.7 0833 1237
LOIs) rather than on Mean 0.1 0.4 0.4 0.4
the best climate P1-P5 Min-max 1142 0.8-3.8 1.4-25
analogues Mean 0.2 0.3 0.3 0.3

Daily max P2 P3 P4 P5
temperature climate climate climate climate

Table ALV. Cities (°C) Plcity P2city analogue P3city analogue P4 city analogue P5city analogue
Return periods in Aarhus 29 23 11 11 9 9 5 3 2 2
years of mean daily 31 78 33 30 26 22 13 8 4 4
maximum 33 261 98 85 79 60 34 25 9 9
Aarhus Denmark), - Berln 3 8 4 » w1 1 14 i i
5\?;?;«}?;32%; Zﬁg 39 134 119 148 40 43 33 39 6 9

e W o 41 377 359 419 99 106 8 108 12 17
their respective Warsaw 33 10 6 7 4 4 3 3 2 2
climate analogues for 35 43 19 23 9 8 7 7 3 4
the four future 30- 37 180 65 77 23 20 22 20 9 10
year time periods 39 767 223 261 73 62 62 51 23 29
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