To read this content please select one of the options below:

Blending of iron and silicon carbide powders for producing metal matrix composites by laser sintering process

Cheekur Krishnamurthy Srinivasa (Central Manufacturing Technology Institute, Bangalore, India)
Chinnakurli Suryanarayana Ramesh (PES Institute of Technology, Bangalore, India)
S.K. Prabhakar (Central Manufacturing Technology Institute, Bangalore, India)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 15 June 2010

1143

Abstract

Purpose

The purpose of this paper is to study the effect of blending time, SiC content and fill ratio on the homogeneity of iron‐silicon carbide powder mixture, blended in double‐cone blender; to evaluate density, microstructure and micro hardness of laser sintered iron and iron‐SiC specimens; and study the feasibility of building a complex iron‐SiC metal matrix composite (MMC) part by direct metal laser sintering (DMLS) process.

Design/methodology/approach

The morphology and particle size of iron and silicon carbide powders were evaluated. Nickel coating was carried out on silicon carbide particles. Blending of iron‐SiC powders were carried out in two phases in a double‐cone blending equipment. In the first phase, three tests were conducted with fill ratios (ratio of volume of conical blender to volume of powder mixture) of 1.68, 3.39, and 6.8 percent while iron‐SiC weight ratio was kept constant at 97:3. In the second phase, four tests were conducted with iron‐SiC weight ratios of 99:1, 98:2, 97:3, and 95:5 while keeping a constant fill ratio of 1.68 percent. In both the phases, blending was carried out for duration of 43 minutes. Homogeneity of the powder mixture was evaluated at different intervals of time by adopting sampling process. Sintering was carried out on iron and iron‐SiC powder mixture using DMLS machine at laser speed of 50, 75, 100, and 125 mm/s. Microstructure, density and micro hardness studies were carried out on the sintered specimens. A 3D model of a part with complex geometry was modeled using Unigraphics CAD/CAM software and prototype part was built by DMLS technology using the blended iron‐2 weight percent SiC powder.

Findings

A reduction in blending time was observed with increase in SiC content and decrease in fill ratio. Microstructure and micro hardness tests conducted on laser sintered iron‐silicon carbide specimens, reveal the homogeneity of blended powder. The density of the iron‐SiC composites sintered at a laser speed of 50 and 75 mm/s, decreased with increase in SiC content. Further, an increase in the micro hardness of iron‐SiC composites was observed with increase in SiC content and decrease in laser speed. Complex functional part was built by DMLS technology with out any supports.

Research limitations/implications

The experiments were conducted with standard blending equipment in which the speed is limited to 48 revolutions per minute only.

Originality/value

Meager information is available on blending of powders for producing MMCs by laser sintering process. The work presented in this paper will be a guideline for researchers to carry out further work in blending of powders for producing MMCs by rapid prototyping process.

Keywords

Citation

Krishnamurthy Srinivasa, C., Suryanarayana Ramesh, C. and Prabhakar, S.K. (2010), "Blending of iron and silicon carbide powders for producing metal matrix composites by laser sintering process", Rapid Prototyping Journal, Vol. 16 No. 4, pp. 258-267. https://doi.org/10.1108/13552541011049270

Publisher

:

Emerald Group Publishing Limited

Copyright © 2010, Emerald Group Publishing Limited

Related articles