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Abstract
Purpose – Projecting the population distribution in geographical regions is important for many
applications such as launching marketing campaigns or enhancing the public safety in certain densely
populated areas. Conventional studies require the collection of people’s trajectory data through offline means,
which is limited in terms of cost and data availability. The wide use of online social network (OSN) apps over
smartphones has provided the opportunities of devising a lightweight approach of conducting the study
using the online data of smartphone apps. This paper aims to reveal the relationship between the online social
networks and the offline communities, as well as to project the population distribution by modeling geo-
homophily in the online social networks.
Design/methodology/approach – In this paper, the authors propose the concept of geo-homophily
in OSNs to determine how much the data of an OSN can help project the population distribution in a
given division of geographical regions. Specifically, the authors establish a three-layered theoretic
framework that first maps the online message diffusion among friends in the OSN to the offline
population distribution over a given division of regions via a Dirichlet process and then projects the
floating population across the regions.
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Findings – By experiments over large-scale OSN data sets, the authors show that the proposed prediction
models have a high prediction accuracy in characterizing the process of how the population distribution forms
and how the floating population changes over time.
Originality/value – This paper tries to project population distribution bymodeling geo-homophily in OSNs.

Keywords Dirichlet process, Geo-homophily, Population distribution

Paper type Research paper

1. Introduction
The study of population distribution in fixed geographical regions (e.g. states, provinces) is of
paramount importance for the government to enhance the public safety in certain places with a
large floating population (FP) or for the business to launch marketing campaigns in densely
populated areas (Harris and Todaro, 1970). The data relevant to people’s trajectory are
conventionally collected through offline sources. For instance, it is feasible to predict the FP in
the transportation systems by analyzing the origin-destination data of passengers (Chi, 2010);
Customers’ bank notes can be used for modeling the human trajectories as a continuous-time
random walk (Gonzalez et al., 2008). The government (e.g. statistical bureau) collects the
demographic data to investigate the correlation between human migration patterns and
geographic labor demand and supply (National Bureau of Statistics of China, 2010). The
challenges of conducting these studies are attributed to the high cost of the data collection
methods (regarding time, manpower and money), and the restriction of accessing such data
sets due to security and privacy concerns.

The wide use of online social network (OSN) apps over smartphones has accumulated a rich
set of geographical data that describe anonymous user trajectories (Kido et al., 2005) and habits
(Gao et al., 2017) in the physical world, which holds the promise of providing a lightweight means
to study the population distribution (Li et al., 2016). For example, manyOSN applications, such as
Facebook, Weibo, allow users to “check-in” and explicitly show their locations (Guo et al., 2013;
Nazir et al., 2008; Liao et al., 2015); some other applications have implicitly recorded users’ geo-
related information such as GPS coordinates, IP address (Backstrom et al., 2010; Zheng et al.,
2010). Existing research has shown the feasibility of using the OSN data to predict users’ offline
locations as well their mobility patterns (Cho et al., 2011; Li et al., 2010). Moreover, the online
relationship between friends can affect their social ties in the physical world (Zheng, 2012): the
“close” friends in the OSN are also physically close to each other (Cho et al., 2011).

However, it is still unclear that which type of OSNs can assist determining the population
distribution in given geographical regions. Intuitively, there are two observations:

(1) It is easy to draw a population distribution over geographical regions that are
stable –most people in a region do not travel distantly; and

(2) Acquaintances in the same geographical region have a strong desire to
communicate with each other through the OSN (Girvan and Newman, 2002).

Therefore, we seek to answer the following questions in this study:
� Is there a way of measuring the stability of geographical regions by observing the

online message diffusion among people in those regions?
� How to derive the offline population distribution over a stable division of regions?
� Given a population distribution, how to project the FP across regions?

Our research findings indicate that a division of geographical regions is stable only if the
OSN users in these divided regions show a strong geo-homophily; people in each region
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prefer communicating with others in the same region more than those in other regions, and
the Dirichlet process (DP) (Neal, 2000) provides a viable way of modeling the distribution of
OSN users across offline regions. These inspire us to investigate the relationship between
the online information diffusion, i.e. users’ communication in OSN, and the population
distribution over a fixed division of offline regions.

In this paper, we present a systematic approach that projects the offline population
distribution in fixed geographical regions by modeling the geo-homophily of OSNs.
Specifically, we establish a three-layered theoretic framework that first maps the online
message diffusion among friends in the OSN to the offline population distribution via a DP
and then projects the FP across geographical regions given the derived population
distribution. The contributions of this work are summarized as follows:

� Connecting online data to stability of geographical regions: We establish the
correlation between online message diffusion and the stability of geographical regions
by modeling the geo-homophily of an OSN with geographical attributes. We derive
the condition for a division of geographical regions to have a non-decreasing stability.

� DP-based prediction models: We formulate the population distribution problem from
the perspective of DP and present a theoretical framework to project the population
distribution over fixed geographical regions by casting online message diffusion
into the established framework. Based on the derived population distribution, we
propose a prediction model that utilizes the message diffusion graph in OSNs to
infer the FP across geographical regions.

� Experiments using large real-world data sets: By experiments over the real-world
data sets, we validate the efficacy of the model in projecting the population
distribution over fixed regions and meanwhile show that the proposed prediction
models have a high prediction accuracy in characterizing the process of how the FP
changes across regions upon the occurrence of societal events (the mass human
migration caused by the Chinese Spring Festival 2016).

The rest of this paper is organized as follows. We introduce the related work and technical
background on DP in Section 2. We provide the system model and formulate the problem in
Section 3. In Sections 4 and 5, we show the approach of projecting the population distribution
and present the model of predicting the FP, respectively. We validate the proposed model by
experiments in Section 6, and conclude the paper in Section 7.

2. Related work
2.1 Geographical views of online social networks
Prior work on geographical aspects of OSNs has mostly focused on prediction and analytics
of various properties in OSN by leveraging the location-related information.

2.1.1 Predicting mobility patterns using online social network data. Users’ locations can
be predicted by mining their periodic behaviors in social network, given that the observed
movement is associated with certain reference locations (Li et al., 2010). Cho et al. (2011)
show that human movement and mobility patterns have a high degree of freedom and
variation, but they can still exhibit structural patterns due to geographical and social
constraints, on basis of two observations:

(1) short-ranged travel is periodic both spatially and temporally and not effected by
the social network structure; and

(2) long-distance travel is more influenced by social network ties.

Population
distribution
projection

251



Thus, the historic data can be used to predict where a user might travel.
2.1.2 Data dissemination in a geographical perspective. Wang et al. (2014) pose a three-

layered architecture to model the data dissemination in OSNs, present a density function of
general social relationship distribution and derive the tight lower bounds on traffic load of
data dissemination in the OSNs under the assumption that every source sustains a data
generating rate of a constant order.

2.1.3 Online and offline social behaviors. Zheng (2012) propose a location-based social
network (LBSN), which consists of the new social structure made up of individuals connected
by the “interdependency” derived from their locations in the physical world as well as their
location-tagged media content, such as photos, video and texts. Hristova et al. (2014)
experimentalized on a data set with 74 college students as volunteers by observing evidence of
homophily with regard to many factors within the online and offline social networks. They
found that the social tie among students at the same educational institution was strongly
affected by residential sector and year in college, but it exhibited diversity in other online
aspects, leading to the affirmation saying diversity online is relative to diversity offline.

2.1.4 Social tie inference. Sociological phenomena can be also observed within OSNs.
Although the OSN platform has facilitated people’s communication, the volume of OSN
communications between OSN friends (the strength of the social tie between them) is
inversely proportional to the geographical distance, following a Power Law (Goldenberg and
Levy, 2009). Considering the co-occurrence in time and space (Crandall et al., 2010), Crandall
et al. (2010) present a probabilistic model to prove that even a very small number of
co-occurrences can result in a high empirical likelihood that the two people know each
other – a social tie between them, which tells us a way to infer the social network structure
only by capturing individual physical location over time.

2.2 Dirichlet distribution and Dirichlet process
Dirichlet distribution is the conjugate prior of multinomial distribution, which can be seen as
a distribution over distribution. The probability density function is written as:

p ¼ P ¼ fpigjaið Þ ¼

Y
i

C aið Þ

C
X
i

ai

� �Y
i

pa i�1
i :

There are two parameters:
(1) The scale a ¼

P
iai : a small scale a favors extreme distributions, but this prior

belief is very weak and is easily overwritten by data, whereas an extremely large a
makes the samples be more consistent with the base measure.

(2) The base measure (a1
0,a2

0,. . .),ai
0 = ai/a: The base measure determines the mean

distribution.

One popular application of Dirichlet distribution is latent Dirichlet allocation on topic
discovery in natural language processing. It is a generative statistical model aiming at
describing sets of observations by connotative groups why some parts of the data are
similar.

DP is a class of Bayesian nonparametric models, and DP generalizes Dirichlet
distribution (Neal, 2000). DP is a distribution function in a space of infinite but countable
number of elements, which also requires a scale parameter a and a base measure G0,
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denoted as DP(a, G0). DP is an important method in Bayesian inference to identify the prior
distribution of random variables, and it is widely used for density estimation,
semiparametric modeling and sidestepping model selection/averaging. One important
implication is that DP helps find the number of active components which is much less than
the number of samples. In this paper, we investigate how to use DP to model the process that
OSN users are distributed into geographical regions.

3. Systemmodel
In this section, we propose a three-layer framework that analyzes the message diffusions
in the OSN to determine the stability of geographical regions. This problem is equivalent
to the determination of whether the OSN has a strong geo-homophily – more specifically,
whether the structure of the message diffusion graph is similar to that of the divided
regions. We extend the concept of modularity (Newman, 2004) to quantify the degree of
the geo-homophily of an OSN, and meanwhile we specify the condition on the geo-
homophily of an OSN for the stability of underlying geographical regions to remain non-
decreasing.

In Figure 1, we show a three-layered framework consisting of: Layer 1 that captures the
message diffusion graph in an OSN; Layer 2 that seeks to derive the user population
distribution from the geo-location of OSN users in Layer 1; and Layer 3 that predicts how the
FPwill change given the distribution derived in Layer 2.

From the top to the bottom layer, we first investigate how the messages diffuse among
groups of people that have similar geo-locations. If people in the same geo region
communicate frequently, it is highly likely that the structure of the message diffusion graph
is similar to that of the underlying division of regions – the strong geo-homophily exists
between the OSN and the offline regions. As a result, we can use the geo-location of
messages among OSN users to derive the user distribution over the given regions. Then, the
FP across regions can be further inferred based on the derived distribution.

Figure 1.
A three-layered

analytical framework
that defines the geo-

homophily of OSNs to
map the OSN

message diffusion
(Layer 1) to the offline

user distribution
(Layer 2) and infers

the FP (Layer 3)
based on the derived
distribution (Layer 2)

←Online Social Network

←User Distribution

←Floating Population

Geo-Homophily

Interference

Active User New User Mirrored Node at Home Region

Corresponding Relationship in OSN New User Joins a Region

Connection between Users in Home & Remote Regions
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3.1 Geo-homophily of an online social network over divided regions
We define the geo-homophily of an OSN as the degree of similarity between the structure of
the message diffusion graph in the OSN and that of a given division of regions.

We calculate modularity to quantify the geo-homophily of an OSN. Given the message
diffusion graph of an OSN G = (V, R, E, T), where V denotes the set of users, R denotes the
set (or division) of regions and E denotes the set of edges euv with weights ruvT. The weight
ruvT represents the number of views from user u to the content sharing by user v during
time period T. The euv exists if the number of views from user u to the content sharing by
user v during time period T is non-zero. Let XT be

X
u;v

ruvT . Each user u [ V belongs to a

specific region r [ R given the divisionR, denoted as ru.
We can easily transform E from a user-to-user perspective to a region-to-region one,

recorded as « , where Ve ij [E has value:

v ijT ¼
X

u2V ;ru¼i

X
v2V ;rv¼j

ruvT

which represents the number of views from nodes in region i to the content of nodes in
region j during time periodT.

Let pijT be the proportion of messages from i to j during T, namely, v ijT=
X
i0; j0

v i0 j0T. To

quantify the geo-homophily of an OSN G = (V, R, E, T), we define the modularity on R
duringT,QRT, as:

QRT ¼
X
i2R

piiT �
X
j2R

pijT
X
j2R

pjiT
� �

(1)

It reflects the centrality of messages that are transmitted within same regions. Apparently,
QRT ranges in [�1, 1], where QRT reaches 1 if all diffusions take place inside the same
regions and reaches �1 when none of the messages are transmitted between users from
same regions. The greaterQRT is, the higher geo-homophily the OSN has.

If an OSN shows a strong geo-homophily over the divided regions, most OSN users have
more preference of communicating with others in the same region rather than with those in
other regions, which implies each user is more attached/attracted by his current region instead
of other regions, thereby leading to a high stability of each region. Next, we will show how to
determine the change of the stability of a divisionR by imposing a condition overQRT.

3.2 Stability of a division of regions
The modularity quantifies the geo-homophily between an OSN and the underlying
geographical regions. However, it is infeasible to foresee whether the regions will remain
stable because the structure of the message diffusion graph is dynamically changing. For
instance, a breaking news may reform the structure of the message diffusion graph and
push people to move across regions, which may make the stability of the divisions
vulnerable. Next, we will deduce: under what condition, the stability of a division of regions
will remain non-decreasing.

Formally, given two time periods T = [t0, t1] and T
0
= [t0, t2], where t2 > t1, we need to

find the distribution of messages in period [t1, t2] that leads to an equal or higher modularity
in at the end ofT

0
, i.e.QRT#QRT

0.
We define the social-entropy of message diffusion inside and outside regions in the

message diffusion graphG as:
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H Gð Þ ¼ �
X
i2R

X
j2R

pijT � log pijT (2)

As the redistribution of message diffusion inside each region do not affect the modularity
according to equation (1), we will only focus on those message diffusions (edges) across
regions.

Hence, we combine all edges within a region into a new set. Let IT ¼ [
i2R

e iiT , and
v IT ¼

X
i2R

v iiT ; pIT ¼ v IT=XT .H(G) can be rewritten as:

H Gð Þ ¼ �pIT � logpIT �
X
i2R

X
j2R;i 6¼j

pijT � log pijT (3)

New message diffusions in time period [t1, t2] will create new edges and construct a new
message diffusion graphG

0
(that can be extended from G). Let lij be the number of new edges

from region i to j inG
0
, which are not included inG. Note that Vi, j [ [1,|R|], lij≥ 0.

Let LjRj�jRj be the matrix of lij, and L ¼
X
i;j

lij where L � XT). Let lI ¼
X
i2R

lii be the
number of new edges inside regions.

To measure the impact and the change to G caused by new message diffusion L, we
define Information Increment, G G;L

� �
, as follows:

G G;L
� �

¼
v IT þ lI
� � v IT

þ lIð Þ Y
i;j2R;i 6¼j

v ijT þ lij
� � v ijT þ lijð Þ

v
v IT
IT

Y
i;j2R;i 6¼j

v ijT
v ijT

(4)

According to equation (3), the social-entropy becomes:

H G
0ð Þ ¼ � v IT þ lI

L þ XT
log

v IT þ lI
L þ XT

þ XT

�
X
i2R

X
j2R;i 6¼j

v ijT þ lij
L þ XT

log
v ijT þ lij
L þ XT

þ XT

(5)

The following proposition prescribes the condition for the stability of divided
regions to remain non-decreasing, based on the analysis of the OSNmessage diffusion graph.

P1. Given a message diffusion graph G over a division of regions, the geo-homophily
will not decrease, if G G;L

� �
is no smaller thanXL

T , whereL�XT.

Proof. The degree of the geo-homophily of an OSN will not decrease if the social entropy
never had a tendency to increase – i.e.DH is non-positive, where:

DH ¼ H G
0ð Þ � H Gð Þ

¼ �v IT

XT
log

v IT þ lI
v IT

�
X

i; j2R;i 6¼j

v ijT

XT
log

v ijT þ lij
v ijT

� lI
XT

log
v IT þ lI
XT

�
X

i; j2R;i 6¼j

lij
XT

log
v ijT þ lij

XT
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That is:

DH ¼ 1
XT

logXL
T � logG G;L

� �� �
(6)

Then we can substitute G G;L
� �

� XL
T into equation (6) and we could conclude with this

proposition.h

4. Population distribution projection
Given a division of regions, the geo-homophily is an indicator of the similarity between the
structure of the OSN message diffusion graph and that of the division. The stronger
geo-homophily an OSN has, more in-region communications occur between friends in the
same region rather than across-region communications. Whenever a new user joins the
OSN, he/she is highly likely to be distributed to the region where most of his/her friends
reside. This is similar to the Chinese restaurant process (one representation of DP), which
describes how guests are assigned to different tables in the restaurant according to the
existing guest distribution.

In this section, we present a Bayesian nonparametric model based on the DP, which
predicts how users in a OSN with strong geo-homophily are distributed over a given
division of regions. In contrast, the weak geo-homophily in the OSN over given regions fails
to establish the link between OSN message diffusion and the user distribution, which leads
to a low prediction accuracy.

4.1 User distribution model
We propose a user distribution model (UDM) on basis of the Dirichlet process mixture
(DPM) model for learning the hyper-parameters of the gathering mode, which is defined as a
distribution of a random probability measure u. A UDM has two parameters: base
distribution u0 which is considered as the mean of DP and the scale parameter a which is
like an inverse-variance of the DP. Then we have:

U �UDM a;U0ð Þ

representing a draw of a random probability measure u over a given parameter space U
from the corresponding DP. For every user u [ V, we can draw a relevant u u from u. Here, a
affects the probability that u u = u v, u = v. Thus, sampling from UDM is executed by the
following generative process:

U �UDM a;U0ð Þ
u u �U
ru �F u uð Þ

where F is the likelihood function determining which region user u belongs to. Due to the
cluster property, the number of distinct u ’s would be exactly |R|, far less than |V|. Let
~u r; r 2 R be the non-redundant hyper-parameters.

We have u in |R| dimensions where
X
r2R

ar ¼ a, i.e.:

U �Dir fargr2R
� �
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Define nr be the amount of ru that equals to r for every user u, and we can deduce the
posterior distribution as:

P f ~u rgr2Rjfnrgr2R
� �

/ Mult fnrgr2Rjf ~u rgr2R
� �

Dir f ~u rgr2Rjfargr2R
� �

/
Y
r2R

~u r
ar�1

C
X
r2R

ar

� �
Y
r2R

C arð Þ

Y
r2R

~u r
nr

/
Y
r2R

~u r
ar�1Y

r2R

~u r
nr ¼

Y
r2R

~u r
nrþar�1

¼ Dir f ~u rgr2Rjfar þ nrgr2R
� �

Thus, the marginal probability would be:

P fnrgr2R
� �

¼
ð
f ~u r gr2R

P f ~u rgr2Rjfnrgr2R
� �

¼
C

X
r2R

ar

� �
Y
r2R

C arð Þ

ð
f ~u r gr2R

Y
r2R

~u r
nrþar�1

¼
C

X
r2R

ar

� �
Y
r2R

C arð Þ

Y
r2R

C ar þ nrð Þ

C jV j þ
X
r2R

ar

� �

According to the Bayesian theory, for user u 62V, the predictive distribution becomes:

P ru ¼ rjfrvgv2V
� �

¼
P ru ¼ r; frvgv2V
� �
P frvgv2V
� �

¼
P fnr þ 1g [ fnr0 gr02R;r0 6¼r
� �

P fnr0 gr02R
� �

¼
C jV j þ

X
r2R

ar

� �

C jV j þ 1 þ
X
r2R

ar

� �C ar þ nr þ 1ð Þ
C ar þ nrð Þ

¼ nr þ ar

jV j þ
X
r2R

ar
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4.2 A special case of Chinese restaurant process
The process of distributing users over multiple regions is a special case of Chinese
restaurant process (Aldous, 1993), given that |R| is finite. Whenever a new user joins the
OSN, he/she needs to choose a region to stay, by considering the distribution of his/her
friends in the given regions:

� When the OSN has a strong geo-homophily over the regions, people prefer to
communicate and stay with their friends in the same region.

� When the OSN owns a weak geo-homophily, users may communicate with online
friends in a region but stay with offline acquaintances in another different region.

4.2.1 Parameters in the view of stick-breaking representation. Although nr’s are statistic
variables that can be obtained directly, the scale parameters are not easy to compute. To
avoid manual assignment of ar, we change our view of the problem to be an equivalent one,
i.e the stick-breaking representation.

The posterior distribution of u over ~u is deduced as:

P Ujf ~u rgr2R
� �

/ P f ~u rgr2RjU
� �

P Uð Þ
¼ UP Uð Þ

So we have:

Ujf ~u rgr2R �UPM a þ 1;
aU0 þ d ~u

a þ 1

� �

where d ~u is a probability measure concentrated at ~u .
Consider a partition (u 0,U\u 0), we have:

U u 0ð Þ;U Unu 0� �� �

�Dir aþ 1ð ÞaU0 þ d ~u 0

a þ 1
u 0ð Þ; a þ 1ð ÞaU0 þ d ~u 0

aþ 1
Unu 0� �� �

¼ Beta 1;að Þ

Serialize each region from 1 to |R|, and the stick-breaking procedure is then deduced by:

U �UPM a;U0ð Þ
¼ b 1d ~u 1

þ 1� b 1ð ÞU1

¼ . . .

¼
XjRj
i¼1

p id ~u i

where b i� Beta (1,a) for i= |R| and b |R| = 1, whereas:

p i ¼ 1�
Xi�1

j¼1

p j

0
@

1
Ab i
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The posterior distribution of b i satisfies

p b rjfnr0 gr02R;a
� �

/ p nr; jV jjb rð Þp b rjað Þ

5. Floating population inference
In the physical world, people may move across regions periodically or temporally,
thereby greatly influencing the geo-homophily of the OSN they use. In general, there are
two important regions for every person, that is, the home region denoted as h, and the
remote region denoted as ? (e.g. the work place). According to the previous study (Cho
et al., 2011), most of the message diffusions usually occur in or between these two
regions (e.g. an OSN user in the remote region contacts his families at home region or
his colleagues at the same remote region). With these observations, we leverage the geo-
attributes of message diffusions between the sender and receiver to infer the
distribution of FP.

5.1 Distribution of message diffusions
We use a tetrad S = (C,Q,l ,x ) to represent the state of the message diffusion graph.
Consider a state when the population distribution is captured as C = {ci}i[R, where ci
represents the proportion of the population of region i.

Denote the real population distribution as Q = {qij}i,j[R, where qij means the proportion
of people whose remote region is region j, whereas their home region is region i. We have
ci ¼

X
j2R

qji::. Let s ij be the proportion of users in jwith home region i, i.e. s ij ¼ qij
cj
. Similar to

UDM, s ij’s in a specific region can also be generated from a DP.
Given a sender region, the amount of region-to-region communication is

proportional to the population of the receiver region. Then for every receiver region r,
we have:

P rjrH; rWð Þ

¼

l þ 1� l � xð Þcr r ¼ rH; rH 6¼ rW

x þ 1� l � xð Þcr r ¼ rW ; rH 6¼ rW

l þ x þ 1� l � xð Þcr r ¼ rH ¼ rW

1� l � xð Þcr otherwise

8>>>>><
>>>>>:

where l is the proportion of communications with the home region, and x is the proportion
of communications with the remote region.

State difference. Define a baseline state S 0 = (C 0,Q 0,l ,x ), C0 = {c 0i}i[R, where all
people stay at their home regions, i.e. Vi, j [ R, i = j, the corresponding s 0

ij = 0. Consider
the difference between an arbitrary state S and the baseline state, named as state
difference DS.

P2. The state difference follows a superposition of a uniform distribution and a Dirichlet
distribution. Proof. The proportion of messages from r? to rt should be:
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PS rT ¼ jjrO ¼ ið Þ
¼

X
rH2R

P jjrH; rW ¼ ið Þs rH i

¼ 1� l � xð Þcj þ ls ji þ j ¼ i½ �xs ii

Therefore, we can deduce that:

PDS rT ¼ jjrO ¼ ið Þ
¼ PS rT ¼ jjrO ¼ ið Þ � PS0 rT ¼ jjrO ¼ ið Þ

¼
1� l � xð Þ cj � cj0ð Þ þ ls ji i 6¼ j

1� l � xð Þ cj � c0j
� �

þ l þ xð Þ s ii � 1ð Þ i ¼ j

8<
:

(7)

which is a constant plus a variable generated from DP. It indicates that the state difference
follows a superposition of a uniform distribution and a Dirichlet distribution.

This proposition enlightens us to infer FP by methods of divide and conquer. The state
difference reduces the weight of the uniform distribution component.

5.2 Export message pattern
Similar to UDM, we can extract the distribution of messages diffused to remote regions, and
we use a Hierarchy DP to find the distribution, which is named as the export message
pattern (EMP). For every region i, denote ri as {s ji}i= j, following:

B0 �DP t 0;B0� �
Bi �DP t i;B0ð Þ
h i �Bi

ri �F h ið Þ

where h i is the hyper-parameters, t i and t 0 is the corresponding scale parameter and B0 is
the base distribution. Consider the differential export message:

di ¼ fdij ¼ PDS jjið Þ � 1� l � xð Þ cj � c0j
� �

gi 6¼j

which satisfies that:

di=l �F h ið Þ

Given di, Gibbs Sampling can be used to decide what ri should be.

5.3 Self message pattern
The DPM can also explain the distribution of messages diffused inside each region, which is
named as self message pattern (SMP). According to equation (7), it is not wise to gather
s ii Vi[R. Instead, we should concern {s 0i = 1–s ii}i[R and denote it as r0. We are able to find
a scale parameter t 0 and base distributionI0 such that:
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I �DP t 0; I0ð Þ
h 0 � I

r0 �F h 0ð Þ

Because we have access to:

d0 ¼ fd0i ¼ 1� l � xð Þ ci � c0i
� �

� PDS ijið Þg

following d0/(l þ x ) � F(h 0), the model can be solved by Gibbs sampling according to the
posterior distribution and the restriction holding

X
j

s ji ¼ 1.

5.4 Floating population inference model
Finally, we combine UDM, EMP and SMP as a floating population inference model (FPIM).
The UDM provides the population distribution across regions, whereas EMP and SMP
compute the specific allocation inside each region. Themodel structure is shown in Figure 2.

6. Evaluation
In this section, we validate the geo-homophily over two real-world OSN data sets that have
geo attributes of users and evaluate the performance of proposed UDM and FPIMmodels.

6.1 Data sets
We use data sets of two OSNs: Gowalla data set and WeChat Moment data set. The former
one covers most of western countries, whereas the latter covers the China mainland (where
Internet censorship is enforced and people have restricted access to popular OSN sites/apps
like Facebook).

“Gowalla” (Cho et al., 2011) is a typical LBSN where users share their locations by
“checking-in”. The information regarding friend relationship was collected using their
public API, which consists of 196,591 nodes and 950,327 edges. The edges can be seen as
undirected. This Gowalla data set collects a total of 6,442,890 check-ins of these users over
the time period from February 2009 to October 2010.

“WeChatMoments (WM)” (Schiavenza, 2013) is the social network of a mobile messaging
app (Wechat) popular in China, where the contents shared over WM are HTML5 pages

Figure 2.
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(Zhang et al., 2016). This WM data set contains 137,509,889 users with 1,671,692,424
retweeting/forwarding records of 329,465 pages from January 14, 2016 to February 27, 2016,
telling us when, where, from whom a page is re-tweeted; how many pages a user reads; and
whether one has re-tweeted a page. WM can only be used on mobile devices, and the user
location can be inferred from the IP address. The period of data covers Spring Festival, a
traditional festival in China when most of Chinese people migrate back to their home
province from the work place.

Note that although the number of users of each data set is much less than the population
of a country, it is sufficiently large to derive the proportion of OSN user distribution, as well
as the population distribution over geographical regions, which helps us determine how a
new OSN user is distributed or how FP varies across regions.

6.2 Geo-homophily of online social networks
As mentioned in Section 3, we can divide users of an OSN into a division of regions,
according to users’ geo attributes.

6.2.1 Geo-homophily of WeChat
6.2.1.1 Message diffusion in China. The WM data set records the page re-tweeting in 34
provinces in China, and we use these provinces as the geographical regions in this
experiment. Every user in WM should have viewed a collection of pages, and each page
view’s IP address corresponds to a province, among which the most frequently recorded one
is set as the province where the user is located. We analyze the message diffusion process in
two time periods:

(1) Before Spring Festival, we monitor the message diffusion from January 14 to
January 31, 2016, which are pre-holiday working and weekend days.

(2) On the Spring Festival day, most people stay at home, and hence the structure of
the message diffusion graph would be different.

6.2.1.2 Results for pre-holidays. The modularity in the pre-holidays is approximately 0.49.
Figure 3(a) shows the volume of message diffusion inside each province and that between

Figure 3.
Graph
representations of
message diffusion
inside and across
provinces inWM
data set
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every pair of provinces of China, where the amount of message diffusion inside a province is
proportional to the size of the corresponding circle, and the amount between provinces are
represented by the length of arcs:

� The larger size an orange circle has, more friend relationships between two people
exist inside the province labeled in the circle.

� The shorter a blue arc is, more friend relationships exist between people in two
different provinces whose corresponding circles are connected by the arc.

� For a province whose corresponding circle have no arc connected, only a very small
number of friend relationships exist between this province and another different
one, and the resulting arc could be very long in proportion to the length of other
arcs, and thus we skip plotting such very-long arcs in the figure.

The results indicate that most of the diffusions occur inside provinces, so the arcs are relatively
sparse. In particular, there lies no arc between some pairs of circles in this figure, which does
not mean that there is no message diffusion between the corresponding two provinces but
implies that the message diffusion between them is much weaker than that between those pairs
of circles having arcs. For example, there were only hundreds of message diffusions between
Tibet and Taiwan in the data set; in contrast, several millions of message diffusions occur
between Beijing and Guangdong. This can be explained by the fact that those provinces are at
distant locations, or they have little communicationwithmost provinces in Chinamainland.

6.2.1.3 Results on holiday. On the Spring Festival holiday, most people stay with their
families in theirhomeprovince.Thegraphstructurechanges, asmostof themessagesaresent for
appointments and greetings, and these diffusionsmainly took place between friends in the same
vicinity. Thus, the proportion of the diffusion inside regions increases, leading to amodularity of
0.53.Thegraphstructure is illustrated inFigure3(b),wheresome inter-provincearcsdisappear.

6.2.1.4 Results for the baseline graph. However, results become quite different if we use
the baseline graph where edges of diffusion graph during pre-holidays were placed at
random (Newman, 2004). Then we obtain a chaotic segregation with the modularity of
�0.05, which can hardly be said to have any geo-homophily. The amount of message
diffusions inside and across these regions are shown in Figure 3(c). Compared to Figure 3(a),
under the same scale of plotting, the distribution of circles representing regions are very
dense andmost of circles’ sizes are similarly small.

6.2.2 Geo-homophily of Gowalla. The Gowalla data set provides latitudes and longitudes of
check-ins, involving the users as well as the friend relationship among them. Over 80 per cent
of the users are Americans or Europeans. Here, we use 50 states and a federal district of USA as
the geographical communities. Because we find that the distribution of check-ins within the
USA is approximately proportional to each state’s population[1], we conclude that there lies a
certain degree of geo-homophily in Gowalla data set, and the correspondingmodularity is 0.34.

6.3 Stability of divided regions
When considering the diffusion of a single page, we find that it will be reposted many times
in the home region of the sender, whereas it may be sent to only a few non-home regions –
those diffusions across regions only take up a small part. For example, we illustrate the
distribution of views to a popular page with approximately one million views in Figure 4,
where the page is originally sent from the region of Beijing.

Recall that we propose Information Increment to measure the change of geo-homophily
between two time points in Section 3.2. To test its impact, we simulate eight instances of
message diffusions and add them sequentially to the message diffusion graph at the end of Jan.
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31 of the WM data set. For each simulated message diffusion, first we construct a Dirichlet
distribution according to the previously formed message distribution by randomly selecting a
province among 34 provinces as the sender region, from which we can obtain a multinomial
distribution. One million retransmissions are then sampled through the multinomial
distribution. The experimental results are shown in Figure 5, where the geo-homophily will not
decrease when G G;L

� �
� XL

T and vice versa. This implies that the stability will not decrease
when the previously mentioned condition is satisfied, which is consistent with Proposition 1.

6.4 Performance of user distribution model
Given the order of users’ joining the OSN and their home regions, we are able to train the
UDM.We evaluate the performance of UDM onWM and Gowalla data sets, respectively.
On WM data set, we monitor the order of 30 million users’ joining the OSN and then predict
the distribution of the next 10 million users, which are tested by 10 experiment runs (each
run contains onemillion users).

Figure 4.
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As for Gowalla, we choose the group of first 100,000 users that have mostly checked in USA
to be the training set, and use a group of 28,000 users as the testing set, which are tested by
ten experiment runs as well.

Because we know the exact proportion of each region in the data set, we use histogram
intersection (HI) to measure the prediction accuracy, which ranges between 0 and 1. Besides,
we compare UDM to the baseline method (that naively predicts the future population of each
region as proportional to the previously observed population of each region). The result is
shown in Figure 6, which clearly indicates that UDM has better performance both on WM
and Gowalla than the baseline method. We also observe that UDM provides a greater HI on
the data set with a stronger geo-homophily (i.e. WM data set).

6.5 Performance of floating population inference model
In this subsection, we evaluate the performance of FPIM onWMeChat data set and compare
it against the results of the latest national population census in China[2], which provides us
the statistics of FP in China. Here, the FP in our experiments has excluded those whose
home and remote regions are the same (e.g. those who rarely move out of the home region, as
the work place and the home belong to the same region).

6.5.1 Correlation. Asmentioned above, people tend to stay at the home region during Spring
Festival in China. Therefore, the state of the message diffusion graph during Spring Festival can
be seen as the baseline state S 0.We collect the statistics on February 8, the Spring Festival day.

Intuitively, one may think that the proportion of FP would have certain correlation with the
proportion of message diffusion in each region, and this leads to a naive prediction method that
directlyuses the latter to infer the former.Weplot thecorrelationcoefficientbetweenthepredicted
FPdistributionand the real FPdistribution inFigure7(a),which is as lowas0.2, indicatingapoor
direct correlation between FP andmessage diffusion. Indeed, this is a special casewhich ignores
the uniform part of PS. Because PS holds the same superposition with PDS, we then evaluate the
performance of FPIM based on PS, as shown in Figure 7(b). The correlation coefficient is about
0.40,which isdueto theuniformpartofPS, leadingtoabiasedsamplingonDP.

In contrast to this, FPIM based on state difference works better, illustrated in Figure 7(c),
where the correlation coefficient reaches 0.8, indicating that the population prediction
approximates the distribution derived from the national population census. Here, we notice
in theWM data set that the mean of distribution difference DC =C –C0 is approximately 0,
whereas the variance is about 1.4 � 10�4. In other words, FPIM has significantly reduced
the impact of the uniform part on PDS.
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By comparing the ticks over the x-axis and y-axis of Figure 7(c), we observe that FPIM
predicts a FP (ticks over the x-axis) lower than that obtained in the national census (ticks
over the y-axis). This can be attributed to the fact that a non-negligible proportion of FP do
not view theWM pages or may not even useWM. As mentioned earlier, although there exist
people not covered by the WM data set, the number of users in the data set is sufficiently
large to derive the distributions using the proposedmodels.

6.5.2 Prediction correctness. Apart from correlation, we always have a concern on the
densely populated region which has the most of a large FP that may cause changes to the
online and offline social networks. We use the sets of regions who have the most proportion
of FPs to measure the prediction correctness of FPIM.

Foreveryprovince r, FPIMcalculates theproportionofFP,bytwosets, i.e. thesetofemigrants
whose currently located region is the remote region but the home region is r, and the set of
immigrantswhosecurrentlylocatedregionistheirremoteregionrbutthehomeregionisdifferent.

Then, we rank the provinces by the number of immigrants and emigrants and obtain a
ranking of provinces on immigrants and a ranking of provinces on emigrants, respectively.
Meanwhile, the FP data of the national population census can also produce two rankings of
provinces on immigrants and emigrants.

We compare the corresponding rankings obtained from FPIM and the national census and
calculate the overlapping rate between two rankings on immigrants or emigrants (which is
defined as the number of regions that appear in both rankings divided by the total number of

Figure 7.
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regions inaranking)over the top-yprovincesaccordingto theirnormalizedproportionvalues.We
vary y from 1 to 10 and plot the histogram in Figure 7(d), telling that FPIMworks satisfactorily
with amatchbetweenourprediction results and thedata of the national census.The two types of
rankings have a high consistency on DS. Besides, the correctness on DS is higher than that
calculated on basis of S the performance of FPIM on predicting the set of top provinces on
emigrants is better than that on predicting the set of top provinces on immigrants, which is a
resultof the fact thatFPIMusess ij’swhichpaymoreattentionontheemigrantproportion.

7. Conclusions
In this paper, we propose a systematic study on the population distribution projection over
offline geographical regions by analyzing the geographical attributes of OSNs. We propose the
concept of geo-homophily in OSNs to establish the correlation between online message
diffusion and the stability of geographical regions where a population distribution can be
drawn. We formulate the population distribution problem from the perspective of DP and
present prediction models to show the process that OSN users are distributed into regions, and
infer the FP across regions. By experiments over the large-scale data sets, it is shown that the
online message diffusions can help evaluate the stability of geographical regions, which further
facilitates the determination of population distribution over fixed regions; the proposed
predictionmodels have a high prediction accuracy in inferring the change of FP across regions.

Notes

1. www.census.gov/popest/data/datasets.html

2. www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
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