To read this content please select one of the options below:

Recuperated gas turbine aeroengines, part I: early development activities

Colin F. McDonald (McDonald Thermal Engineering, La Jolla, California, USA)
Aristide F. Massardo (Faculty of Engineering, University of Genova, Genova, Italy)
Colin Rodgers (ITC, San Diego, California, USA)
Aubrey Stone (San Diego, California, USA)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 21 March 2008

3529

Abstract

Purpose

Interest is currently being expressed in heat exchanged propulsion gas turbines for a variety of aeroengine applications, and in support of this, the aim of this paper is to evaluate the relevance of experience gained from development testing of several recuperated aeroengines in the USA in the late 1960s.

Design/methodology/approach

Technology status, including engine design features, performance, and specific weight of recuperated propulsion gas turbines based on radial and axial turbomachinery, that were development tested in the power range of about 300 to 4,000 hp (224 to 2,984 kW) is discussed in Part I.

Findings

A successful flight worthiness test was undertaken in the USA of a helicopter powered solely by a recuperated turboshaft engine and this demonstrated a specific fuel consumption reduction of over 25 percent compared with the simple‐cycle engine. However; in an era of low‐fuel cost, and uncertainty about the long‐term structural integrity of the high‐temperature heat exchanger, further development work was not undertaken.

Practical implications

The gas turbines tested were based on conventional simple‐cycle engines with essentially “bolted‐on” recuperators. Optimum approaches to minimize engine overall weight were needed in which the recuperator was integrated with the engine structure from the onset of design, and these are discussed in Part II.

Originality/value

Based on engine hardware testing, a formidable technology base was established, which although dated, could provide insight into the technical issues likely to be associated with the introduction of future heat exchanged aeroengines. These are projected to have the potential for reduced fuel burn, less emissions, and lower noise, and recuperated and intercooled turboshaft, turboprop, and turbofan variants are discussed in Part III.

Keywords

Citation

McDonald, C.F., Massardo, A.F., Rodgers, C. and Stone, A. (2008), "Recuperated gas turbine aeroengines, part I: early development activities", Aircraft Engineering and Aerospace Technology, Vol. 80 No. 2, pp. 139-157. https://doi.org/10.1108/00022660810859364

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Related articles