To read this content please select one of the options below:

A model of sedimentary delta growth: a novel application of numerical heat transfer methods

V.R. Voller (Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 15 June 2010

306

Abstract

Purpose

Understanding the factors that contribute to the growth of sediment delta lobes in river systems has significant benefit towards protecting civil and social infrastructure from severe weather events. To develop this understanding, this paper aims to construct a three‐dimensional numerical model of a sediment delta depositing on to a two‐dimensional bedrock basement entering an ocean at a constant sea‐level.

Design/methodology/approach

The approach used adapts and applies techniques and schemes previously used in building numerical heat transfer models of melting systems. Particular emphasis is placed on modifying fixed grid enthalpy like schemes.

Findings

The resulting model provides important insight on the features that control the partition of sediment delta deposition between the land and ocean domains. The model also illustrates how tectonic subsidence may control the rate of delta growth.

Originality/value

This is the first numerical heat transfer inspired model of a three‐dimensional sediment delta deposit over both land and ocean domains. The problem has scientific merit in that it represents a melting‐like moving boundary problem with two distinct moving boundaries and a space/time dependent latent heat. Further, this work is a necessary first step towards building a comprehensive understanding of how to restore delta systems to protect civil and social infrastructure.

Keywords

Citation

Voller, V.R. (2010), "A model of sedimentary delta growth: a novel application of numerical heat transfer methods", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 20 No. 5, pp. 570-586. https://doi.org/10.1108/09615531011048259

Publisher

:

Emerald Group Publishing Limited

Copyright © 2010, Emerald Group Publishing Limited

Related articles